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ON DECOMPOSITIONS OF A CUBE INTO CUBES AND
SIMPLEXES

ALEXANDER KHARAZISHVILI

Abstract. Some combinatorial results concerning finite decompositions (dis-
sections) of a k-dimensional cube into cubes (respectively, simplexes) of the
same dimension are presented in the paper. In connection with such de-
compositions, the notion of a decomposability number is introduced and the
problem of description of all these numbers is discussed.
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Let C be an arbitrary k-dimensional cube in the Euclidean space Rk, where
k ≥ 1, and suppose that C is decomposed into finitely many cubes {Ci : i ∈ I} of
the same dimension. Obviously, the edges of each cube Ci of this decomposition
are parallel to the corresponding edges of C. Let us denote by N(k) the set of
all natural numbers card(I), where {Ci : i ∈ I} ranges over all possible finite
decompositions of C into cubes. Clearly, the set N(k) does not depend on the
choice of C.

If n ∈ N(k), then we say that n is a decomposability number for C (with
respect to the family of all cubes in Rk). We are going to show that almost all
natural numbers are decomposability numbers for C, i.e. there exists a natural
number r such that

{r + 1, r + 2, r + 3, . . . } ⊂ N(k).

In other words, for any dimension k ≥ 1, the set N(k) is co-finite in the set N
of all natural numbers.

We need several simple lemmas.

Lemma 1. The following two assertions are valid:
1) 1 ∈ N(k);
2) if a and b are strictly positive natural numbers such that a ≥ b and n ∈

N(k), then n + ak − bk ∈ N(k).

Proof. Assertion 1) is trivial. Let us show the validity of assertion 2). For this
purpose, decompose C into ak smaller pairwise congruent cubes and replace
some bk cubes of them by one cube C ′ (this procedure is evidently possible).
Since n ∈ N(k), there exists a decomposition of C ′ into n cubes. These n cubes
together with ak − bk smaller cubes yield a decomposition of the original cube
C into n + ak − bk cubes. Thus, we obtain the required relation n + ak − bk ∈
N(k). ¤
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Lemma 2. Suppose that natural numbers

a1, a2, . . . , ap, b1, b2, . . . , bp

satisfying the inequalities

a1 ≥ b1, a2 ≥ b2, . . . , ap ≥ bp

are given and suppose that n ∈ N(k). Then we have

n + (ak
1 − bk

1) + (ak
2 − bk

2) + · · ·+ (ak
p − bk

p) ∈ N(k).

Proof. This lemma easily follows from Lemma 1 by using the induction on p. ¤
Remark 1. Let us denote d = 2k − 1. In virtue of Lemma 2, we can deduce

that if n ∈ N(k) and p is a natural number, then n + pd ∈ N(k). Indeed, it
suffices to put in the above-mentioned lemma

a1 = a2 = · · · = ap = 2,

b1 = b2 = · · · = bp = 1.

Lemma 3. Let j be an arbitrary element of the set {0, 1, . . . , d − 1}, where
d is as in Remark 1. Then there exists a number nj ∈ N(k) such that

nj = tjd + j

for some positive integer tj.

Proof. Taking into account Lemmas 1 and 2, we may write

ak
1 + ak

2 + · · ·+ ak
p − (p− 1) ∈ N(k)

for any finite sequence (a1, a2, . . . , ap) of natural numbers satisfying the inequal-
ities

1 ≤ a1, 1 ≤ a2, . . . , 1 ≤ ap.

Let us define
p = d− j + 1, a1 = a2 = · · · = ap = d.

It can be easily verified that in this case we have

ak
1 + ak

2 + · · ·+ ak
p − (p− 1) = tjd + j

for an appropriate positive integer tj, which completes the proof. ¤
Theorem 1. There exists a natural number r such that

{r + 1, r + 2, r + 3, . . . } ⊂ N(k).

Proof. According to the previous lemma, for each j ∈ {0, 1, . . . , d − 1}, there
exists a number nj ∈ N(k) satisfying the equality

nj = tjd + j

for some positive integer tj. Let us put

r = max(n0, n1, . . . , nd−1)

and show that r is the required natural number.
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Indeed, take any natural number n > r. Clearly, n can be represented in the
form

n = td + j,

where t is a positive integer and j ∈ {0, 1, . . . , d− 1}. Consequently, we get

n− nj = (t− tj)d

or, equivalently,
n = nj + (t− tj)d.

Since nj ∈ N(k), we finally have n ∈ N(k) (in view of Remark 1). The proof
of Theorem 1 is completed. ¤

Remark 2. In general (i.e. for an arbitrary dimension k), a complete descrip-
tion of the set N(k) is unknown. Some more detailed information about N(k)
can be obtained for small natural numbers k. Obviously,

N(1) = {1, 2, 3, . . . , n, . . . }.
Also, it can be easily verified that

N(2) = {1, 4, 6, 7, 8, . . . , n, . . . }
and

{71, 72, 73, . . . , n, . . . } ⊂ N(3).

In this context, it should also be mentioned that none of numbers n satisfying
the inequalities 1 < n < 2k belongs to the set N(k). In addition, we have
2k ∈ N(k) but 2k + 1 6∈ N(k) for k ≥ 2.

Remark 3. A square can be decomposed into finitely many squares whose
sizes are pairwise distinct. This result was first obtained by A. Stöhr and R.
Sprague (see [1] and [2]). At the present time we know of the constructions
which yield a decomposition of a square into 24 squares with pairwise distinct
sizes. On the other hand, it is not difficult to prove that, for k ≥ 3, none of
the k-dimensional cubes can be decomposed into finitely many k-dimensional
cubes whose sizes differ from each other (for more details about this topic see,
e.g., [3]).

Let P be a k-dimensional rectangular parallelepiped in the Euclidean space
Rk. We denote by NP the set of all natural numbers n for which there exists
at least one decomposition of P into n cubes of dimension k. Obviously, if P is
a k-dimensional cube, then the set NP coincides with the set N(k) introduced
earlier. If n ∈ NP , then we say that n is a decomposability number for P (with
respect to the family of all cubes in Rk).

Theorem 2. For any rectangular parallelepiped P , the set NP is either empty
or co-finite in N .

Proof. If NP = ∅, then there is nothing to prove.
Suppose now that NP 6= ∅ and consider a finite decomposition {Ci : i ∈

I} of P into cubes. Fix some cube Ci of this decomposition. According to
Theorem 1, there exists a natural number r such that all elements of the set
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{r + 1, r + 2, r + 3, . . . } are decomposability numbers for Ci. Now, it is clear
that all elements of the set

{card(I) + r, card(I) + r + 1, card(I) + r + 2, . . . }
are decomposability numbers for P . This ends the proof of Theorem 2. ¤

Remark 4. Denote by l1, l2, . . . , lk the lengths of all edges of a given k-
dimensional rectangular parallelepiped P , passing through one of its vertices.
As shown by Dehn, the set NP is nonempty if and only if all fractions

l1/l2, l2/l3, . . . , lk−1/lk

are rational numbers (in this connection, see, e.g., [4]).

Consider again a k-dimensional cube C in the space Rk, where k ≥ 1. Let
{Ti : i ∈ I} be a finite decomposition of C into simplexes of the same dimension.
We say that m = card(I) is a decomposability number for C (with respect to
the family of all simplexes in Rk). The set of all such m is denoted by M(k).
Observe that

M(k) = {s, s + 1, s + 2, . . . },
where s = sC = s(k) is the smallest number of simplexes into which the cube
C can be decomposed. Therefore the problem of description of the set M(k) is
equivalent to the problem of finding the precise values of the function s(k) (k =
1, 2, 3, . . . ).

Remark 5. Clearly, we have s(1) = 1, s(2) = 2 and s(3) = 5. By using a
combinatorial argument based on some upper estimates of the volumes of the
simplexes contained in a given cube, it is not difficult to show that s(4) ≥ 13.
This simple inequality will be applied below (see Theorem 3).

More generally, for a given k-dimensional convex polyhedron Q in the space
Rk, denote by sQ the smallest number of simplexes into which Q can be decom-
posed. The values of the function sQ essentially depend on the combinatorial
structure of Q.

Let Q and Q′ be two k-dimensional convex polyhedra in Rk. We say that Q′

is a primitive extension of Q if there exists a k-dimensional simplex T in Rk

such that:
(1) Q ∩ T is a common facet of Q and T ;
(2) the set of vertices of Q′ is the union of the sets of vertices of Q and T .
It immediately follows from conditions (1) and (2) that Q′ = Q ∪ T .
Accordingly, we say that a k-dimensional convex polyhedron Q is primitive if

there exists a finite sequence {Q1, Q2, . . . , Qn} of convex polyhedra in Rk such
that:

(a) Q1 is a k-dimensional simplex in Rk;
(b) for each integer i ∈ [1, n−1], the polyhedron Qi+1 is a primitive extension

of Qi;
(c) Qn = Q.
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Remark 6. Any convex polygon in the plane R2 is primitive in the sense of
the above definition. Actually, an analogous fact is true for any simple polygon
in R2 (see, e.g., [5] where some closely related results are also presented).

A three-dimensional cube C is primitive (this fact is closely connected with
the equality s(3) = 5 and is of some interest from the purely geometrical view-
point because no facet of C is a triangle).

But the most convex polyhedra in the space R3 are not primitive. In partic-
ular, if a convex three-dimensional polyhedron Q has no trihedral angle, then
Q cannot be primitive (cf. also Example 1 below).

Lemma 4. Let Q be a three-dimensional convex polyhedron in R3 and let
v = v(Q) denote the number of vertices of Q. The following assertions are
valid:

1) sQ ≥ v − 3;
2) sQ = v − 3 if and only if Q is primitive.

The proof of this lemma is based on the classical Euler formula

v + f = e + 2

and on the elementary fact that, for every convex polygon P ⊂ R2 with n sides,
the minimal number of triangles into which P can be decomposed is equal to
n− 2 (this fact does not hold for nonconvex polygons).

It directly follows from Lemma 4 that if Q is a three-dimensional convex
polyhedron and sQ ≥ v − 2, then Q is not primitive. We also claim that sQ

cannot be represented as a function of a single variable v = v(Q).
Note that the convexity of Q is essential in the formulation of Lemma 4. In-

deed, if Q is an arbitrary three-dimensional polyhedron in R3, then the inequal-
ity v(Q) ≤ 4sQ holds true. At the same time, for any natural number n ≥ 1,
there exists a three-dimensional simple polyhedron Q such that v(Q) = 4n and
sQ = n.

Obviously, analogous facts are valid for k-dimensional polyhedra in the space
Rk (k ≥ 2), where we have the inequality v(Q) ≤ (k+1)sQ and, for any natural
number n ≥ 1, there exists a k-dimensional simple polyhedron Q such that
v(Q) = (k + 1)n and sQ = n.

Example 1. In the space R3 consider a convex bipyramid Q with 2n+2 ver-
tices, where n ≥ 2. It is easy to see that there are some 2n faces F1, F2, . . . , F2n

of Q such that the intersection Fi∩Fj either is empty or is a singleton for any two
distinct integers i and j from the set {1, 2, . . . , 2n}. This fact implies that every
decomposition of Q into tetrahedra needs at least 2n members. Consequently,
we come to the inequality

sQ ≥ 2n = (2n + 2)− 2.

In particular, this inequality shows that the bipyramid Q is not primitive. The
latter fact is trivial, since Q has no trihedral angles. Let Q′ denote a primitive
extension of Q. Then Q′ has a trihedral angle but is not primitive either.
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Note that a simplicial decomposition of Q into exactly 2n tetrahedra can be
constructed without any difficulty.

Example 2. According to the preceding example, a convex hexagonal bipyra-
mid Q in the space R3 needs at least 6 tetrahedra for its decomposition, i.e.
sQ = 6. The number of vertices of Q is equal to 8. A three-dimensional cube
C has the same number of vertices. However, sC = s(3) = 5 (cf. Remarks 5
and 6). We see again that, for a general three-dimensional convex polyhedron
P in the space R3, the value sP cannot be represented as a function of a single
variable v = v(P ).

Theorem 3. A four-dimensional cube C is not primitive.

Proof. From the definition of a primitive k-dimensional convex polyhedron Q it
follows (by easy induction) that sQ ≤ v(Q)−k, where v(Q) denotes the number
of vertices of Q.

Now, suppose to the contrary that C is primitive. Then we must have

sC ≤ v(C)− 4 = 16− 4 = 12.

But, as mentioned in Remark 5, sC = s(4) ≥ 13. The contradiction obtained
ends the proof of Theorem 3. ¤

It readily follows from Theorem 3 that, for each natural number k ≥ 4, the
k-dimensional unit cube C ⊂ Rk is not primitive. To show this, it suffices
to apply induction on k taking into account the fact that the volume of any
simplex contained in C does not exceed 1/k.
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