A POSITIVE ANSWER TO VELICHKO'S QUESTION

JINJIN LI AND ZHAOWEN LI

Abstract. We give positive answer to Velichko's question in which the quotient and s-map is replaced by a sequence-covering and cs-map. In addition, let X have a star-countable k-network, then X is a sequence-covering and cs-image of a locally separable metric space if and only if X is a sequence-covering and cs-image of a metric space.

2000 Mathematics Subject Classification: Primary: 54E99, 54C10; Secondary: 54D55.

Key words and phrases: Sequence-covering maps, *cs*-mappings, *cs*-networks, *k*-networks, compact-countable covers, star-countable collections, cosmic spaces, \aleph_0 -spaces.

1. INTRODUCTION

In recent years, sequence-covering maps introduced by Siwiec in [1] have again been drawing attention [2]–[5]. On the other hand, B. Qu and M. Gao introduced the concept of *cs*-map in order to study the relationships between spaces with certain compact-countable k-networks and certain images of metric spaces [6]. Velichko [7] posed the following interesting question about quotient and s-images of metric spaces: Find a Φ -property such that a space Y is a quotient and s-image of a metric and Φ -space if and only if Y is a Φ -space which is a quotient and s-image of a metric space. Velichko [7] proved that a space Y is a pseudo-open and s-image of a locally separable metric space if and only if Y is a locally separable space which is a pseudo-open and simage of a metric space. In this paper, it is shown that a local \aleph_0 -property is a positive answer to Velichko's question if the quotient and s-map is replaced by a sequence-covering and cs-map. In addition, let X have a star-countable k-network, then X is a sequence-covering and cs-image of a locally separable metric space if and only if X is a sequence-covering and cs-image of a metric space.

In this paper, all spaces are regular and T_1 , all mappings are continuous and onto. $\omega = \{0\} \bigcup N$. Let us recall some basic definitions.

Definition 1.1. Let X be a space, and let \mathcal{P} be a cover of X.

(1) \mathcal{P} is called compact-countable (resp. compact-finite) if for any compact subset K of X, only countably (resp. finitely) many members of \mathcal{P} intersect K.

(2) \mathcal{P} is star-countable if for any element P of \mathcal{P} , only countably many members of \mathcal{P} intersect P.

(3) \mathcal{P} is point-countable if for each $x \in X$, only countably many members of \mathcal{P} contain x.

(4) Let $x \in P \subset X$. *P* is a sequential neighborhood of *x* in *X* [8] if whenever $\{x_n\}$ is a sequence converging to the point *x*, we have $\{x_n : n \geq m\} \subset P$ for some $m \in N$.

(5) Let $P \subset X$. P is a sequentially open subset in X [8] if P is a sequential neighborhood of x in X for each $x \in P$. X is a sequential space if each sequentially open subset in X is open.

(6) \mathcal{P} is a network if whenever $x \in U$ with U open in X, we have $x \in P \subset U$ for some $P \in \mathcal{P}$. A space is a cosmic space [9] if it has a countable network.

(7) \mathcal{P} is a *cs*-network [10] if whenever $\{x_n\}$ is a sequence converging to a point $x \in U$ with U open in X, we have $\{x\} \bigcup \{x_n : n \geq m\} \subset P \subset U$ for some $m \in N$ and some $P \in \mathcal{P}$.

(8) \mathcal{P} is a k-network for X if whenever $K \subset U$ with K compact and U open in X, we have $K \subset \bigcup \mathcal{P}' \subset U$ for some finite $\mathcal{P}' \subset \mathcal{P}$; A space is an \aleph_0 -space [9] if it has a countable k-network.

(9) \mathcal{P} is an *so*-cover (i.e., sequentially open cover) [12] if each element of \mathcal{P} is sequentially open in X.

Definition 1.2. Let $f: X \to Y$ be a map. Then

(1) f is an s-map if each $f^{-1}(y)$ is separable.

(2) f is a cs-map [6] if for each compact subset K of Y, $f^{-1}(K)$ is separable.

(3) f is a sequence-covering map [1] if each convergent sequence of Y is the image of some convergent sequence of X.

(4) f is a quotient map if whenever $f^{-1}(U)$ is open in X, we have U is open in Y.

(5) f is a pseudo-open map if whenever $f^{-1}(y) \subset V$ with V open in X, we have $y \in \text{int}(f(V))$.

Definition 1.3 ([13]). A space X is sequentially separable if X has a countable subset D such that for each $x \in X$, there is a sequence $\{x_n\}$ in D with $x_n \to x$. D is called a sequentially dense subset of X.

Liu and Tanaka [14] showed that every cosmic space with a point-countable cs-network is an \aleph_0 -space, the key property of which is that every cosmic space is sequentially separable.

2. Results

Theorem 2.1. The following statements are equivalent for a space X:

(1) X is a sequence-covering and cs-image of a locally separable metric space.

(2) X has a compact-countable cs-network consisting of cosmic subspaces.

(3) X has a compact-countable cs-network, and an so-cover consisting of \aleph_0 -subspaces.

(4) X is a sequence-covering and cs-image of a metric space, and has an so-cover consisting of \aleph_0 -subspaces.

Proof. (1) \Rightarrow (2). Let $f : M \to X$ be a sequence-covering and *cs*-mapping, where M is a locally separable metric space. Suppose \mathcal{B} is a σ -locally finite

base for M consisting of separable subspaces. Put $\mathcal{P} = \{f(B) : B \in \mathcal{B}\}$. Then \mathcal{P} is a compact-countable *cs*-network for X consisting of cosmic subspaces.

 $(2) \Rightarrow (3)$. Let \mathcal{P} be a compact-countable *cs*-network of X consisting of cosmic subspaces. For each $P \in \mathcal{P}$, let D(P) be a countable and sequentially dense subset of P. For each $x \in X$, put

$$\mathcal{P}(x,1) = \{ P \in \mathcal{P} : x \in P \}, \quad D(x,1) = \bigcup \{ D(P) : P \in \mathcal{P}(x,1) \},$$

and for each $n \geq 2$ inductively define that

$$\mathcal{P}(x,n) = \Big\{ P \in \mathcal{P} : P \bigcap D(x,n-1) \neq \emptyset \Big\},\$$
$$D(x,n) = \bigcup \{ D(P) : P \in \mathcal{P}(x,n) \}.$$

Let $\mathcal{P}(x) = \bigcup \{\mathcal{P}(x,n) : n \in N\}$, and $U(x) = \bigcup \mathcal{P}(x)$. To complete the proof of (3), it suffices to show that U(x) is sequentially open in X and $\mathcal{P}(x)$ is a *cs*network for U(x). If $\{y_n\}$ is a sequence in X converging to a point $y \in U(x) \cap W$ with W open in X, then $y \in P$ for some $m \in N$ and some $P \in \mathcal{P}(x,m)$, and there is a sequence $\{z_n\}$ in D(P) with $z_n \to y$, thus $\{y\} \bigcup \{y_n, z_n : n \ge m\} \subset$ $Q \subset W$ for some $m \in N$ and some $Q \in \mathcal{P}$, so $Q \in \mathcal{P}(x, m + 1) \subset \mathcal{P}(x)$ and $\{y\} \bigcup \{y_n : n \ge m\} \subset Q \subset U(X) \cap W$. This implies that U(x) is sequentially open and $\mathcal{P}(x)$ is a *cs*-network for U(x).

 $(3) \Rightarrow (1)$. First, we shall show that X has a compact-countable *cs*-network \mathcal{P} consisting of \aleph_0 -subspaces. Let \mathcal{P}' be a compact-countable *cs*-network of X which is closed under finite intersections, and let \mathcal{U} be an *so*-cover of X consisting of \aleph_0 -subspaces. Put

$$\mathcal{P} = \{ P \in \mathcal{P}' : P \subset U \text{ for some } U \in \mathcal{U} \}.$$

Then \mathcal{P} is still a *cs*-network for X. Indeed, let $x \in W$ with W open in X. If $\{x_n\}$ is a sequence converging to the point $x \in X$, put

$$\mathcal{P}'_x = \{ P \in \mathcal{P}' : x \in P \subset W \text{ and } P \text{ contains all but finite many} x_n \}$$
$$= \{ P_n : n \in N \}.$$

For each $n \in N$, take $Q_n = \bigcap_{i \leq n} P_i$, then $Q_n \in \mathcal{P}'_x$. Let $U_x \in \mathcal{U}$ be a sequential neighborhood of x in X. If there is $q_n \in Q_n \setminus U_x$ for each $n \in N$, and G is open in X with $x \in G$, then $P_k \subset G$ for some $k \in N$ because \mathcal{P}' is a cs-network for X, thus $q_n \in Q_n \subset P_k \subset G$ when $n \geq k$, and $q_n \to x$, a contradiction. Hence $Q_m \subset U_x$ for some $m \in N$, and $Q_m \in \mathcal{P}$. Therefore \mathcal{P} is a compact-countable cs-network for X consisting of \aleph_0 -subspaces. Let $\mathcal{P} = \{P_\alpha : \alpha \in \Lambda\}$. For each $\alpha \in \Lambda$, by Theorem in [9], there are a separable metric space M_α and a sequence-covering $f_\alpha : M_\alpha \to P_\alpha$. Put $M = \bigoplus_{\alpha \in \Lambda} M_\alpha$, $Z = \bigoplus_{\alpha \in \Lambda} P_\alpha$ and $f = \bigoplus_{\alpha \in \Lambda} f_\alpha : M \to Z$. Then M is a locally separable metric space and fis a sequence-covering map. Assume $h: Z \to X$ to be a natural map, and let $q = h \circ f : M \to X$. Then q is a sequence-covering cs-mapping.

(3) \Leftrightarrow (4). It suffices to show that X has a compact-countable cs-network if and only if X is a sequence-covering and cs-image of a metric space. Let X

be a space with a compact-countable cs-network \mathcal{P} . We can suppose that \mathcal{P} is closed under finite intersections. Denote \mathcal{P} by $\{P_{\alpha} : \alpha \in A\}$. Let A_i denote the set A with a discrete topology for each $i \in N$. Put

$$M = \bigg\{ \beta = (\alpha_i) \in \prod_{i \in N} A_i : \{ P_{\alpha_i} : i \in N \} \text{ is a network at some point } x(\beta) \text{ in } X \bigg\},\$$

then M is a metric space, and $f : M \to X$ defined by $f(\beta) = x(\beta)$ is a csmap. We shall show that f is sequence-covering. For a sequence $\{x_n\}$ of Xconverging to a point x_0 in X, we can assume that all x_n 's are distinct. Let $K = \{x_m : m \in \omega\}$, and let $K \subset U$ with U open in X. A subset \mathcal{F} of \mathcal{P} is said to have the property F(K, U) if \mathcal{F} satisfies the following conditions:

(1) \mathcal{F} is finite; (2) $\emptyset \neq P \bigcap K \subset P \subset U$ for each $P \in \mathcal{F}$; (3) for each $x \in K$ there is a unique $P_x \in \mathcal{F}$ with $x \in P_x$; (4) if $x_0 \in P \in \mathcal{F}$, then $K \setminus P$ is finite. Put

 $\{\mathcal{F} \subset \mathcal{P} : \mathcal{F} \text{ has the property } F(K, X)\} = \{\mathcal{F}_i : i \in N\}.$

For each $i \in N$ and each $m \in \omega$, there is $\alpha_{im} \in A_i$ with $x_m \in P_{\alpha_{im}} \in \mathcal{F}_i$. It can be checked that $\{P_{\alpha_{im}} : i \in N\}$ is a network at the point x_m . Let $\beta_m = (\alpha_{im})$ for each $m \in \omega$, then $\beta_m \in M$ and $f(\beta_m) = x_m$. For each $i \in N$, there is $n(i) \in N$ such that $\alpha_{in} = \alpha_{i0}$ if $n \ge n(i)$. Thus the sequence $\{\alpha_{in}\}$ converges to α_{i0} in A_i , and the sequence $\{\beta_n\}$ converges to β_0 in M. This shows that f is a sequence-covering map.

Conversely, suppose that $f : M \to X$ is a sequence-covering and cs-map, where M is a metric space. Let \mathcal{B} be a σ -locally-finite base for M, then $\{f(B) : B \in \mathcal{B}\}$ is a compact-countable cs-network for X. \Box

Corollary 2.2. The following statements are equivalent for a space X:

(1) X is a sequence-covering and quotient cs-image of a locally separable metric space.

(2) X is a local \aleph_0 -space and a sequence-covering, and a quotient cs-image of a metric space.

(3) X is a sequential and local \aleph_0 -space with a compact-countable cs-network.

Theorem 2.3. Let X have a star-countable k-network. Then X is a sequencecovering and cs-image of a locally separable metric space if and only if X is a sequence-covering and cs-image of a metric space.

Proof. We prove only the "if" part. We have that a space X is a sequencecovering and cs-image of a metric space if and only if X has a compact-countable cs-network from the proof of Theorem 2.1. Let \mathcal{P} be a compact-countable csnetwork for X, here we can assume that \mathcal{P} is closed under finite intersections. Since X has a star-countable k-network \mathcal{R} , in view of Lemma 1.1 in [15], X is the disjoint union of $\{X_{\alpha} : \alpha \in \Lambda\}$ satisfying the following conditions:

(a) each X_{α} is an \aleph_0 -space which is the countable union of elements of \mathcal{R} .

(b) $\{X_{\alpha} : \alpha \in \Lambda\}$ is compact-finite.

Let $\mathcal{P}' = \{P \in \mathcal{P} : P \text{ is an } \aleph_0\text{-space of } X\}$. Then \mathcal{P}' is a *cs*-network for X. Indeed, let $L = \{x_n : n \in N\}$ converge to x with $x \in U$ and U is open. Let $\mathcal{P}_x = \{P \in \mathcal{P} : x \in P, P \subset U \text{ and } L \text{ is eventually in } P\}$. Then \mathcal{P}_x is countable. We take a subfamily $\mathcal{P}'_x = \{P_n : n \in N\}$ of \mathcal{P}_x such that $P_n \supset P_{n+1}$ for any $n \in N$ and \mathcal{P}'_x is a network of x in X. If $\mathcal{P}'_x \cap \mathcal{P}' = \emptyset$, this means that each P_n meets uncountably many X_α . Pick $z_n \in P_n \cap X_{\alpha(n)}$ for some $\alpha(n) \in \Lambda$, where $X_\alpha(n) \neq X_\alpha(m)$ if $n \neq m$. Then $\{z_n : n \in N\}$ is a convergent sequence with $z_n \to x$. The compact set $\{x\} \bigcup \{z_n : n \in N\}$ meets infinitely many X_α . This is a contradiction to (b). Thus \mathcal{P}' is a compact-countable *cs*-network for X consisting of \aleph_0 -spaces. By Theorem 2.1, X is a sequence-covering and *cs*-image of a locally separable metric space.

Acknowledgement

This work is supported by the NSF of China.

References

- F. SIWIEC, Sequence-covering and countably bi-quotient mappings. General Topology and Appl. 1(1971), No. 2, 143–154.
- SHOU LIN, Sequence-covering s-mappings. (Chinese) Adv. in Math. (China) 25(1996), No. 6, 548–551.
- 3. Y. TANAKA and SHENGXIANG XIA, Certain s-images of locally separable metric spaces. Questions Answers Gen. Topology 14(1996), No. 2, 217–231.
- LI ZHEN ZHOU, Some sequence-covering s-images of locally separable metric spaces. (Chinese) Acta Math. Sinica 42(1999), No. 4, 577–582.
- 5. Y. TANAKA, Metrization. II. Topics in general topology, 275–314, North-Holland Math. Library, 41, North-Holland, Amsterdam, 1989.
- ZHI BIN QU and ZHI MIN GAO, Spaces with compact-countable k-networks. Math. Japon. 49(1999), No. 2, 199–205.
- N. V. VELICHKO, Quotient spaces of metrizable spaces. (Russian) Sibirsk. Mat. Zh. 28(1987), No. 4, 73–81, 225.
- 8. S. P. FRANKLIN, Spaces in which sequences suffice. Fund. Math. 57(1965), 107–115.
- 9. E. MICHAEL, &o-spaces. J. Math. Mech. 15(1966), 983–1002.
- J. A. GUTHRIE, A characterization of ℵ₀-spaces. General Topology and Appl. 1(1971), No. 2, 105–110.
- P. O'MEARA, On paracompactness in function spaces with the compact-open topology. Proc. Amer. Math. Soc. 29(1971), 183–189.
- 12. SHOU LIN and PENFEI YAN, On the sequence-covering and compact images of metric spaces. To appear.
- 13. JING XIAN SUN, Generalizations of the principle of ordered sets in nonlinear functional analysis. (Chinese) J. Systems Sci. Math. Sci. 10(1990), No. 3, 228–232.
- CHUAN LIU and Y. TANAKA, Spaces having σ-compact-finite k-networks, and related matters. Topology Proc. 21(1996), 173–200.
- Y. IKEDA and Y. TANAKA, Spaces having star-countable k-networks. Topology Proc. 18(1993), 107–132.

(Received 4.01.2005)

Author's addresses:

Jinjin Li Dept. of Math. Zhangzhou Teachers' College Zhangzhou, Fujian 363000 P.R. China E-mail: jinjinli@fjzs.edu.cn Zhaowen Li Dept. of Math. Changsha University of Electric Power Changsha, Hunan 410077 P.R. China

296