WEYL'S THEOREM FOR ALGEBRAICALLY (p, k)-QUASIHYPONORMAL OPERATORS

SALAH MECHERI

Abstract. Let A be a bounded linear operator acting on a Hilbert space H. The B-Weyl spectrum of A is the set $\sigma_{Bw}(A)$ of all $\lambda \in \mathbb{C}$ such that $A - \lambda I$ is not a B-Fredholm operator of index 0. Let E(A) be the set of all isolated eigenvalues of A. Recently, in [3] the author showed that if A is hyponormal, then A satisfies the generalized Weyl's theorem $\sigma_{Bw}(A) = \sigma(A) \setminus E(A)$, and the B-Weyl spectrum $\sigma_{Bw}(A)$ of A satisfies the spectral mapping theorem. Lee [13] showed that Weyl's theorem holds for algebraically hyponormal operators. In this paper the above results are generalized to an algebraically (p, k)-quasihyponormal operator which includes an algebraically hyponormal operator.

2000 Mathematics Subject Classification: 47A10, 47A12, 47B20. Key words and phrases: Hyponormal operator, (p, k)-quasihyponormal operator, Generalized Weyl's theorem, Browder's theorem.

1. INTRODUCTION

Let B(H) and K(H) denote, respectively, the algebra of bounded linear operators and the ideal of compact operators acting on an infinite dimensional separable Hilbert space H. If $A \in B(H)$ we shall write N(A) and R(T) for the null space and the range of A, respectively. Also, let $\alpha(A) := \dim N(A)$, $\beta(A) := \dim N(A^*)$, and let $\sigma(A)$, $\sigma_a(A)$ and $\pi_0(A)$ denote the spectrum, approximate point spectrum and point spectrum of A, respectively. An operator $A \in B(H)$ is called Fredholm if it has a closed range, a finite dimensional null space, and its range has finite co-dimension. The index of a Fredholm operator is given by

$$I(A) := \alpha(A) - \beta(A).$$

A is called Weyl if it is of index zero, and Browder if it is Fredholm of finite ascent and descent, equivalently ([15], Theorem 7.9.3) if A is Fredholm and $A - \lambda$ is invertible for sufficiently small $|\lambda| > 0$, $\lambda \in \mathbb{C}$. The essential spectrum $\sigma_e(A)$, the Weyl spectrum $\sigma_w(A)$ and the Browder spectrum $\sigma_b(A)$ of A are defined by [14, 15]

 $\sigma_e(A) = \{\lambda \in \mathbb{C} : A - \lambda \text{ is not Fredholm}\},\\ \sigma_w(A) = \{\lambda \in \mathbb{C} : A - \lambda \text{ is not Weyl}\},\\ \sigma_b(A) = \{\lambda \in \mathbb{C} : A - \lambda \text{ is not Browder}\},$

respectively. Evidently

$$\sigma_e(A) \subseteq \sigma_w(A) \subseteq \sigma_b(A) = \sigma_e(A) \cup \operatorname{acc} \sigma(A),$$

ISSN 1072-947X / \$8.00 / © Heldermann Verlag www.heldermann.de

S. MECHERI

where we write $\operatorname{acc} K$ for the accumulation points of $K \subseteq \mathbb{C}$. If we write iso $K = K \setminus \operatorname{acc} K$, then we let

$$\pi_{00}(A) := \{ \lambda \in \operatorname{iso} \sigma A : 0 < \alpha(A - \lambda) < \infty \},\ p_{00}(A) := \sigma(A) \setminus \sigma_b(A).$$

We say that Weyl's theorem holds for A if

$$\sigma(A) \setminus \sigma_w(A) = \pi_{00}(A).$$

More generally, Berkani in [2] says that the generalized Weyl's theorem holds for A provided

$$\sigma(A) \setminus \sigma_{Bw}(A) = E(A),$$

where E(A) and $\sigma_{Bw}(A)$ denote the isolated point of the spectrum which are eigenvalues (with no restriction on multiplicity) and the set of complex numbers λ for which $A - \lambda I$ fails to be Weyl, respectively. Let X be a Banach space. An operator $A \in B(X)$ is called B-Fredholm by Berkani [2] if there exists $n \in \mathbb{N}$ for which the induced operator

$$A_n: A^n(X) \to A^n(X)$$

is Fredholm in the usual sense, and *B*-Weyl if in addition A_n has index zero. Note that if the generalized Weyl's theorem holds for A, then so does Weyl's theorem [2]. We say that Browder's theorem holds for A if

$$\sigma(A) \setminus \sigma_w(A) = p_{00}(A).$$

Recently, in [3] the author showed that if A is a hyponormal operator, then A satisfies the generalized Weyl's theorem $\sigma_{Bw}(A) = \sigma(A) \setminus E(A)$, and the B-Weyl spectrum $\sigma_{Bw}(A)$ of A satisfies the spectral mapping theorem. Lee [13] showed that Weyl's theorem holds for algebraically hyponormal operators. In this paper the above results are generalized to the case where A is an algebraically (p, k)-quasihyponormal operator which includes an algebraically hyponormal operator.

2. Main Results

Before proving the following lemma, we need some notation and definitions. For any operator A in B(H) set, as usual, $|A| = (A^*A)^{\frac{1}{2}}$ and $[A^*, A] = A^*A - AA^* = |A|^2 - |A^*|^2$ (the self commutator of A), and consider the following standard definitions: A is normal if $A^*A = AA^*$, hyponormal if $A^*A - AA^* \ge 0$, p-hyponormal if $(|A|^{2p} - |A^*|^{2p}) \ge 0$.

A is said to be p-quasihyponormal if $A^*((A^*A)^p - (AA^*)^p)A \ge 0$ (0 < $p \le 1$), (p,k)-quasihyponormal if $A^{*k}((A^*A)^p - (AA^*)^p)A^k \ge 0$ (0 < $p \le 1, k \in \mathbb{N}$), if p = 1, k=1 and p = k = 1, then A is k-quasihyponormal, p-quasihyponormal and quasihyponormal, respectively. A is normaloid if ||A|| = r(A) (the spectral radius of A). Let (pH), (HN), Q(p), (Q(p,k)) and (NL) denote the classes consisting of p-hyponormal, hyponormal, p-quasihyponormal,

308

WEYL'S THEOREM

(p, k)-quasihyponormal, and normaloid operators. These classes are related by the proper inclusion

$$(HN) \subset (pH) \subset (Q(p)) \subset (Q(p,k)) \subset (NL)$$

(see [20]). A is said to be algebraically (p, k)-quasihyponormal if there exists a nonconstant complex polynomial p such that p(A) is (p, k)-quasihyponormal. We say that $A \in B(H)$ has the single valued extension property (SVEP) if for every open set $U \subseteq \mathbb{C}$ the only analytic function $f: U \to H$ which satisfies the equation $(A - \lambda)f(\lambda) = 0$ is the constant function $f \equiv 0$.

Lemma 2.1. Let $A \in B(H)$ be a (p,k)-quasihyponormal operator. Then f(A) has SVEP for each analytic function f on a neighborhood of $\sigma(A)$.

Proof. It is known that SVEP is stable under the functional calculus, i.e. if $A \in B(H)$ has SVEP, then so does f(A) for each f analytic in a neighborhood of $\sigma(A)$. Hence to prove the lemma it is sufficient to prove that A has SVEP. If A is (p, k)-quasihyponormal, then it follows from ([26], Theorem 4) that

$$||A^{k}x||^{2} \le ||A^{k-1}x|| \, ||A^{k+1}x||,$$

for every unit vectors $x \in H$. If $x \in N(A^{k+1})$, then

$$||A^{k}x||^{2} \le ||A^{k-1}x|| ||A^{k+1}x|| = 0.$$

Thus $x \in N(A^k)$. Since the non-zero eigenvalues of a (p, k)-quasihyponormal operator A are the normal eigenvalues of A ([26], Lemma 3), for $0 \neq \lambda \in \sigma_p(A)$ and $(A - \lambda)^{k+1}x = 0$ we have

$$(A - \lambda)(A - \lambda)^k x = 0 = (A - \lambda)^* (A - \lambda)^k x$$

and

$$\|(A-\lambda)^k x\|^2 = \left\langle (A-\lambda)^* (A-\lambda)^k x, (A-\lambda)^{k-1} x \right\rangle = 0.$$

Hence, if A is (p, k)-quasihyponormal, then $asc(A - \lambda) \leq k$.

Since operators with finite ascent have SVEP [17], A also has SVEP. Therefore f(A) has SVEP.

Theorem 2.1. Let $A \in B(H)$ be a (p,k)-quasihyponormal operator. Then f(A) satisfies Browder's theorem for each analytic function f in a neighborhood of $\sigma(A)$ and we have

$$f(\sigma(A) \setminus \pi_0(A)) = f(\sigma_b(A)) = \sigma_b(f(A)) = \sigma(f(A)) \setminus \pi_0(f(A))$$
$$= f(\sigma(A)) \setminus \pi_0(f(A)) = f(\sigma(A)) \setminus \pi_0(f(A)), \text{ and } f(\sigma_{Bw}(A)) = \sigma_{Bw}(f(A)).$$

Proof. It is known that operators with SVEP satisfy Browder's theorem [10]. Then f(A) satisfies Browder's theorem. Since f(A) satisfies Browder's theorem,

$$f(\sigma(A) \setminus \pi_0(A)) = f(\sigma_b(A)) = \sigma_b(f(A)) = \sigma(f(A)) \setminus \pi_0(f(A))$$

= $f(\sigma(A)) \setminus \pi_0(f(A))$, and $f(\sigma_{bw}(A)) = \sigma_{bw}(f(A))$.

This completes the proof.

S. MECHERI

Let r(A) and W(A) denote the spectral radius and the numerical range of A, respectively. It is well known that $r(A) \leq ||A||$ and that W(A) is convex with convex hull $conv\sigma(A) \subseteq \overline{W(A)}$. A is said convexoid if $conv\sigma(A) = \overline{W(A)}$.

Lemma 2.2. Let A be a (p,k)-quasihyponormal operator and $\lambda \in \mathbb{C}$. If $\sigma(A) = \{\lambda\}$, then $A = \lambda$.

Proof. We consider two cases:

Case 1 ($\lambda = 0$). Since A is (p, k)-quasihyponormal, A is normaloid [20]. Therefore A = 0.

Case 2 ($\lambda \neq 0$). Here A is invertible, and since A is (p, k)-quasihyponormal, A^{-1} is also (p, k)-quasihyponormal ([21], Lemma 3). Therefore A^{-1} is normaloid. On the other hand, $\sigma(A^{-1}) = \{\frac{1}{\lambda}\}$. Hence $||A|| ||A^{-1}|| = |\lambda||\frac{1}{\lambda}| = 1$. It follows from ([22], Lemma 3) that A is convexoid. Hence $W(A) = \{\lambda\}$ and $A = \lambda$.

Lemma 2.3. Let A be a quasinilpotent algebraically (p, k)-quasihyponormal operator. Then A is nilpotent.

Proof. Assume that p(A) is (p, k)-quasihyponormal for some nonconstant polynomial p. Since $\sigma(p(A)) = p(\sigma(A))$, the operator p(A) - p(0) is quasinilpotent. Thus Lemma 2.2 would imply that

$$cA^{m}(A - \lambda_{1}) \cdots (A - \lambda_{n}) \equiv p(A) - p(0) = 0,$$

where $m \geq 1$. Since $A - \lambda_i$ is invertible for every $\lambda \neq 0$, we must have $A^m = 0$. \Box

Lemma 2.4. Let A be an algebraically (p, k)-quasihyponormal operator. Then A is isoloid.

Proof. Let $\lambda \in iso \sigma(A)$ and let

$$P := \frac{1}{2\pi i} \int\limits_{\partial D} (\mu - T)^{-1} d\mu$$

be the associated Riesz idempotent, where D is a closed disk centered at λ which contains no other points of $\sigma(A)$. We can then represent A as the direct sum

$$A = \begin{bmatrix} A_1 & 0 \\ 0 & A_2 \end{bmatrix}, \text{ where } \sigma(A_1) = \{\lambda\} \text{ and } \sigma(A_2) = \sigma(A) \setminus \{\lambda\}.$$

Since A is algebraically (p, k)-quasihyponormal, p(A) is (p, k)-quasihyponormal for some nonconstant polynomial p. Since $\sigma(A_1) = \lambda$, we must have

$$\sigma(p(A_1)) = p(\sigma(A_1)) = \{p(\lambda)\}\$$

Therefore $p(A_1) - p(\lambda)$ is quasinilpotent. Since $p(A_1)$ is (p, k)-quasihyponormal, it follows from lemma 2.2 that $p(A_1) - p(\lambda) = 0$. Put $q(z) := p(z) - p(\lambda)$. Then $q(A_1) = 0$, so A_1 is algebraically (p, k)-quasihyponormal. Since $A_1 - \lambda$ is quasinilpotent and algebraically (p, k)-quasihyponormal, it follows from Lemma 2.3 that $A_1 - \lambda$ is nilpotent. Therefore $\lambda \in \pi_0(A_1)$, and hence $\lambda \in \pi_0(A)$. This shows that A is isoloid.

310

WEYL'S THEOREM

Theorem 2.2. Let A be an algebraically (p, k)-quasihyponormal operator. Then Weyl's theorem holds for f(A) and for every function f analytic in a neighborhood of $\sigma(A)$.

Proof. We first show that Weyl's theorem holds for A. Assume that $\lambda \in \sigma(A) \setminus \sigma_w(A)$. Then $A - \lambda$ is Weyl and not invertible. We claim that $\lambda \in \partial \sigma(A)$. Assume to the contrary that λ is an interior point of $\sigma(A)$. Then there exists a neighborhood U of λ such that $\dim(A - \mu) > 0$ for all $\mu \in U$. It follows from ([11], Theorem 10) that A does not have SVEP. On the other hand, since p(A) is (p, k)-quasihyponormal for a nonconstant polynomial p, it follows from Lemma 2.1 that p(A) has SVEP. Hence by ([18], Theorem 3.3.9), A has SVEP, a contradiction. Therefore $\lambda \in \partial \sigma(A)$. Conversely, assume that $\lambda \in \pi_{00}(A)$ with the associated Riesz idempotent

$$P := \frac{1}{2\pi i} \int_{\partial D} (\mu - T)^{-1} d\mu,$$

where D is a closed disk centered at λ which contains no other points of $\sigma(A)$. We can then represent A as the direct sum

$$A = \begin{bmatrix} A_1 & 0 \\ 0 & A_2 \end{bmatrix}, \text{ where } \sigma(A_1) = \{\lambda\} \text{ and } \sigma(A_2) = \sigma(A) \setminus \{\lambda\}.$$

We consider two cases:

Case 1 ($\lambda = 0$). Here A_1 is algebraically (p, k)-quasihyponormal and quasinilpotent. Hence it follows from Lemma 2.3 that A_1 is nilpotent. We claim that dim $R(P) < \infty$. For, if $N(A_1)$ were infinite dimensional, then $0 \notin \pi_{00}(A)$, a contradiction. Therefore A_1 is a finite dimensional operator, and therefore Weyl. But since A_2 is invertible, we can conclude that A is Weyl. Thus $0 \in \sigma(A) \setminus \sigma_w(A)$.

Case 2 ($\lambda \neq 0$). As in the proof of Lemma 2.3, $A_1 - \lambda$ is nilpotent. Since $\lambda \in \pi_{00}, A_1 - \lambda$ is a finite dimensional operator. Therefore $A_1 - \lambda$ is Weyl. Since $A_2 - \lambda$ is invertible, $A - \lambda$ is Weyl and Weyl's theorem holds for A.

Next we prove that $f(\sigma_w(A)) = \sigma_w(f(A))$ for every function f analytic in a neighborhood of $\sigma(A)$. Let f be an analytic function in a neighborhood of $\sigma(A)$. Since $\sigma_w(f(A)) \subseteq f(\sigma_w(A))$ with no restriction on A, it is sufficient to prove that $f(\sigma_w(A)) \subseteq \sigma_w(f(A))$. Assume that $\lambda \notin \sigma_w(f(A))$. Then $f(A) - \lambda$ is Weyl and

$$f(A) - \lambda = c(A - \alpha_1)(A - \alpha_2) \cdots (A - \alpha_n)g(A), \qquad (2.1)$$

where $c, \alpha_1, \alpha_2, \ldots, \alpha_n \in \mathbb{C}$ and g(A) is invertible. Since the operators on the right-hand side of (2.1) commute, every $A - \alpha_i$ is Fredholm. Since A is algebraically (p, k)-quasihyponormal, A has SVEP by Lemma 2.1. It follows from ([1], Theorem 2.6) that $i(A - \alpha_i) \leq 0$ for each $i = 1, 2, \ldots, n$. Hence $\lambda \notin f(\sigma_w(A))$, and so $f(\sigma_w(A)) = \sigma_w(f(A))$.

It is known [19] that if A is isoloid, then

$$f(\sigma(A)) \setminus \pi_{00}(f(A)) = \sigma(f(A)) \setminus \pi_{00}(f(A))$$

for every analytic function in a neighborhood of $\sigma(A)$. Since A is isoloid by Lemma 2.3 and Weyl's theorem holds for f(A),

$$\sigma(f(A)) \setminus \pi_{00}(f(A)) = f(\sigma(A)) \setminus \pi_{00}(f(A)) = f(\sigma_w(A)) = \sigma_w(f(A))$$

 \square

Which achieves the proof.

Theorem 2.3. Let $A \in B(H)$ be a (p,k)-quasihyponormal operator. Then f(A) satisfies the generalized Weyl's theorem for every function f analytic in a neighborhood of $\sigma(A)$. In particular, Weyl's theorem holds for f(A).

Proof. We have already proved that

$$f(\sigma_{Bw}(A)) = \sigma_{Bw}(f(A)) = f(\sigma(A) \setminus E(A)).$$

Hence to prove the theorem it suffices to prove that

$$f(\sigma(A) \setminus E(A)) = \sigma(f(A)) \setminus E(f(A)).$$

But this last equality is satisfied because the operator A is isoloid in the sense that the isolated points of its spectrum are eigenvalues (see Lemma 2.4 and ([3], Lemma 2.9). As it is shown in [2], if the generalized Weyl's theorem holds for f(A), then so does Weyl's theorem.

Acknowledgments

The author would like to express his sincere thanks to the referee for his kind suggestions.

This research was supported by the K.S.U research center project No. Math/2006/23.

References

- P. AIENA and O. MONSLAVE, Operators which do not have the single valued extension property. J. Math. Anal. Appl. 250(2000), No. 2, 435–448.
- M. BERKANI, Index of B-Fredholm operators and generalization of a Weyl theorem. Proc. Amer. Math. Soc. 130(2002), No. 6, 1717–1723 (electronic).
- M. BERKANI and A. ARROUD, Generalized Weyl's theorem and hyponormal operators. J. Aust. Math. Soc. 76 (2004), No. 2, 291–302.
- 4. S. K. BERBERIAN, An extension of Weyl's theorem to a class of not necessarily normal operators. *Michigan Math. J.* **16**(1969), 273–279.
- 5. S. K. BERBERIAN, The Weyl spectrum of an operator. Indiana Univ. Math. J. **20**(1970/1971), 529–544.
- N. N. CHOURASIA and P. B. RAMANUJAN, Paranormal operators on Banach spaces. Bull. Austral. Math. Soc. 21(1980), No. 2, 161–168.
- L. A. COBURN, Weyl's theorem for nonnormal operators. *Michigan Math. J.* 13(1966), 285–288.
- R. E. CURTO and A. T. DASH, Browder spectral systems. Proc. Amer. Math. Soc. 103(1988), No. 2, 407–413.
- S. V. DJORDJEVIČ and Y. M. HAN, Browder's theorems and spectral continuity. *Glasgow Math. J.* 42(2000), No. 3, 479–486.
- B. P. DUGGAL and S. V. DJORJOVIČ, Dunford's property (C) and Weyl's theorems. Integral Equations Operator Theory 43(2002), No. 3, 290–297.

WEYL'S THEOREM

- J. K. FINCH, The single valued extension property on a Banach space. *Pacific J. Math.* 58(1975), No. 1, 61–69.
- C. K. FONG, Quasi-affine transforms of subnormal operators. *Pacific J. Math.* 70(1977), No. 2, 361–368.
- Y. M. HAN and W. Y. LEE, Weyl's theorem holds for algebraically hyponormal operators. Proc. Amer. Math. Soc. 128(2000), No. 8, 2291–2296 (electronic).
- R. Harte, Fredholm, Weyl and Browder theory. Proc. Roy. Irish Acad. Sect. A 85 (1985), No. 2, 151–176.
- 15. R. HARTE, Invertibility and singularity for bounded linear operators. Monographs and Textbooks in Pure and Applied Mathematics, 109. Marcel Dekker, Inc., New York, 1988.
- R. HARTE and W. Y. LEE, Another note on Weyl's theorem. *Trans. Amer. Math. Soc.* 349(1997), No. 5, 2115–2124.
- K. B. LAURSEN, Operators with finite ascent. Pacific J. Math. 152(1992), No. 2, 323– 336.
- K. B. LAURSEN and M. M. NEUMANN, An introduction to local spectral theory. London Mathematical Society Monographs. New Series, 20. The Clarendon Press, Oxford University Press, New York, 2000.
- W. Y. LEE and S. H. LEE, A spectral mapping theorem for the Weyl spectrum. *Glasgow Math. J.* 38(1996), No. 1, 61–64.
- M. Y. LEE and S. H. LEE, An extension of the Fuglede-Putnam theorem to pquasihyponormal operators. Bull. Korean Math. Soc. 35(1998), No. 2, 319–324.
- M. Y. LEE, An extension of the Fuglede–Putnam theorem to (p, k)-quasihyponormal operators. Kyungpook Math. J. 44(2004), No. 4, 593–596.
- 22. W. MLAK, Hyponormal contractions. Collog. Math. 18(1967), 137–142.
- 23. C. A. MCCARTHY, cp. Israel J. Math. 5(1967) 249-271.
- 24. V. RAKOČEVIĆ, On the essential approximate point spectrum. II. *Mat. Vesnik* **36**(1984), No. 1, 89–97.
- V. RAKOČEVIĆ, Approximate point spectrum and commuting compact perturbations. Glasgow Math. J. 28(1986), No. 2, 193–198.
- K. TANAHASHI, A. UCHIYAMA, and MUNEO CHō, Isolated points of spectrum of (p, k)quasihyponormal operators. *Linear Algebra Appl.* 382(2004), 221–229.
- H. WEYL, Uber die Konvergenz von Reihen, die nach Orthogonalfunktionen fortschreiten. Math. Ann. 67(1909), No. 2, 225–245.

(Received 11.02.2005; revised 8.11.2005)

Author's address:

Department of Mathematics King Saud University, College of Science P.O. Box 2455, Riyadh 11451 Saudi Arabia E-mail: mecherisalah@hotmail.com