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Abstract. In this paper we study the modified Beta operators. We extend
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1. Introduction

Let f be a function defined on [0,∞). The modified Beta operators intro-
duced by Gupta and Ahmad [4] are defined by

Bn(f, x) =
n− 1

n

∞∑
ν=0

bn,ν(x)

∞∫

0

pn,ν(t)f(t) dt, x ∈ [0,∞), (1.1)

where

bn,ν =
1

B(ν + 1, n)

xν

(1 + x)n+ν+1
, pn,ν(t) =

(
n + ν + 1

ν

)
tν

(1 + t)n+ν
.

Let Cγ[0,∞) = {f ∈ [0,∞) : |f(t)| ≤ Mtγ for some γ > 0 and some constant
M > 0}. It is easily observed that for n > γ this class of the operators Bn(f, x)
is well defined. We define the norm ‖·‖γ on Cγ[0,∞) by ‖f‖γ = sup

0≤t<∞
|f(t)|t−γ.

The order of approximation for these operators (1.1) is at best O(n−1). To
improve the order of approximation, we consider the linear combination of these
operators (1.1). For arbitrary but fixed distinct positive integers d0, d1, . . . , dk,
the linear combination Bn(f, k, x) of Bdjn(f, x), j = 0, 1, . . . , n, is defined by

Bn(f, k, x) =
k∑

j=0

C(j, k)Bdjn(f, x), (1.2)

where

C(j, k) =
∏
i=0
i 6=j

dj

dj − di

, k 6= 0 and C(0, 0) = 1.

In [4] the authors obtained a Voronvskaja type asymptotic formula and an er-
ror estimate in simultaneous approximation. Recently, Maheshwari and Gupta
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[5] have extended the result of [4] and obtained direct theorems for the linear
combination Bn(f, k, x) in terms of a higher order modulus of continuity. In
this context we mention the recent work of V. Gupta (see, e.g., [2], [3]), who
studied another type of discretely defined summation integral type operators
and estimated local direct results in ordinary and simultaneous approximation.
In the present paper the results of [4] and [5] are extended. It should be noted
that there were many typing errors in [5], which are corrected in the present
paper. Here we obtain an inverse result in simultaneous approximation by the
linear combination Bn(f, k, x).

We may rewrite operators (1.1) as

Bn(f, x) =

∞∫

0

Pn(x, t)f(t) dt,

where the kernel Pn(x, t) is given by

Pn(x, t) =
n− 1

n

∞∑
ν=0

bn,ν(x)pn,ν(t).

2. Auxiliary Results

This section contains the basic results and definitions needed to prove our
main theorem.

Throughout the paper it is assumed that 0 < a1 < a2 < b2 < b1 < ∞.

Definition 1. A continuous function f on the interval [a, b] is said to belong
to the generalized Zygmund class Zα(k, a, b), 0 < α < 2, k ∈ N , if there exists
a constant C such that

ω2k(f, δ, a, b) ≤ Cδαk, δ > 0,

where ω2k(f, δ, a, b) denotes the modulus of continuity of 2k-th order of f on
the interval [a, b]. In particular we denote by Z∗

α the class Zα(1, a, b).

Definition 2. Let C0 denote the class of continuous functions on the in-
terval [0,∞) having a compact support, and Ck

0 be a subset of C0 of k times
continuously differentiable functions. Suppose m ∈ N0 ≡ N ∪ {0}, [a′, b′] ⊂
(a, b), [a, b] ⊂ (0,∞) and for a fixed k ∈ N0, let G(m) = {g : g ∈ C2k+m+2

0 ,
supp(g) ⊂ [a′, b′]}. For m times continuously differentiable functions f with
supp(f) ⊂ [a′, b′], the Peetre’s K-functional is defined as

Km(ξ, f)

= inf
g∈G(m)

[‖f (m) − g(m)‖C[a′,b′] + ξ{‖g(m)‖C[a′,b′] + ‖g(2k+m+2)‖C[a′,b′]}
]
,

where 0 < ξ < 1. For 0 < α < 2, we define by Cm
0 (a, k, a′, b′) the class of m

times continuously differentiable functions f with supp(f) ⊂ [a′, b′] satisfying
the condition

sup
0<ξ≤1

ξ−α/2Km(ξ, f) < M for some constant M > 0.
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In the following two lemmas [β] denotes the integer part of β and a constant
in O(·) depends on x.

Lemma 2.1 ([4]). For m ∈ N0, the polynomial Un,m(x) = 1
n

∞∑
ν=0

bn,ν(x)
(

ν
n+1

−
x
)m

satisfies the following recurrence relation:

(n + 1)Un,m+1(x) = x(1 + x)
[
U ′

n,m(x) + mUn,m+1(x)
]

which implies that
(i) Un,m(x) is a polynomial of x of degree ≤ m;
(ii) Un,m(x) = O(n−[(m+1)/2]).

Lemma 2.2 ([4]). For m ∈ N0, n ∈ N , x ∈ [0,∞) the m-th order moment
is defined by

Tn,m(x) =
n− 1

n

∞∑
ν=0

bn,ν(x)

∞∫

0

pn,ν(t)(t− x)mdt,

then Tn,0 = 1, Tn,1 = 3x+1
n−2

and we have the recurrence relation

(n−m− 2)Tn,m+1(x) = x(1 + x) [Tn,m(x) + 2mTn,m−1(x)]

+ [(1 + 2x)(m + 1) + x] Tn,m(x), n > m + 2,

which for all x ∈ [0,∞) implies Tn,m(x) = O(n[(m+1)/2]).

Corollary 2.3 ([4]). Let δ be a positive number, then for every n > γ > 0
and x ∈ [0,∞), there exists a constant Km,x depending on m and x:∫

|t−x|>δ

Pn(x, t)tγdt ≤ Km,xn
−m for some m ∈ N.

Lemma 2.4. There exist polynomials φi,j,r(x) independent of n and ν such
that

[x(1 + x)]r
dr

dxr
(bn,ν(x)) =

∑
2i+j≤r,
i,j≥0

(n + 1)i[ν − (n + 1)x]jφi,j,r(x)bn,ν(x).

Theorem 2.5 ([5]). Let f ∈ Cγ[0,∞). If f (2k+m+2) exists at a point x ∈
[0,∞), then

lim
n→∞

nk+1
{
B(m)

n (f, k, x)− f (m)(x)
}

=
2k+m+2∑

i=r

Q(i, k,m, x)f (i)(x),

where Q(i, k, m, x) are certain polynomials in x.

In what follows C1, C2, . . . stand for the positive constant.

Lemma 2.6. Let 0 < a < a′ < a′′ < b′′ < b′ < b < ∞. If f (m) ∈ C0,
supp(f) ∈ [a′′, b′′] and

‖B(m)
n (f, k, ·)− f (m)(x)‖C[a,b] = O(n−α(k+1)/2),
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then

Km(η, f) = C1

{
n−α(k+1)/2 + nk+1ηKm(n−(k+1), f)

}
. (2.2)

As a consequence, Km(η, f) ≤ C2η
α/2, i.e., f ∈ Cm

0 (α, k + 1, a′, b′).

Proof. To prove (2.2), it is sufficient to show that

Km(η, f) = C1

{
n−α(k+1)/2 + nk+1ηKm(n−(k+1), f)

}
for sufficiently large n.

Now as supp(f) ⊂ [a′′, b′′] in view of Theorem 2.5 there exists a function gi ∈
G(m) such that for i = m and i = 2k + m + 2

‖B(i)
n (f, k, ·)− g(i)‖C[a,b] ≤ C2n

−(k+1),

Km(η, f) ≤ 3C3n
−1 + ‖B(m)

n (f, k, ·)− f (m)‖C[a′,b′]

+η{‖B(m)
n (f, k, ·)‖C[a′,b′] + ‖B(2k+m+2)

n (f, k, ·)‖C[a′,b′]}.
Thus it suffices to show that there exists a constant C4 such that for each
h ∈ G(m)

‖B(2k+m+2)
n (f, k, ·)‖C[a′,b′]

≤ C4n
k+1

{‖f (m) − h(m)‖C[a′,b′] + n−(k+1)‖h(2k+m+2)‖C[a′,b′]
}

. (2.3)

Again B
(2k+m+2)
n (f, k, ·) satisfies the linearity property

‖B(2k+m+2)
n (f, k, ·)‖C[a′,b′]

≤ ‖B(2k+m+2)
n (f − h, k, ·)‖C[a′,b′] + ‖B(2k+m+2)

n (h, k, ·)‖C[a′,b′]. (2.4)

Using Lemma 2.4, we have

∞∫

0

∣∣∣∣
∂2k+m+2

∂x2k+m+2
Pn(x, t)

∣∣∣∣ dt ≤
∑

2i+j<2k+m+2
i,j≥0

n− 1

n

∞∑
ν=1

(n + 1)i|ν − (n + 1)x|j

× |φi,j,2k+m+2(x)|
{x(1 + x)}2k+m+2

bn,ν(x)

∞∫

0

pn,ν(t) dt.

Hence, by the Cauchy–Schwarz inequality, Lemma 2.1 and the fact
∞∫
0

pn,ν(t) dt =

1
n−1

, we obtain
∥∥B(2k+m+2)

n (f − h, k, ·)
∥∥

C[a′,b′] ≤ C5n‖f (m) − g(m)‖C[a′,b′],

where the constant C5 is independent of f and g.
Now, by Taylor’s expansion, we have

h(t) =
2k+m+1∑

i=0

h(i)(t)

i!
(t− x)i +

h(2k+m+2)(ξ)

(2k + m + 2)!
(t− x)2k+m+2, (2.6)
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where ξ lies between t and x. Using (2.6), we have

∥∥∥∥
∂2k+m+2

∂x2k+m+2
Bn(g, k, ·)

∥∥∥∥
C[a′,b′]

≤
k∑

j=0

|C(j, k)|
(2k + m + 2)!

‖g(2k+m+2)‖C[a′,b′]

×
∥∥∥∥

∞∫

0

∂2k+m+2

∂x2k+m+2
Bdjn(x, t)(t− x)2k+m+2dt

∥∥∥∥
C[a′,b′]

. (2.7)

We shall now calculate the term given in the second norm on the right-hand
side. It is sufficient to consider the expression without the linear combination.
Using Lemma 2.4 and the Cauchy–Schwarz inequality we have

I =

∞∫

0

∣∣∣∣
∂2k+m+2

∂x2k+m+2
Pn(x, t)

∣∣ dt

≤ n− 1

n

∑

2i+s<2k+m+2
i,s≥0

∞∑
r=0

(n + 1)i|ν − (n + 1)x|s |φi,s,2k+m+2(x)|
{x(1 + x)}2k+m+2

bn,ν(x)

×
∞∫

0

pn,ν(t)(t− x)2k+m+2 dt.

Next, using Lemma 2.1 and Lemma 2.2, we have

I ≤ n− 1

n

∑

2i+s<2k+m+2
i,s≥0

(n + 1)i |φi,s,2k+m+2(x)|
{x(1 + x)}2k+m+2

bn,ν(x)

×
(

1

n

∞∑
r=0

bn,ν(x)(ν − (n + 1)x)2s

)1/2

×
( ∞∑

r=0

bn.ν(x)

∞∫

0

pn,ν(t)(t− x)2k+2m+4dt

)1/2( ∞∫

0

pn,ν(t) dt

)1/2

=
∑

2i+s<2k+m+2
i,s≥0

(n + 1)i |φi,s,2k+m+2(x)|
{x(1 + x)}2k+m+2

O(ns/2)O(n−(k+m)/2+1),

I =
∑

2i+s<2k+m+2
i,s≥0

(n + 1)i |φi,s,2k+m+2(x)|
{x(1 + x)}2k+m+2

O(n(2i+s)/2)O(n−(2k+m+2)/2).

Hence by using (2.7) and the above estimate we have∥∥B(2k+m+2)
n (h, k, ·)

∥∥
C[a′,b′] ≤ C6‖h(2k+m+2)‖C[a′,b′]. (2.8)

Combining estimates (2.4), (2.5) and (2.8), the result (2.3) follows. This com-
pletes the proof of (2.2). The other consequences are standard and can be found
in [1]. ¤
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Lemma 2.7. Let 0 < a < a′ < a′′ < b′′ < b′ < b and f (m) ∈ C0 with

supp(f) ⊂ [a′′, b′′], then if f ∈ C
(m)
0 (α, k + 1, a′, b′), we have f (m) ∈ Liz(α, k +

1, a′, b′).

Proof. Let |δ| < g and h ∈ Gm, then we have with f ∈ C
(m)
0 (α, k + 1, a′, b′).

|∆2k+2
δ f (m)(x)| ≤ |∆2k+2

δ (f (m)(x)− h(m)(x))|+ |∆2k+2
δ h(m)(x)|

≤ 22k+2‖f (m) − h(m)‖C[a′,b′]

+ δ2k+2‖g(2k+m+2)‖C[a′,b′] + ‖h(2k+m+2)‖C[a′,b′]

≤ C72
2k+2K∞(δ2k+2, f) ≤ C82

2k+2δα(k+1).

It follows that f (m) ∈ Zα(k + 1, a′, b′). ¤
Theorem 2.8 ([5]). Let f (m) ∈ Cγ[0,∞) and 0 < a < a′ < b′ < b < ∞, then

for n sufficiently large,∥∥B(m)
n (f, k, ·)− f (m)

∥∥
C[a′,b′] = max

{
C9ω2k+2(f

(m), n−1/2, a, b), C10n
−(k+1)‖f‖γ

}
,

where C9 = C9(k,m) and C10 = C10(k, m, f).

3. The Main Result

In this section, we shall prove the following inverse result.

Theorem 3.1. If 0 < α < 2, 0 < a1 < a2 < b2 < b1 < ∞ and f ∈ Cγ[0,∞),
then for the following statements the implication (i)⇒(ii) is true:

(i) f (m) exist on the interval [a1, b1] and∥∥B(m)
n (f, k, ·)− f (m)

∥∥
C[a1,b1]

= O(n−α(k+1)/2);

(ii) f (m) ∈ Zα(k + 1, a2, b2).

Proof. We shall prove this theorem by the principle of mathematical induction.
Assuming (i), put τ = α(k + 1) and first consider the case 0 < τ ≤ 1. Let us
choose a′, a′′, b′, b′′ in such a way that a1 < a′ < a′′ < a2 < b2 < b′′ < b′ < b1.
Also suppose g ∈ C∞

0 with supp(g) ⊂ [a′′, b′′] and g(x) = 1 on [a2, b2] for
x ∈ [a′, b′] with D = d

dx
. We have

B(m)
n (fh, k, x)− (fh)(m)(x) = Dm(Bn((fh)(t)− (fh)(x), k, x))

= Dm(Bn(f(t)(h(t)− h(x)), k, x)) + Dm(Bn(h(x)(f(t)− f(x)), k, x))

= J1 + J2, say.

To estimate J1, by the Leibniz Theorem, we have

J1 =
k∑

j=0

C(j, k)
∂m

∂xm

∞∫

0

Pdjn(x, t)f(t)(h(t)− h(x))dt

=
k∑

j=0

C(j, k)
m∑

i=1

(
m
i

) ∞∫

0

P i
djn(x, t)

∂m−i

∂xm−i
[f(t)(h(t)− h(x))]dt
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= −
m−1∑
i=1

(
m
i

)
h(m−i)(x)B(i)

n (f, k, x)

+
k∑

j=0

C(j, k)

∞∫

0

P
(m)
djn (x, t)f(t)(h(t)− h(x)) dt

= J3 + J4, say.

Now, using Theorem 2.8, we obtain

J3 = −
m−1∑
i=1

(
m
i

)
h(m−i)(x)f (i)(x) + O(n−τ/2), uniformly in x ∈ [a′, b′].

Using Theorem 2.5, the Cauchy–Schwarz inequality, Taylor’s expansion of f
and h and Lemma 2.2, we get

J4 =
m−1∑
i=1

h(i)(x)f (m−1)(x)

i!(m− i)!
m! + O(n−τ/2)

=
m−1∑
i=1

(
m
i

)
h(i)(x)f (m−i)(x) + O(n−τ/2)

uniformly in x ∈ [a′, b′] by Corollary 2.3.
Finally, applying the Leibniz theorem, we obtain

J2 =
k∑

j=0

C(j, k)
m∑

i=0

(
m
i

) ∞∫

0

P i
djn(x, t)

∂m−i

∂xm−i
[h(t)(f(t)− f(x))] dt

=
k∑

i=0

(
m
i

)
h(m−i)(x)B(i)

n (f, k, x)− (fh)(m)(x)

=
k∑

i=0

(
m
i

)
h(m−i)(x)f (i)(x)− (fh)(m)(x) + O(n−τ/2)

= O(n−τ/2) uniformly in x ∈ [a′, b′].

Combining these estimates, we have
∥∥B(m)

n (fh, k, ·)− (fh)(m)
∥∥

C[a′,b′] = O(n−τ/2).

Hence by Lemma 2.6 and Lemma 2.7, we have (fh)(m) ∈ Zα(k + 1, a′, b′). Since
h(x) = 1 on [a2, b2], it follows that f (m) ∈ Zα(k + 1, a2, b2), This proves (i)⇒(ii)
for the case 0 < τ ≤ 1. Now to prove the implication for 0 < τ < 2k + 2 it
is sufficient to assume it for τ ∈ (p′ − 1, p′) and prove it for τ ∈ (p′, p′ + 1)
(p′ = 1, 2, . . . , 2k +1). Since the result holds for τ ∈ (p′− 1, p′), f (p′+m+1) exists
and belongs to the class Zα(1 − δ, a∗, b∗) for any δ > 0 and for any interval
(a∗, b∗) ⊂ (a1, b1). Let a∗i , b

∗
i , i = 1, 2, be such that (a2, b2) ⊂ (a∗2, b

∗
2) ⊂ (a∗1, b

∗
1).
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Let h ∈ C∞
0 be such that h(x) = 1 on [a2, b2] and supp(h) ⊂ [a∗2, b

∗
2]. Then ζ2(t)

denotes the characteristic function of the interval [a∗1, b
∗
1], we have

∥∥B(m)
n (fh, k, ·)− (fh)(m)

∥∥
C[a∗2,b∗2]

≤
∥∥Dm[Bn(h(x)(f(t)− f(x), k, ·)]

∥∥
C[a∗2,b∗2]

+
∥∥Dm[Bn(f(x)(h(t)− h(x), k, ·)]∥∥

C[a∗2,b∗2]

= I1 + I2 (say).

To estimate I1, by Theorem 2.5, we have

I1 ≤
∥∥Dm[Bn(h(x)f(t), k, ·)]− (fh)(m)

∥∥
C[a∗2,b∗2]

=

∥∥∥∥
∞∑
i=0

(
m
i

)
h(m−i)B(i)

n (f, k, ·)− (fh)(m)

∥∥∥∥
C[a∗2,b∗2]

=

∥∥∥∥
∞∑
i=0

(
m
i

)
h(m−i)f (i) − (fh)(m)

∥∥∥∥
C[a∗2,b∗2]

+ O(n−τ/2) = O(n−τ/2).

Also by Leibniz Theorem and Theorem 2.5, we have

I2 =

∥∥∥∥−
∞∑
i=0

(
m
i

)
h(m−i)B(i)

n (f, k, ·) + B(m)
n (f(t)(h(t)− h(·))ζ2(t), k, ·)

}

C[a∗2,b∗2]

= ‖I3 + I4‖C[a∗2,b∗2] + O(n−(k+1)), say.

Then by Theorem 2.5, we get

I3 = −
m−1∑
i=0

(
m
i

)
h(m−i)(x)f (i)(x) + O(n−τ/2), uniformly in x ∈ [a∗2, b

∗
2].

Applying Taylor’s expansion of f , we have

I4 =
k∑

j=0

C(j, k)

∞∫

0

P
(m)
djn (x, t)[f(t)(h(t)− h(x))ζ2(t)] dt

=
k∑

j=0

C(j, k)

p′+m+1∑
i=0

f (i)(x)

i!

∞∫

0

P
(m)
djn (x, t)(t− x)i(h(t)− h(x))ζ2(t) dt

=
k∑

j=0

C(j, k)

∞∫

0

P
(m)
djn (x, t)

(
f (p′+m−1)(η)− f (p′+m−1)(x)

(p′ + m− 1)!

)

× (t− x)(p′+m−1)(h(t)− h(x))ζ2(t) dt

(η lying between t and x)

= I5 + I6, say.

Applying Theorem 2.5, we get

I5 =
k∑

j=0

C(j, k)

p′+m+1∑
i=0

f (i)(x)

i!

∞∫

0

P
(m)
djn (x, t)(t− x)i(h(t)− h(x)) dt + O(n−(k+1))
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(uniformly in x ∈ [a∗2, b
∗
2])

= I7 + O(n−(k+1)), say.

Since h ∈ C∞
0 , we can write

I7 =
k∑

j=0

C(j, k)

p′+m+1∑
i=0

f (i)(x)

i!

p′+m+1∑
r=0

h(r)(x)

r!

∞∫

0

P
(m)
djn (x, t)(t− x)i+rdt

+
k∑

j=0

C(j, k)

p′+m+1∑
i=0

f (i)(x)

i!

∞∫

0

P
(m)
djn (x, t)ε(t, x)(t− x)i+p′+m+1dt

(where ε(t, x) → 0 as t → x)

= I8 + I9, say.

Next, by Theorem 2.5 we get

I8 =
m∑

r=1

h(r)

r!

f (m−r)(x)

(m− r)!
m! + O(n−(k+1)) =

m∑
r=0

(
m
i

)
h(r)(x) + O(n−(k+1)).

Also, I9 = O(n−τ/2) uniformly in x ∈ [a∗2, b
∗
2].

Finally, by the mean value theorem,

‖I6‖C[a∗2,b∗2] ≤
k∑

j=0

|C(j, k)|

×
∥∥∥∥

∞∫

0

P
(m)
djn (x, t)

f (p′+m−1)(η)− f (p′+m−1)(x)

(p′ + m− 1)!
|h′(ξ)| |t− x|p′+mζ2(t)dt

∥∥∥∥
C[a∗2,b∗2]

,

where ξ and η lie between t and x.
Using Lemma 2.4, we have

‖I6‖C[a∗2,b∗2] ≤
k∑

j=0

|C(j, k)|
∑

2r+s≤m

r,s≥0

(djn + 1)r‖h′‖C[a∗2,b∗2]

×
∥∥∥∥

φr,s,m(x)

{x(1 + x)}m

∞∫

0

Pdjn(x, t)|ν − (djn + 1)x|s

× f (p′+m−1)(η)− f (p′+m−1)(x)

(p′ + m− 1)!
|t− x|p′+mζ2(t)

∥∥∥∥
C[a∗2,b∗2]

.

Now using the Cauchy–Schwarz inequality, Lemma 2.1 and Lemma 2.2, we get

‖I6‖C[a∗2,b∗2] = O(n−(p′+1−δ)/2) = O(n−τ/2)

by choosing δ such that 0 ≤ δ ≤ p′ + 1− τ .
Combining the above estimates, we get∥∥B(m)

n (fh, k, ·)− (fh)(m)
∥∥

C[a∗2,b∗2]
= O(n−τ/2).
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Since supp(fh) ⊂ [a∗2, b
∗
2], it follows from Lemma 2.5 and Lemma 2.7 that

(fh)(m) ∈ Zα(k + 1, a∗2, b
∗
2).

Since h(x) = 1 on [a2, b2], we have f (m) ∈ Zα(k + 1, a∗2, b
∗
2).

This completes the proof of Theorem 3.1. ¤
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