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WEYL’S THEOREM FOR ALGEBRAICALLY
(p, k)-QUASIHYPONORMAL OPERATORS

SALAH MECHERI

Abstract. Let A be a bounded linear operator acting on a Hilbert space H.
The B-Weyl spectrum of A is the set σBw(A) of all λ ∈ C such that A− λI
is not a B-Fredholm operator of index 0. Let E(A) be the set of all isolated
eigenvalues of A. Recently, in [3] the author showed that if A is hyponormal,
then A satisfies the generalized Weyl’s theorem σBw(A) = σ(A) \E(A), and
the B-Weyl spectrum σBw(A) of A satisfies the spectral mapping theorem.
Lee [13] showed that Weyl’s theorem holds for algebraically hyponormal op-
erators. In this paper the above results are generalized to an algebraically
(p, k)-quasihyponormal operator which includes an algebraically hyponormal
operator.
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1. Introduction

Let B(H) and K(H) denote, respectively, the algebra of bounded linear oper-
ators and the ideal of compact operators acting on an infinite dimensional sepa-
rable Hilbert space H. If A ∈ B(H) we shall write N(A) and R(T ) for the null
space and the range of A, respectively. Also, let α(A) := dim N(A), β(A) :=
dim N(A∗), and let σ(A), σa(A) and π0(A) denote the spectrum, approximate
point spectrum and point spectrum of A, respectively. An operator A ∈ B(H)
is called Fredholm if it has a closed range, a finite dimensional null space, and
its range has finite co-dimension. The index of a Fredholm operator is given by

I(A) := α(A)− β(A).

A is called Weyl if it is of index zero, and Browder if it is Fredholm of finite
ascent and descent, equivalently ([15], Theorem 7.9.3) if A is Fredholm and
A− λ is invertible for sufficiently small |λ| > 0, λ ∈ C. The essential spectrum
σe(A), the Weyl spectrum σw(A) and the Browder spectrum σb(A) of A are
defined by [14, 15]

σe(A) = {λ ∈ C : A− λ is not Fredholm},
σw(A) = {λ ∈ C : A− λ is not Weyl},
σb(A) = {λ ∈ C : A− λ is not Browder},

respectively. Evidently

σe(A) ⊆ σw(A) ⊆ σb(A) = σe(A) ∪ acc σ(A),
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where we write acc K for the accumulation points of K ⊆ C. If we write
iso K = K \ acc K, then we let

π00(A) := {λ ∈ iso σA : 0 < α(A− λ) < ∞},
p00(A) := σ(A) \ σb(A).

We say that Weyl’s theorem holds for A if

σ(A) \ σw(A) = π00(A).

More generally, Berkani in [2] says that the generalized Weyl’s theorem holds
for A provided

σ(A) \ σBw(A) = E(A),

where E(A) and σBw(A) denote the isolated point of the spectrum which are
eigenvalues (with no restriction on multiplicity) and the set of complex numbers
λ for which A−λI fails to be Weyl, respectively. Let X be a Banach space. An
operator A ∈ B(X) is called B-Fredholm by Berkani [2] if there exists n ∈ N
for which the induced operator

An : An(X) → An(X)

is Fredholm in the usual sense, and B-Weyl if in addition An has index zero.
Note that if the generalized Weyl’s theorem holds for A, then so does Weyl’s
theorem [2]. We say that Browder’s theorem holds for A if

σ(A) \ σw(A) = p00(A).

Recently, in [3] the author showed that if A is a hyponormal operator, then A
satisfies the generalized Weyl’s theorem σBw(A) = σ(A)\E(A), and the B-Weyl
spectrum σBw(A) of A satisfies the spectral mapping theorem. Lee [13] showed
that Weyl’s theorem holds for algebraically hyponormal operators. In this pa-
per the above results are generalized to the case where A is an algebraically
(p, k)-quasihyponormal operator which includes an algebraically hyponormal
operator.

2. Main Results

Before proving the following lemma, we need some notation and definitions.
For any operator A in B(H) set, as usual, |A| = (A∗A)

1
2 and [A∗, A] = A∗A−

AA∗ = | A |2 − | A∗ |2 (the self commutator of A), and consider the following
standard definitions: A is normal if A∗A = AA∗, hyponormal if A∗A−AA∗ ≥ 0,
p-hyponormal if (|A|2p − |A∗|2p) ≥ 0.

A is said to be p-quasihyponormal if A∗((A∗A)p − (AA∗)p)A ≥ 0 (0 <
p ≤ 1), (p, k)-quasihyponormal if A∗k((A∗A)p − (AA∗)p)Ak ≥ 0 (0 < p ≤
1, k ∈ N), if p = 1, k=1 and p = k = 1, then A is k-quasihyponormal, p-
quasihyponormal and quasihyponormal, respectively. A is normaloid if ‖A‖ =
r(A) (the spectral radius of A). Let (pH), (HN), Q(p), (Q(p, k)) and (NL)
denote the classes consisting of p-hyponormal, hyponormal, p-quasihyponormal,
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(p, k)-quasihyponormal, and normaloid operators. These classes are related by
the proper inclusion

(HN) ⊂ (pH) ⊂ (Q(p)) ⊂ (Q(p, k)) ⊂ (NL)

(see [20]). A is said to be algebraically (p, k)-quasihyponormal if there exists
a nonconstant complex polynomial p such that p(A) is (p, k)-quasihyponormal.
We say that A ∈ B(H) has the single valued extension property (SVEP) if for
every open set U ⊆ C the only analytic function f : U → H which satisfies the
equation (A− λ)f(λ) = 0 is the constant function f ≡ 0.

Lemma 2.1. Let A ∈ B(H) be a (p, k)-quasihyponormal operator. Then
f(A) has SVEP for each analytic function f on a neighborhood of σ(A).

Proof. It is known that SVEP is stable under the functional calculus, i.e. if
A ∈ B(H) has SVEP, then so does f(A) for each f analytic in a neighborhood
of σ(A). Hence to prove the lemma it is sufficient to prove that A has SVEP.
If A is (p, k)-quasihyponormal, then it follows from ([26], Theorem 4) that

‖Akx‖2 ≤ ‖Ak−1x‖ ‖Ak+1x‖,
for every unit vectors x ∈ H. If x ∈ N(Ak+1), then

‖Akx‖2 ≤ ‖Ak−1x‖ ‖Ak+1x‖ = 0.

Thus x ∈ N(Ak). Since the non-zero eigenvalues of a (p, k)-quasihyponormal
operator A are the normal eigenvalues of A ([26], Lemma 3), for 0 6= λ ∈ σp(A)
and (A− λ)k+1x = 0 we have

(A− λ)(A− λ)kx = 0 = (A− λ)∗(A− λ)kx

and

‖(A− λ)kx‖2 =
〈
(A− λ)∗(A− λ)kx, (A− λ)k−1x

〉
= 0.

Hence, if A is (p, k)-quasihyponormal, then asc(A− λ) ≤ k.
Since operators with finite ascent have SVEP [17], A also has SVEP. Therefore

f(A) has SVEP. ¤

Theorem 2.1. Let A ∈ B(H) be a (p, k)-quasihyponormal operator. Then
f(A) satisfies Browder’s theorem for each analytic function f in a neighborhood
of σ(A) and we have

f(σ(A) \ π0(A)) = f(σb(A)) = σb(f(A)) = σ(f(A)) \ π0(f(A))

= f(σ(A)) \ π0(f(A)) = f(σ(A)) \ π0(f(A)), and f(σBw(A)) = σBw(f(A)).

Proof. It is known that operators with SVEP satisfy Browder’s theorem [10].
Then f(A) satisfies Browder’s theorem. Since f(A) satisfies Browder’s theorem,

f(σ(A) \ π0(A)) = f(σb(A)) = σb(f(A)) = σ(f(A)) \ π0(f(A))

= f(σ(A)) \ π0(f(A)), and f(σbw(A)) = σbw(f(A)).

This completes the proof. ¤
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Let r(A) and W (A) denote the spectral radius and the numerical range of A,
respectively. It is well known that r(A) ≤ ‖A‖ and that W (A) is convex with

convex hull convσ(A) ⊆ W (A). A is said convexoid if convσ(A) = W (A).

Lemma 2.2. Let A be a (p, k)-quasihyponormal operator and λ ∈ C. If
σ(A) = {λ}, then A = λ.

Proof. We consider two cases:
Case 1 (λ = 0). Since A is (p, k)-quasihyponormal, A is normaloid [20].

Therefore A = 0.
Case 2 (λ 6= 0). Here A is invertible, and since A is (p, k)-quasihyponormal,

A−1 is also (p, k)-quasihyponormal ([21], Lemma 3). Therefore A−1 is nor-
maloid. On the other hand, σ(A−1) = { 1

λ
}. Hence ‖A‖‖A−1‖ = |λ|| 1

λ
| = 1. It

follows from ([22], Lemma 3) that A is convexoid. Hence W (A) = {λ} and
A = λ. ¤

Lemma 2.3. Let A be a quasinilpotent algebraically (p, k)-quasihyponormal
operator. Then A is nilpotent.

Proof. Assume that p(A) is (p, k)-quasihyponormal for some nonconstant poly-
nomial p. Since σ(p(A)) = p(σ(A)), the operator p(A)− p(0) is quasinilpotent.
Thus Lemma 2.2 would imply that

cAm(A− λ1) · · · (A− λn) ≡ p(A)− p(0) = 0,

where m ≥ 1. Since A−λi is invertible for every λ 6= 0, we must have Am =0. ¤
Lemma 2.4. Let A be an algebraically (p, k)-quasihyponormal operator. Then

A is isoloid.

Proof. Let λ ∈ iso σ(A) and let

P :=
1

2πi

∫

∂D

(µ− T )−1dµ

be the associated Riesz idempotent, where D is a closed disk centered at λ
which contains no other points of σ(A). We can then represent A as the direct
sum

A =

[
A1 0
0 A2

]
, where σ(A1) = {λ} and σ(A2) = σ(A) \ {λ}.

Since A is algebraically (p, k)-quasihyponormal, p(A) is (p, k)-quasihyponormal
for some nonconstant polynomial p. Since σ(A1) = λ, we must have

σ(p(A1)) = p(σ(A1)) = {p(λ)}.
Therefore p(A1)−p(λ) is quasinilpotent. Since p(A1) is (p, k)-quasihyponormal,
it follows from lemma 2.2 that p(A1) − p(λ) = 0. Put q(z) := p(z) − p(λ).
Then q(A1) = 0, so A1 is algebraically (p, k)-quasihyponormal. Since A1 − λ is
quasinilpotent and algebraically (p, k)-quasihyponormal, it follows from Lemma
2.3 that A1 − λ is nilpotent. Therefore λ ∈ π0(A1), and hence λ ∈ π0(A). This
shows that A is isoloid. ¤
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Theorem 2.2. Let A be an algebraically (p, k)-quasihyponormal operator.
Then Weyl’s theorem holds for f(A) and for every function f analytic in a
neighborhood of σ(A).

Proof. We first show that Weyl’s theorem holds for A. Assume that λ ∈ σ(A) \
σw(A). Then A − λ is Weyl and not invertible. We claim that λ ∈ ∂σ(A).
Assume to the contrary that λ is an interior point of σ(A). Then there exists
a neighborhood U of λ such that dim(A − µ) > 0 for all µ ∈ U . It follows
from ([11], Theorem 10) that A does not have SVEP. On the other hand, since
p(A) is (p, k)-quasihyponormal for a nonconstant polynomial p, it follows from
Lemma 2.1 that p(A) has SVEP. Hence by ([18], Theorem 3.3.9), A has SVEP,
a contradiction. Therefore λ ∈ ∂σ(A). Conversely, assume that λ ∈ π00(A)
with the associated Riesz idempotent

P :=
1

2πi

∫

∂D

(µ− T )−1dµ,

where D is a closed disk centered at λ which contains no other points of σ(A).
We can then represent A as the direct sum

A =

[
A1 0
0 A2

]
, where σ(A1) = {λ} and σ(A2) = σ(A) \ {λ}.

We consider two cases:
Case 1 (λ = 0). Here A1 is algebraically (p, k)-quasihyponormal and quasinil-

potent. Hence it follows from Lemma 2.3 that A1 is nilpotent. We claim that
dim R(P ) < ∞. For, if N(A1) were infinite dimensional, then 0 6∈ π00(A),
a contradiction. Therefore A1 is a finite dimensional operator, and therefore
Weyl. But since A2 is invertible, we can conclude that A is Weyl. Thus 0 ∈
σ(A) \ σw(A).

Case 2 (λ 6= 0). As in the proof of Lemma 2.3, A1 − λ is nilpotent. Since
λ ∈ π00, A1−λ is a finite dimensional operator. Therefore A1−λ is Weyl. Since
A2 − λ is invertible, A− λ is Weyl and Weyl’s theorem holds for A.

Next we prove that f(σw(A)) = σw(f(A)) for every function f analytic in
a neighborhood of σ(A). Let f be an analytic function in a neighborhood of
σ(A). Since σw(f(A)) ⊆ f(σw(A)) with no restriction on A, it is sufficient to
prove that f(σw(A)) ⊆ σw(f(A)). Assume that λ 6∈ σw(f(A)). Then f(A)− λ
is Weyl and

f(A)− λ = c(A− α1)(A− α2) · · · (A− αn)g(A), (2.1)

where c, α1, α2, . . . , αn ∈ C and g(A) is invertible. Since the operators on the
right-hand side of (2.1) commute, every A − αi is Fredholm. Since A is al-
gebraically (p, k)-quasihyponormal, A has SVEP by Lemma 2.1. It follows
from ([1], Theorem 2.6) that i(A − αi) ≤ 0 for each i = 1, 2, . . . , n. Hence
λ 6∈ f(σw(A)), and so f(σw(A)) = σw(f(A)).

It is known [19] that if A is isoloid, then

f(σ(A)) \ π00(f(A)) = σ(f(A)) \ π00(f(A))
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for every analytic function in a neighborhood of σ(A). Since A is isoloid by
Lemma 2.3 and Weyl’s theorem holds for f(A),

σ(f(A)) \ π00(f(A)) = f(σ(A)) \ π00(f(A)) = f(σw(A)) = σw(f(A)).

Which achieves the proof. ¤
Theorem 2.3. Let A ∈ B(H) be a (p, k)-quasihyponormal operator. Then

f(A) satisfies the generalized Weyl’s theorem for every function f analytic in a
neighborhood of σ(A). In particular, Weyl’s theorem holds for f(A).

Proof. We have already proved that

f(σBw(A)) = σBw(f(A)) = f(σ(A) \ E(A)).

Hence to prove the theorem it suffices to prove that

f(σ(A) \ E(A)) = σ(f(A)) \ E(f(A)).

But this last equality is satisfied because the operator A is isoloid in the sense
that the isolated points of its spectrum are eigenvalues (see Lemma 2.4 and ([3],
Lemma 2.9). As it is shown in [2], if the generalized Weyl’s theorem holds for
f(A), then so does Weyl’s theorem. ¤
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9. S. V. Djordjevič and Y. M. Han, Browder’s theorems and spectral continuity. Glasgow
Math. J. 42(2000), No. 3, 479–486.
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