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A POSITIVE ANSWER TO VELICHKO’S QUESTION

JINJIN LI AND ZHAOWEN LI

Abstract. We give positive answer to Velichko’s question in which the quo-
tient and s-map is replaced by a sequence-covering and cs-map. In addition,
let X have a star-countable k-network, then X is a sequence-covering and
cs-image of a locally separable metric space if and only if X is a sequence-
covering and cs-image of a metric space.
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1. Introduction

In recent years, sequence-covering maps introduced by Siwiec in [1] have
again been drawing attention [2]–[5]. On the other hand, B. Qu and M. Gao
introduced the concept of cs-map in order to study the relationships between
spaces with certain compact-countable k-networks and certain images of metric
spaces [6]. Velichko [7] posed the following interesting question about quotient
and s-images of metric spaces: Find a Φ-property such that a space Y is a
quotient and s-image of a metric and Φ-space if and only if Y is a Φ-space
which is a quotient and s-image of a metric space. Velichko [7] proved that
a space Y is a pseudo-open and s-image of a locally separable metric space
if and only if Y is a locally separable space which is a pseudo-open and s-
image of a metric space. In this paper, it is shown that a local ℵ0-property is
a positive answer to Velichko’s question if the quotient and s-map is replaced
by a sequence-covering and cs-map. In addition, let X have a star-countable
k-network, then X is a sequence-covering and cs-image of a locally separable
metric space if and only if X is a sequence-covering and cs-image of a metric
space.

In this paper, all spaces are regular and T1, all mappings are continuous and
onto. ω = {0}⋃

N . Let us recall some basic definitions.

Definition 1.1. Let X be a space, and let P be a cover of X.
(1) P is called compact-countable (resp. compact-finite) if for any compact

subset K of X, only countably (resp. finitely) many members of P intersect K.
(2) P is star-countable if for any element P of P , only countably many

members of P intersect P .
(3) P is point-countable if for each x ∈ X, only countably many members of

P contain x.
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(4) Let x ∈ P ⊂ X. P is a sequential neighborhood of x in X [8] if whenever
{xn} is a sequence converging to the point x, we have {xn : n ≥ m} ⊂ P for
some m ∈ N .

(5) Let P ⊂ X. P is a sequentially open subset in X [8] if P is a sequen-
tial neighborhood of x in X for each x ∈ P . X is a sequential space if each
sequentially open subset in X is open.

(6) P is a network if whenever x ∈ U with U open in X, we have x ∈ P ⊂ U
for some P ∈ P . A space is a cosmic space [9] if it has a countable network.

(7) P is a cs-network [10] if whenever {xn} is a sequence converging to a
point x ∈ U with U open in X, we have {x}⋃ {xn : n ≥ m} ⊂ P ⊂ U for some
m ∈ N and some P ∈ P .

(8) P is a k-network for X if whenever K ⊂ U with K compact and U open
in X, we have K ⊂ ⋃P ′ ⊂ U for some finite P ′ ⊂ P ; A space is an ℵ0-space
[9] if it has a countable k-network.

(9) P is an so-cover (i.e., sequentially open cover) [12] if each element of P
is sequentially open in X.

Definition 1.2. Let f : X → Y be a map. Then
(1) f is an s-map if each f−1(y) is separable.
(2) f is a cs-map [6] if for each compact subset K of Y , f−1(K) is separable.
(3) f is a sequence-covering map [1] if each convergent sequence of Y is the

image of some convergent sequence of X.
(4) f is a quotient map if whenever f−1(U) is open in X, we have U is open

in Y .
(5) f is a pseudo-open map if whenever f−1(y) ⊂ V with V open in X, we

have y ∈ int (f(V )).

Definition 1.3 ([13]). A space X is sequentially separable if X has a count-
able subset D such that for each x ∈ X, there is a sequence {xn} in D with
xn → x. D is called a sequentially dense subset of X.

Liu and Tanaka [14] showed that every cosmic space with a point-countable
cs-network is an ℵ0-space, the key property of which is that every cosmic space
is sequentially separable.

2. Results

Theorem 2.1. The following statements are equivalent for a space X:
(1) X is a sequence-covering and cs-image of a locally separable metric space.
(2) X has a compact-countable cs-network consisting of cosmic subspaces.
(3) X has a compact-countable cs-network, and an so-cover consisting of ℵ0-

subspaces.
(4) X is a sequence-covering and cs-image of a metric space, and has an

so-cover consisting of ℵ0-subspaces.

Proof. (1) ⇒ (2). Let f : M → X be a sequence-covering and cs-mapping,
where M is a locally separable metric space. Suppose B is a σ-locally finite
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base for M consisting of separable subspaces. Put P = {f(B) : B ∈ B}. Then
P is a compact-countable cs-network for X consisting of cosmic subspaces.

(2) ⇒ (3). Let P be a compact-countable cs-network of X consisting of
cosmic subspaces. For each P ∈ P , let D(P ) be a countable and sequentially
dense subset of P . For each x ∈ X, put

P(x, 1) = {P ∈ P : x ∈ P}, D(x, 1) =
⋃
{D(P ) : P ∈ P(x, 1)},

and for each n ≥ 2 inductively define that

P(x, n) =
{

P ∈ P : P
⋂

D(x, n− 1) 6= ∅
}

,

D(x, n) =
⋃
{D(P ) : P ∈ P(x, n)}.

Let P(x) =
⋃ {P(x, n) : n ∈ N}, and U(x) =

⋃P(x). To complete the proof
of (3), it suffices to show that U(x) is sequentially open in X and P(x) is a cs-
network for U(x). If {yn} is a sequence in X converging to a point y ∈ U(x)

⋂
W

with W open in X, then y ∈ P for some m ∈ N and some P ∈ P(x,m), and
there is a sequence {zn} in D(P ) with zn → y, thus {y}⋃ {yn, zn : n ≥ m} ⊂
Q ⊂ W for some m ∈ N and some Q ∈ P , so Q ∈ P(x,m + 1) ⊂ P(x) and
{y}⋃ {yn : n ≥ m} ⊂ Q ⊂ U(X)

⋂
W . This implies that U(x) is sequentially

open and P(x) is a cs-network for U(x).
(3) ⇒ (1). First, we shall show that X has a compact-countable cs-network

P consisting of ℵ0-subspaces. Let P ′ be a compact-countable cs-network of
X which is closed under finite intersections, and let U be an so-cover of X
consisting of ℵ0-subspaces. Put

P = {P ∈ P ′ : P ⊂ U for some U ∈ U}.
Then P is still a cs-network for X. Indeed, let x ∈ W with W open in X. If
{xn} is a sequence converging to the point x ∈ X, put

P ′x = {P ∈ P ′ : x ∈ P ⊂ W and P contains all but finite manyxn}
= {Pn : n ∈ N}.

For each n ∈ N , take Qn =
⋂
i≤n

Pi, then Qn ∈ P ′x. Let Ux ∈ U be a sequential

neighborhood of x in X. If there is qn ∈ Qn\Ux for each n ∈ N , and G is open
in X with x ∈ G, then Pk ⊂ G for some k ∈ N because P ′ is a cs-network for
X, thus qn ∈ Qn ⊂ Pk ⊂ G when n ≥ k, and qn → x, a contradiction. Hence
Qm ⊂ Ux for some m ∈ N , and Qm ∈ P . Therefore P is a compact-countable
cs-network for X consisting of ℵ0-subspaces. Let P = {Pα : α ∈ ∧}. For
each α ∈ ∧

, by Theorem in [9], there are a separable metric space Mα and
a sequence-covering fα : Mα → Pα. Put M =

⊕
α∈Λ Mα, Z =

⊕
α∈V Pα and

f =
⊕

α∈V fα : M → Z. Then M is a locally separable metric space and f
is a sequence-covering map. Assume h : Z → X to be a natural map, and let
g = h ◦ f : M → X. Then g is a sequence-covering cs-mapping.

(3) ⇔ (4). It suffices to show that X has a compact-countable cs-network
if and only if X is a sequence-covering and cs-image of a metric space. Let X
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be a space with a compact-countable cs-network P . We can suppose that P is
closed under finite intersections. Denote P by {Pα : α ∈ A}. Let Ai denote the
set A with a discrete topology for each i ∈ N . Put

M =

{
β =(αi)∈

∏
i∈N

Ai : {Pαi
: i∈N} is a network at some point x(β) in X

}
,

then M is a metric space, and f : M → X defined by f(β) = x(β) is a cs-
map. We shall show that f is sequence-covering. For a sequence {xn} of X
converging to a point x0 in X, we can assume that all xn’s are distinct. Let
K = {xm : m ∈ ω}, and let K ⊂ U with U open in X. A subset F of P is said
to have the property F (K, U) if F satisfies the following conditions:

(1) F is finite;
(2) ∅ 6= P

⋂
K ⊂ P ⊂ U for each P ∈ F ;

(3) for each x ∈ K there is a unique Px ∈ F with x ∈ Px;
(4) if x0 ∈ P ∈ F , then K\P is finite.
Put

{F ⊂ P : F has the property F (K, X)} = {Fi : i ∈ N}.
For each i ∈ N and each m ∈ ω, there is αim ∈ Ai with xm ∈ Pαim

∈ Fi. It can
be checked that {Pαim

: i ∈ N} is a network at the point xm. Let βm = (αim)
for each m ∈ ω, then βm ∈ M and f(βm) = xm. For each i ∈ N , there is
n(i) ∈ N such that αin = αi0 if n ≥ n(i). Thus the sequence {αin} converges
to αi0 in Ai, and the sequence {βn} converges to β0 in M . This shows that f is
a sequence-covering map.

Conversely, suppose that f : M → X is a sequence-covering and cs-map,
where M is a metric space. Let B be a σ-locally-finite base for M, then {f(B) :
B ∈ B} is a compact-countable cs-network for X. ¤

Corollary 2.2. The following statements are equivalent for a space X:
(1) X is a sequence-covering and quotient cs-image of a locally separable

metric space.
(2) X is a local ℵ0-space and a sequence-covering, and a quotient cs-image of

a metric space.
(3) X is a sequential and local ℵ0-space with a compact-countable cs-network.

Theorem 2.3. Let X have a star-countable k-network. Then X is a sequence-
covering and cs-image of a locally separable metric space if and only if X is a
sequence-covering and cs-image of a metric space.

Proof. We prove only the “if” part. We have that a space X is a sequence-
covering and cs-image of a metric space if and only if X has a compact-countable
cs-network from the proof of Theorem 2.1. Let P be a compact-countable cs-
network for X, here we can assume that P is closed under finite intersections.
Since X has a star-countable k-network R, in view of Lemma 1.1 in [15], X is
the disjoint union of {Xα : α ∈ ∧} satisfying the following conditions:

(a) each Xα is an ℵ0-space which is the countable union of elements of R.
(b) {Xα : α ∈ ∧} is compact-finite.
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Let P ′ = {P ∈ P : P is an ℵ0-space of X}. Then P ′ is a cs-network for X.
Indeed, let L = {xn : n ∈ N} converge to x with x ∈ U and U is open. Let
Px = {P ∈ P : x ∈ P , P ⊂ U and L is eventually in P}. Then Px is countable.
We take a subfamily P ′x = {Pn : n ∈ N} of Px such that Pn ⊃ Pn+1 for any
n ∈ N and P ′x is a network of x in X. If P ′x

⋂P ′ = ∅, this means that each
Pn meets uncountably many Xα. Pick zn ∈ Pn

⋂
Xα(n) for some α(n) ∈ ∧

,
where Xα(n) 6= Xα(m) if n 6= m. Then {zn : n ∈ N} is a convergent sequence
with zn → x. The compact set {x}⋃ {zn : n ∈ N} meets infinitely many Xα.
This is a contradiction to (b). Thus P ′ is a compact-countable cs-network for X
consisting of ℵ0-spaces. By Theorem 2.1, X is a sequence-covering and cs-image
of a locally separable metric space. ¤
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