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AN AUTOMATICALLY STABLE AND ORDER THREE SPLIT
RATIONAL APPROXIMATION OF A SEMIGROUP

JEMAL ROGAVA AND MIKHEIL TSIKLAURI

Abstract. An automatically stable and order three split rational approxi-
mation scheme is proposed for solving the Cauchy abstract problem. The
third order precision is obtained by introducing the complex parameter α =
1
2 ± i 1

2
√

3
and performing a rational approximation of the semigroup. For the

considered scheme, an explicit a priori estimate is derived.
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Introduction

The study of approximate schemes for the solution of evolution problems leads
to the conclusion that to each approximate scheme there corresponds a certain
operator (solution operator of a discrete problem), which approximates the so-
lution operator (semigroup) of a continuous problem. The inverse statement is
also true: constructing the approximation of a continuous semigroup, we obtain
an approximate scheme for the solution of an evolution problem. For example,
if we apply the semi-discrete method (method of lines, i.e., discretization with
respect to a time variable used for the first time by Rothe) for the solution of
an evolution problem, then the solution operator of the obtained semi-discrete
problem will be a discrete semigroup. Thus we arrive at the problem of approx-
imation of a continuous semigroup by means of discrete semigroups (T. Kato
[17], Ch. IX).

If the decomposition method is applied, then the corresponding solution op-
erator generates the Trotter formula [27] or the Chernoff formula (see [3], [4])
or a formula which is a combination of both formulas. Therefore the estima-
tion of a decomposition method error is equivalent to the approximation of a
continuous semigroup by Trotter and Chernoff type formulas. The works by T.
Ichinose and S. Takanobu [14], T. Ichinose and H. Tamura [15], J. Rogava [22]
(see also [23], Ch. II) are dedicated to error estimation of Chernoff and Trotter
type formulas.

There are decomposition schemes of two kinds: differential and difference.
Trotter type formulas correspond to differential schemes, and Chernoff type
formulas to difference ones.

ISSN 1072-947X / $8.00 / c© Heldermann Verlag www.heldermann.de



344 J. ROGAVA AND M. TSIKLAURI

We call Trotter type formulas formulas giving an approximation of a semi-
group by combining the semigroups generated by the summands of its generat-
ing operator.

We call Chernoff type formulas formulas that can be obtained from Trotter
type formulas if the semigroups are replaced by the corresponding resolvents.

The decomposition scheme associated with the Trotter formula allows us to
split the Cauchy problem for an evolution equation with the operator A =
A1 + A2 into two problems corresponding to the operators A1 and A2. These
problems are successively solved on each time interval of length t/n, where t is
a fixed value of the time variable t.

The decomposition scheme associated with the Chernoff formula is known as
the method of fractional steps (N. N. Janenko [16]).

The first works devoted to the construction and investigation of decompo-
sition schemes for non-stationary problems were published in the fifties and
sixties of the 20-th century (see the bibliography of [20]) by: V. B. Andreev
(1967), G. A. Baker (1959/1960), G. A. Baker and T. A. Oliphant (1959/1960),
G. Birkhoff and R. S. Varga (1959), G. Birkhoff, R. S. Varga, and D. Young
(1962), J. Douglas (1955), J. Douglas and H. Rachford (1956), E. G. D’jakonov
(1962), M. Dryja (1967), G. Fairweather, A. R. Gourlay and A. R. Mitchell
(1967), I. V. Fryazinov (1969), D. G. Gordeziani (1965) [10], A. R. Gourlay and
A. R. Mitchell (1967), N. N. Janenko (1960, 1967), N. N. Janenko and G. V.
Demidov (1966), A. N. Konovalov (1962), G. I. Marchuk (1988), G. I. Marchuk
and N. N. Janenko (1964), G. I. Marchuk and U. M. Sultangazin (1965), D.
Peaceman and H. Rachford (1955), V. P. Il’in (1965), A. A. Samarskii (1962,
1964), R. Temam (1968). The works by these authors formed the basis of
subsequent investigations of decomposition schemes.

From the viewpoint of computation, decomposition schemes can be divided
into two groups: schemes that are inherently sequential (see, for example, G.
I. Marchuk [20]) and schemes that allow for (at least partially) parallel imple-
mentation (D. G. Gordeziani, H. V. Meladze [11], [12], D. G. Gordeziani, A. A.
Samarskii [13], A. M. Kuzyk, V. L. Makarov [19]). In [23], Ch. II, explicit esti-
mates are obtained for the decomposition schemes considered in [11]. Presently,
there are quite a lot of papers where the decomposition method is discussed (see
[16], [20], [24] and the references therein).

In the above-listed works the considered schemes have first or second order
global precision. The global precision order of a scheme is defined as an error
of the approximate solution obtained by the scheme on the whole interval, and
the local precision order of a scheme is defined as an error of the approximate
solution obtained by the scheme in the proximity of zero (where the initial con-
dition is given). As far as we know, high order precision decomposition formulas
were for the first time obtained by M. Schatzman without any commutative as-
sumption in the case of two summands (A = A1 + A2) (see [25]). Note that the
formulas constructed in this paper are not automatically stable. Decomposition
formulas are called automatically stable if the sum of magnitudes of its split
coefficients is equal to one, and the real parts of coefficients of the exponential
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power are positive. Q. Sheng proved [26] that in the field of real number there
exists no automatically stable decomposition of the semigroup exp (−tA) with
precision order higher than two. The works [6]–[9] give the construction of a
split exponential approximation of global third order. The new idea is the intro-
duction of a complex parameter, which enables us to break the order 2 barrier.
The corresponding formulas of the constructed schemes are automatically stable
decomposition formulas without any commutative assumption. These results
were obtained in [28] and [29] for a homogeneous evolution problem with the
operator A (t) = b (t) (A1 + A2), where a function b (t) ≥ b0 > 0 satisfies the
Hölder condition. The split exponential approximation is constructed and inves-
tigated in [28] and the split rational approximation of a homogeneous evolution
problem in [29].

In the present paper, the split rational approximation scheme of global third
order is constructed for a nonhomogeneous evolution problem. This scheme
can be obtained on the basis of the decomposition formulas constructed in [6]
if we replace semigroups by the corresponding rational approximation of third
order global precision. For the considered scheme an explicit a priori estimate
is obtained. Under an explicit estimate we imply such an a priori estimate of
the solution error, where the constants on the right-hand side do not depend
on the solution of the initial continuous problem, i.e., are absolute constants.

1. Statement of the Problem and the Main Result

Let us consider the Cauchy abstract problem in the complex Banach space X:

du(t)

dt
+ Au(t) = f(t), t > 0, u(0) = ϕ, (1.1)

where A : X → X is a closed linear operator with the definition domain D [A]
and everywhere dense in X, ϕ is a given element from X, f(t) ∈ C1 ([0;∞) ; X).

Let the operator (−A) be the generator of a strongly continuous semi-group
{exp(−tA)}t≥0, then a solution of problem (1.1) is given by the formula ([18],
Theorem 6.5, p. 166)

u(t) = U(t, A)ϕ +

t∫

0

U(t− s, A)f(s)ds, (1.2)

where U(t, A) = exp (−tA) is a strongly continuous semigroup.
Let A = A1 + A2, where Aj (j = 1, 2) are closed linear, densely defined

operators in X.
As is well-known, the decomposition method consists in splitting the semi-

group U (t, A) by means of the semigroups U (t, Aj) (j = 1, 2). In [6] (see also
[7],[9]), the following decomposition formula with fourth order local precision is
constructed:

T (τ) =
1

2

[
U (τ, αA1) U (τ, A2) U (τ, αA1)

+ U (τ, αA2) U (τ, A1) U (τ, αA2)
]
, (1.3)
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where α = 1
2
+i 1

2
√

3

(
i =

√−1
)
, τ is the step corresponding to the time variable.

In [6]–[9] it is shown that

U (τ, A)− T (τ) = Op
(
τ 4

)
,

where Op (τ 4) is an operator whose norm is of fourth order with respect to τ ;
more precisely, in the case of the unbounded operator ‖Op (τ 4) ϕ‖ = O (τ 4),
where ‖·‖ is the norm in X, for any ϕ from the definition domain of Op (τ 4). It
can be also shown using CBDH (Campbell–Baker–Dynkin–Hausdorff) formulas
or the formal Taylor expansions of the semigroups. The detailed proof is given
in [6] and [7]. In [8], we constructed the following rational approximation of a
semigroup with fourth order local precision:

W (τ, A) = aI + b (I + λτA)−1 + c (I + λτA)−2 , (1.4)

where λ = 1
2

+ 1
2
√

3
, a = 1− 2

λ
+ 1

2λ2 , b = 3
λ
− 1

λ2 , c = 1
2λ2 − 1

λ
.

In the scalar case the rational approximation defined by formula (1.4) is the
Padé approximation (the numerator degree is two and the denominator degree
is also two) for an exponential function (see [2]).

Using simple transformation, we can show that the operator W (τ, A) defined
by formula (1.4) coincides with the transition operator of the Calahan scheme
(see [30]). The stability of the Calahan scheme for an abstract parabolic equa-
tion is investigated in [1].

By (1.3) and (1.4) we can construct the decomposition formula

V (τ) =
1

2

[
W (τ, αA1) W (τ, A2) W (τ, αA1)

+ W (τ, αA2) W (τ, A1) W (τ, αA2)
]
. (1.5)

It will be shown below that this formula has fourth order local precision:

U(τ, A)− V (τ) = Op
(
τ 4

)
.

Using formula (1.5), a decomposition scheme with third order global precision
will be constructed here for the solution of problem (1.1).

Let us introduce the grid set

ωτ = {tk = kτ, k = 0, 1, 2, . . . , τ > 0}.
According to (1.2), we have

u(tk) = U(τ, A)u (tk−1) +

tk∫

tk−1

U(tk − s, A)f(s)ds. (1.6)

To calculate the integral on the right-hand side of this equality we use the
quadrature formula of fourth order local precision. Then formula (1.6) can be
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rewritten as

u (tk) = U(τ, A)u (tk−1)

+
τ

4

(
3U

(
τ,

1

3
A

)
f

(
tk−1/3

)
+ U (τ, A) f (tk−1)

)
+ Rk,4 (τ) ,

u (t0) = ϕ (k = 1, 2, . . . ) ,

(1.7)

where Rk,4 (τ) is the remainder term of the quadrature formula

Rk,4 (τ) =

tk∫

tk−1

U(tk − s, A)f(s)ds

− τ

4

(
3U

(
τ,

1

3
A

)
f

(
tk−1/3

)
+ U (τ, A) f (tk−1)

)
· (1.8)

For a sufficiently smooth function f we have (see Lemma 2.3)

‖Rk,4 (τ)‖ = O
(
τ 4

)
.

Note that the above quadrature formula has fourth order local precision and
contains a minimal number of nodes, which facilitates numerical calculations.

Let us introduce the notation

K(τ, A) =

(
I − 1

2
τA

)(
I +

1

2
τA

)−1

,

S(τ) = K

(
τ,

1

2
A1

)
K (τ, A2) K

(
τ,

1

2
A1

)
.

Using this notation and (1.7), we construct the scheme

uk = V (τ)uk−1 +
τ

4

(
3S

(
1

3
τ

)
f

(
tk−1/3

)
+ S (τ) f (tk−1)

)
,

u0 = ϕ (k = 1, 2, . . . ) .

(1.9)

Note that the operator K (τ, A) is the transition operator of the Crank–Nicolson
scheme.

Calculate uk,0 by the scheme

vk−2/3 = W (τ, αA1) uk−1, wk−2/3 = W (τ, αA2) uk−1,

vk−1/3 = W (τ, A2) vk−2/3, wk−1/3 = W (τ, A1) wk−2/3,

vk = W (τ, αA1) vk−1/3, wk = W (τ, αA2) wk−1/3,

uk,0 =
1

2
[vk + wk], u0 = ϕ.

(1.10)
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Assuming γ1 = 1
3
, γ2 = 1, we calculate uk,s (s = 1, 2) by the scheme

uk−2/3,s = K

(
τ,

1

2
γsA1

)
f (tk − γsτ) ,

uk−1/3,s = K (τ, γsA2) uk−2/3,s,

uk,s = K

(
τ,

1

2
γsA1

)
uk−1/3,s.

Scheme (1.9) is calculated by the algorithm

uk = uk,0 +
τ

4
(3uk,1 + uk,2) .

From the definition of operator power it obviously follows that

A2 = (A1 + A2) A = A1A + A2A.

Moreover, in the case of an unbounded operator the following inclusion is true:

AjA = Aj (A1 + A2) ⊃ AjA1 + AjA2 (j = 1, 2) ,

which implies that

A2 ⊃ (
A2

1 + A2
2

)
+ (A1A2 + A2A1) .

Analogously, we can obtain the operator inclusions

A3 ⊃ (
A3

1 + A3
2

)
+

(
A2

1A2 + · · ·+ A2
2A1

)
+ (A1A2A1 + A2A1A2) ,

A4 ⊃ (
A4

1 + A4
2

)
+

(
A3

1A2 + · · ·+ A3
2A1

)

+
(
A2

1A2A1 + · · ·+ A2
2A1A2

)
+ (A1A2A1A2 + A2A1A2A1) .

Let us denote the definition domains of the operators on the right-hand side of
these inclusions by D2, D3 and D4, respectively. From these operator inclusions
it follows that Dk ⊂ D

(
Ak

)
, k = 2, 3, 4.

We introduce the notation

‖ϕ‖A = ‖A1ϕ‖+ ‖A2ϕ‖ , ϕ ∈ D [A] ,

‖ϕ‖A2 =
2∑

i,j=1

‖AiAjϕ‖ , ϕ ∈ D2 ⊂ D
[
A2

]
,

‖ϕ‖A3 =
2∑

i,j,k=1

‖AiAjAkϕ‖ , ϕ ∈ D3 ⊂ D
[
A3

]
,

‖ϕ‖A4 =
2∑

i,j,k,l=1

‖AiAjAkAlϕ‖ , ϕ ∈ D4 ⊂ D
[
A4

]
.

The following statement is true.

Theorem 1.1. Let the following conditions be satisfied:
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(a) There exists τ0 > 0 such that for any 0 < τ ≤ τ0 there exist operators
(I + γλτAj)

−1 , j = 1, 2, γ = 1, α, α and they are bounded. Moreover, the
following inequalities hold:

‖W (τ, γAj)‖ ≤ eωτ , ω = const > 0.

(b) The operator (−A) generates the strongly continuous semigroup U (t, A) =
exp (−tA), for which the following inequality holds:

‖U(t, A)‖ ≤ Meωt, M, ω = const > 0.

(c) U (s, A) ϕ ∈ D4 for any s ≥ 0.
(d) f(t) ∈ C3([0,∞); X), f (t) ∈ D3, f ′(t) ∈ D2, f ′′(t) ∈ D [A] and

U (s, A) f (t) ∈ D4 for any fixed t and s (t, s ≥ 0) .
Then the following estimate is valid:

‖u(tk)− uk‖ ≤ ceω0tktkτ
3
(

sup
s∈[0,tk]

‖U(s, A)ϕ‖A4 + tk sup
s,t∈[0,tk]

‖U(s, A)f (t)‖A4

+ sup
t∈[0,tk]

‖f(t)‖A3 + sup
t∈[0,tk]

‖f ′(t)‖A2

+ sup
t∈[0,tk]

‖f ′′(t)‖A + sup
t∈[0,tk]

‖f ′′′(t)‖
)
, (1.11)

where c and ω0 are positive constants.

2. Some Lemmas

Let us prove some auxiliary lemmas on which the proof of Theorem 1.1 is
based.

Lemma 2.1. If the condition (b) of Theorem 1.1 is satisfied, then for the
operator W (t, A) the expansion

W (t, A) =
k−1∑
i=0

(−1)i ti

i!
Ai + RW,k(t, A), k = 1, 2, 3, 4, (2.1)

is true, where for the remainder term the following estimate holds:

‖RW,k(t, A)ϕ‖ ≤ c0e
ω0ttk

∥∥Akϕ
∥∥ , ϕ ∈ D

[
Ak

]
, c0, ω0 = const > 0. (2.2)

Proof. We obviously have

(I + γA)−1 = I − I + (I + γA)−1 = I − (I + γA)−1 (I + γA− I)

= I − γA (I + γA)−1 .

From this equality, for any natural k, we can obtain the expansion

(I + γA)−1 =
k−1∑
i=0

(−1)i γiAi + γkAk (I + γA)−1 . (2.3)
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Expanding the rational approximation W (τ, A) up to first order, by (2.3) we
obtain

W (τ, A) = aI + b (I + λτA)−1 + c (I + λτA)−2

= (a + b + c) I + RW,1(τ, A), (2.4)

where

RW,1(τ, A) = − (b + c) λτA (I + λτA)−1 − cλτA (I + λτA)−2 . (2.5)

Since by virtue of the condition (b) of Theorem 1.1 the operator (−A) gen-
erates a strongly continuous semigroup by the classical Hille–Phillips–Yosida
theorem (see [21], p. 274), the operator (I + λτA) is reversible for τ < 1/ (ωλ)
and the estimate

∥∥(I + λτA)−1
∥∥ =

1

λτ

∥∥∥∥∥
(

1

λτ
I + A

)−1
∥∥∥∥∥ ≤

M

λτ

(
1

λτ
− ω

)−1

=
M

1− ωλτ
(2.6)

is true, where ω and M are constants from the condition (b) of Theorem 1.1.
If 0 < τ ≤ τ0 < 1/ (ωλ), then (2.6) obviously implies the inequality

∥∥(I + λτA)−1
∥∥ ≤ Meω1τ , (2.7)

where ω1 = ωλ/ (1− ωλτ0) .
By (2.7), from (2.5) we have

‖RW,1(τ, A)ϕ‖ ≤ c0e
ω1ττ ‖Aϕ‖ , ϕ ∈ D [A] . (2.8)

Substituting the values of the parameters a, b and c into (2.4), we obtain

W (τ, A) = I + RW,1(τ, A). (2.9)

Using (2.3) we expand the rational approximation W (τ, A) up to second
order to obtain

W (τ, A) = (a + b + c) I − (b + 2c) λτA + RW,2(τ, A), (2.10)

where

RW,2(τ, A) = (b + 2c) λ2τ 2A2 (I + λτA)−1 + λ2τ 2 (I + λτA)−2 A2.

According to (2.7), we have

‖RW,2(τ, A)ϕ‖ ≤ c0e
ω1ττ 2

∥∥A2ϕ
∥∥ , ϕ ∈ D

[
A2

]
. (2.11)

If we substitute the values of the parameters a, b and c into (2.10), we obtain

W (τ, A) = I − τA + RW,2(τ, A). (2.12)

Again using (2.3) we expand the rational approximation W (τ, A) up to third
order to obtain

W (τ, A) = (a + b + c) I − (b + 2c) λτA + (b + 3c) λ2τ 2A2 + RW,3(τ, A), (2.13)

where

RW,3(τ, A) = − (b + 3c) λ3τ 3 (I + λτA)−1 A3 − cλ3τ 3 (I + λτA)−2 A3,
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According to (2.7), we have

‖RW,3(τ, A)ϕ‖ ≤ c0e
ω1ττ 3

∥∥A3ϕ
∥∥ , ϕ ∈ D

[
A3

]
. (2.14)

The substitution of the values of the parameters a, b and c into (2.13) gives

W (τ, A) = I − τA +
1

2
τ 2A2 + RW,3(τ, A). (2.15)

Finally, we use (2.3) to decompose the rational approximation W (τ, A) up to
fourth order:

W (τ, A) = (a + b + c) I − (b + 2c) λτA + (b + 3c) λ2τ 2A2

− (b + 4c)λ3τ 3A3 + RW,4(τ, A), (2.16)

where

RW,4(τ, A) = (b + 4c) λ4τ 4 (I + λτA)−1 A4 + cλ4τ 4 (I + λτA)−2 A4.

According to (2.7), we have

‖RW,4(τ, A)ϕ‖ ≤ c0e
ω1ττ 4

∥∥A4ϕ
∥∥ , ϕ ∈ D

[
A4

]
. (2.17)

If we substitute the values of the parameters a, b and c into (2.16), we obtain

W (τ, A) = I − τA +
1

2
τ 2A2 − 1

6
τ 3A3 + RW,4(τ, A). (2.18)

Combining (2.9), (2.12), (2.15) and (2.18), we obtain formula (2.1), and com-
bining inequalities (2.8), (2.11), (2.14) and (2.17), we obtain estimate (2.2). ¤

Lemma 2.2. If the conditions (a), (b) and (c) of Theorem 1.1 are satisfied,
then the estimate

∥∥[
Uk (τ, A)−V k (τ)

]
ϕ
∥∥≤ceω1tktkτ

3 sup
s∈[0,tk]

‖U(s, A)ϕ‖A4 , k=1, 2, . . . , (2.19)

holds, where c and ω0 are positive constants.

Proof. The following formula is valid (see Kato [17], Ch. IX, p. 603):

A

t1∫

t0

U (s, A) ds = U (t0, A)− U (t1, A) , 0 ≤ t0 ≤ t1. (2.20)

Thus we obtain the expansion

U(t, A) =
k−1∑
i=0

(−1)i t
i

i!
Ai + Rk(t, A), (2.21)

where

Rk(t, A) = (−A)k

t∫

0

s1∫

0

· · ·
sk−1∫

0

U(s, A) ds dsk−1 · · · ds1. (2.22)
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Let us expand all rational approximations in the operator V (τ) according to
formula (2.1) from right to left so that each remainder term be of fourth order.
We have

V (τ) = I − τA +
1

2
τ 2A2 − 1

6
τ 3A3 + RV,4 (τ) , (2.23)

where

RV,4 (τ) =
1

2
[R1,2 (τ) + R2,1 (τ)]

and

Rl,j (τ) = RW,4(τ, αAl)− τRW,3(τ, αAl)Aj +
1

2
τ 2RW,2(τ, αAl)A

2
j

− 1

6
τ 3RW,1(τ, αAl)A

3
j + W (τ, αAl)RW,4(τ, Aj)

− ατRW,3(τ, αAl)Al + ατ 2RW,2(τ, αAl)AjAl

− 1

2
ατ 3RW,1(τ, αAl)A

2
jAl − ατW (τ, αAl)RW,3(τ, Aj)Al

+
1

2
α2τ 2RW,2(τ, αAl)A

2
l −

1

2
α2τ 3RW,1(τ, αAl)AjA

2
l

+
1

2
α2τ 2W (τ, αAl)RW,2(τ, Aj)A

2
l −

1

6
α3τ 3RW,1(τ, αAl)A

3
l

− 1

6
α3τ 3W (τ, αAl)RW,1(τ, Aj)A

3
l + W (τ, αAl)W (τ, Aj)RW,4(τ, αAl),

l, j = 1, 2.

Hence, according to the condition (a) of Theorem 1.1, we obtain the estimate

‖RV,4 (τ) ϕ‖ ≤ ceω1ττ 4 ‖ϕ‖A4 , ϕ ∈ D4. (2.24)

From (2.21) (k = 4) and (2.23) it follows that

U (τ, A)− V (τ) = R4 (τ, A)−RV,4 (τ) .

From here, according to (2.22) and (2.24), we obtain the estimate

‖[U (τ, A)− V (τ)] ϕ‖ ≤ ceω1ττ 4 ‖ϕ‖A4 , ϕ ∈ D4. (2.25)

The following representation is obvious:

[Uk(τ, A)− V k(τ)]ϕ =
k∑

i=1

V k−i(τ)[U(τ, A)− V (τ)]U i−1(τ, A)ϕ.

Hence, according to the conditions (a), (b), (c) of Theorem 1.1 and inequality
(2.25), we have

‖u(tk)− uk(tk)‖ ≤
k∑

i=1

‖V (τ)‖k−i ‖[U (τ, A)− V (τ)] U ((i− 1) τ, A) ϕ‖

≤ c

k∑
i=1

eω2(k−i)τeω1ττ 4 ‖U ((i− 1) τ, A) ϕ‖A4
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≤ ceω0tkτ 4

k∑
i=1

‖U ((i− 1) τ, A) ϕ‖A4

≤ ceω0tktkτ
3 sup

s∈[0,tk]

‖U (s, A) ϕ‖A4 . ¤

Lemma 2.3. Let the following conditions be satisfied:
(a) The operator A satisfies the conditions of Theorem 1.1;
(b) f(t) ∈ C3([0,∞); X), and f(t) ∈ D [A3] for every fixed t, f (k)(t) ∈

D
[
A3−k

]
, k = 1, 2.

Then the estimate∥∥∥∥∥∥

τ∫

0

U(τ − s, A)f (s) ds− τ

4

[
U (τ, A) f (0) + 3U

(
1

3
τ, A

)
f

(
2

3
τ

)]∥∥∥∥∥∥

≤ ceω0ττ 4

[ ∥∥∥∥A3f

(
2

3
τ

)∥∥∥∥ + sup
ξ∈[0,τ ]

∥∥A2f ′ (ξ)
∥∥

+ sup
ξ∈[0,τ ]

‖Af ′′ (ξ)‖+ sup
ξ∈[0,τ ]

‖f ′′′ (ξ)‖
]

(2.26)

holds, where c and ω0 are positive constants.

Proof. Performing a simple transformation, we obtain the representation

τ∫

0

U(τ − s, A)f (s) ds− τ

4

[
U (τ, A) f (0) + 3U

(
1

3
τ, A

)
f

(
2

3
τ

)]

= r (τ)− U (τ, A) z (τ)−R (τ, A) f

(
2

3
τ

)
, (2.27)

where

z (τ) =
1

4

τ∫

0

f (0) ds +
3

4

τ∫

0

f

(
2

3
τ

)
ds−

τ∫

0

f (s) ds,

R (τ, A) =
3

4

τ∫

0

U

(
1

3
τ, A

)
ds +

1

4

τ∫

0

U (τ, A) ds−
τ∫

0

U(τ − s, A)ds

and

r (τ) =

τ∫

0

[U(τ − s, A)− U (τ, A)]

[
f (s)− f

(
2

3
τ

)]
ds.

According to formula (2.20) we can obtain for r (τ) the representation

r (τ) =

τ∫

0

( s∫

0

AU(τ − ξ, A)dξ

s∫

2
3
τ

f ′ (ξ) dξ

)
ds
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=

τ∫

0

( s∫

0

A (U(τ − ξ, A)− U (τ, A)) dξ

s∫

2
3
τ

f ′ (ξ) dξ

)
ds

+

τ∫

0

( s∫

0

AU (τ, A) dξ

s∫

2
3
τ

f ′ (ξ) dξ

)
ds

= A

τ∫

0

[ s∫

0

A

ξ∫

0

U(τ − η, A)dηdξ

s∫

2
3
τ

f ′ (ξ) dξ

]
ds

+

τ∫

0

( s∫

0

AU (τ, A) dξ

s∫

2
3
τ

(f ′ (ξ)− f ′ (0)) dξ

)
ds

+

τ∫

0

( s∫

0

AU (τ, A) dξ

s∫

2
3
τ

f ′ (0) dξ

)
ds

= A

τ∫

0

[ s∫

0

A

ξ∫

0

U(τ − η, A)dηdξ

s∫

2
3
τ

f ′ (ξ) dξ

]
ds

+ A

τ∫

0

[ s∫

0

U (τ, A) dξ

s∫

2
3
τ

ξ∫

0

f ′′ (η) dηdξ

]
ds.

If we take into account that A and U (τ, A) are commutative operators, then
by the condition (b) of Theorem 1.1 we obtain the estimate

‖r (τ)‖ =

∥∥∥∥∥

τ∫

0

[ s∫

0

ξ∫

0

U(τ − η, A)dηdξ

s∫

2
3
τ

A2f ′ (ξ) dξ

]
ds

∥∥∥∥∥

+

∥∥∥∥∥

τ∫

0

[ s∫

0

U (τ, A) dξ

s∫

2
3
τ

ξ∫

0

Af ′′ (η) dηdξ

]
ds

∥∥∥∥∥

≤
τ∫

0

[ s∫

0

ξ∫

0

dηdξ

s∫

2
3
τ

dξ

]
ds eωτ sup

ξ∈[0,τ ]

∥∥A2f ′ (ξ)
∥∥

+

τ∫

0

[ s∫

0

dξ

s∫

2
3
τ

ξ∫

0

dηdξ

]
ds eωτ sup

ξ∈[0,τ ]

‖Af ′′ (ξ)‖
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≤ ceωττ 4
[

sup
ξ∈[0,τ ]

∥∥A2f ′ (ξ)
∥∥ + sup

ξ∈[0,τ ]

‖Af ′′ (ξ)‖
]
. (2.28)

For the function (−z (τ)) we have the representation

−z (τ) =
1

4

τ∫

0

s∫

0

ξ∫

0

η∫

0

f ′′′(ζ)dζdηdξds +
3

4

τ∫

0

s∫

2
3
τ

ξ∫

0

η∫

0

f ′′′(ζ)dζdηdξds.

Hence we obtain the estimate

‖U (τ, A) z (τ)‖ ≤ ceωττ 4 sup
s∈[0,τ ]

‖f ′′′(s)‖ . (2.29)

Finally, let us transform the integral R (τ, A) according to formula (2.20):

−R (τ, A) = −3

4
A3

τ∫

0

s∫

2
3
τ

ξ∫

0

η∫

0

U(τ − ζ, A)dζdηdξds

− 1

4
A3

τ∫

0

s∫

0

ξ∫

0

η∫

0

U(τ − ζ, A)dζdηdξds.

Hence we obtain the estimate∥∥∥∥R (τ, A) f

(
2

3
τ

)∥∥∥∥ ≤ ceωττ 4

∥∥∥∥A3f

(
2

3
τ

)∥∥∥∥ . (2.30)

Using inequalities (2.28), (2.29) and (2.30), from equality (2.27) we obtain
the desired estimate. ¤

According to Lemma 2.3, for Rk,4 (τ) (see formula (1.8)) the following esti-
mate holds:

‖Rk,4 (τ)‖ ≤ ceω0ττ 4

[∥∥∥∥A3f

(
2

3
τ

)∥∥∥∥ + sup
ξ∈[tk−1,tk]

∥∥A2f ′ (ξ)
∥∥

+ sup
ξ∈[tk−1,tk]

‖Af ′′ (ξ)‖+ sup
ξ∈[tk−1,tk]

‖f ′′′ (ξ)‖
]

. (2.31)

3. Proof of the Theorem

Let us return to the proof of Theorem 1.1.
From (1.7) we have

u(tk) = Uk(τ, A)ϕ +
k∑

i=1

Uk−i(τ, A)
(
F

(1)
i + Rk,4 (τ)

)
, (3.1)

where

F
(1)
i =

τ

4

(
3U

(
1

3
τ, A

)
f

(
ti−1/3

)
+ U (τ, A) f (ti−1)

)
. (3.2)
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Analogously, let us represent uk as

uk = V k(τ)ϕ +
k∑

i=1

V k−i(τ)F
(2)
i , (3.3)

where

F
(2)
i =

τ

4

(
3S

(
1

3
τ

)
f

(
ti−1/3

)
+ S (τ) f (ti−1)

)
. (3.4)

Equalities (3.1) and (3.3) imply

u(tk)− uk =
[
Uk(τ, A)− V k(τ)

]
ϕ

+
k∑

i=0

[
Uk−i(τ, A)F

(1)
i − V k−i(τ)F

(2)
i

]
+

k∑
i=0

Uk−i(τ, A)Rk,4 (τ)

=
[
Uk(τ, A)− V k(τ)

]
ϕ +

k∑
i=1

[(
Uk−i(τ, A)− V k−i(τ)

)
F

(1)
i

+V k−i(τ)
(
F

(1)
i − F

(2)
i

)]
+

k∑
i=0

Uk−i(τ, A)Rk,4 (τ) . (3.5)

From formulas (3.2) and (3.4) we have

F
(1)
i − F

(2)
i =

τ

4

(
3

(
U

(
1

3
τ, A

)
− S

(
1

3
τ

))
f

(
ti−1/3

)
+

+

(
U (τ, A)− S

(
1

3
τ

))
f (ti−1)

)
. (3.6)

Next we easily obtain the inequality

‖[U (τ, A)−K (τ, A)] ϕ‖ ≤ ceω0ττ 3 ‖ϕ‖A3 , ϕ ∈ D3.

Hence, analogously to estimate (2.25), we obtain

‖[U (τ, A)− S (τ)] ϕ‖ ≤ ceω0ττ 3 ‖ϕ‖A3 , ϕ ∈ D3.

According to this inequality, from equality (3.6) we obtain the estimate

∥∥∥F
(1)
k − F

(2)
k

∥∥∥ ≤ ceω0ττ 4 sup
t∈[tk−1,tk]

‖f(t)‖A3 . (3.7)

By Lemma 2.2 we have

∥∥∥∥∥
k∑

i=1

(
Uk−i(τ, A)− V k−i(τ)

)
F

(1)
i

∥∥∥∥∥ ≤ ceω0tkt2kτ
3 sup

s,t∈[0,tk]

‖U(s, A)f (t)‖A4 . (3.8)
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Using inequalities (3.7), (3.8), (2.19), (2.31) and the condition (b) of Theorem
1.1, from equality (3.5) we obtain

‖u(tk)− uk‖ ≤ ceω0tktkτ
3

(
sup

s∈[0,tk]

‖U(s, A)ϕ‖A4 + tk sup
s,t∈[0,tk]

‖U(s, A)f (t)‖A4

+ sup
t∈[0,tk]

‖f(t)‖A3 + sup
t∈[0,tk]

‖f ′(t)‖A2

+ sup
t∈[0,tk]

‖f ′′(t)‖A + sup
t∈[0,tk]

‖f ′′′(t)‖
)

¤

Remark 3.1. Analogously to the discussion of the rational approximation
(1.4), we can show that Lemma 2.1 is valid for the rational approximation

W0 (τ, A) =

(
I − 1

3
τA

)
(I + λτA)−1 (

I + λτA
)−1

,

where λ = 1
3

+ i 1
3
√

2

(
i =

√−1
)
.

Remark 3.2. The operator V k (τ) is the solution operator of the above-
considered decomposed problem. It is obvious that, according to the condition
(a) of Theorem 1.1 and automatical stability of the decomposition formula (1.5)
follows the stability of the above-stated decomposition scheme on each finite
time interval.

As is known the norm of the operator polynomial when the argument is
a self-adjoint bounded operator is equal to the C-norm of the corresponding
scalar polynomial (see [21], p. 248). Hence it follows that if A is a self-adjoint
non-negative operator, then the relations

‖W (τ, A)‖ = max
x∈[0,∞)

∣∣∣∣a +
b

1 + λτx
+

c

(1 + λτx)2

∣∣∣∣ = 1, (3.9)

‖W0 (τ, A)‖ = max
x∈[0,∞)

∣∣∣∣
1− 1

3
τx

1 + 1
6
τx + 1

6
τ 2x2

∣∣∣∣ = 1 (3.10)

are true. Analogously, if A is a self-adjoint, positive definite operator, then for
W0 (τ, A) the estimate

‖W0 (τ, A)‖ = max
x∈[γ0,∞)

∣∣∣∣
1− 1

3
τx

1 + 2
3
τx + 1

6
τ 2x2

∣∣∣∣ ≤
1

1 + γ1τ
, (3.11)

is true, where γ0 > 0, γ1 = 2/ (3γ0) .
From (3.9) and (3.10) follows

Remark 3.3. In the case of the Hilbert space, when A1, A2 and A1 + A2 are
self-adjoint non-negative operators, in case of W (τ, A) and W0 (τ, A) rational
approximation, in estimate (1.11) ω0 will be replaced by 0. Alongside with this,
for the transition operator of the split problem, the estimate

∥∥V k (τ)
∥∥ ≤ 1 will

be true.

(3.10) gives rise to
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Remark 3.4. In the case of the Hilbert space, if A1, A2 and A1 + A2 are self-
adjoint, positive definite operators and W0 (τ, A) is a rational approximation,
then ω0 in estimate (1.11) is replaced by −α0, α0 > 0. Moreover, for the
transition operator of the split problem, the estimate

∥∥V k (τ)
∥∥ ≤ e−α1tk , α1 > 0

is true.

Remark 3.5. According to the classical Hille–Phillips–Yosida theorem (see
[21]), if the operator (−A) generates a strongly continuous semigroup, then the
inequality in the condition (b) of Theorem 1.1 is automatically satisfied. The
proof of this inequality is based on the uniform boundedness principle, accord-
ing to which the constants M and ω exist, but generally cannot be explicitly
constructed (according to the method of the proof). That is why we demand
the inequality in the condition (b) of Theorem 1.1 be satisfied.

4. Conclusion

When the operators A1, A2 are matrices, it is obvious that the conditions
(a) and (b) of Theorem 1.1 are automatically satisfied. The conditions (a) and
(b) of Theorem 1.1 are also satisfied if A1, A2 and A are self-adjoint, positive
definite operators. Moreover, the conditions (a) and (b) of Theorem 1.1 are
automatically satisfied if the operators A1, A2 and A are normal operators.
However, in that case, certain restrictions are imposed on the spectra of these
operators: the spectrum of the operator A has to be included in the right
half-plane and the spectra of the operators A1 and A2 have to be included in
the sector with an angle of 120◦ so that the spectra of the operators A1 and
A2 would remain in the right half-plane after rotating by ±30◦ (this is due to
multiplication of the operators A1 and A2 by the parameters α and α).

The third order precision is reached by introducing a complex parameter.
For this, unlike lower order accuracy schemes, each equation of the considered
decomposed system is replaced by a pair of real equations. To solve a spe-
cific problem, the matrix factorization can be used, where the coefficients are
matrices of second order, while in lower order accuracy schemes the common
factorization can be used.

It must be noted that, unlike high order precision decomposition schemes
considered in [25], the sum of magnitudes of coefficients of the summands of
the transition operator V (τ) is equal to 1. Hence the scheme considered here
is stable for any bounded operators A1, A2.

5. A Numerical Example

We performed calculations for the test problem

∂u (t, x, y)

∂t
− a (x, y)

∂2u (t, x, y)

∂x2
− b (x, y)

∂2u (t, x, y)

∂y2
= f (t, x, y) , t > 0,

(x, y) ∈ ]0; 1[× ]0; 1[ ,

u (0, x, y) = ϕ (x, y) , u (t, x, 0) = u (t, x, 1) = 0, u (t, 0, y) = u (t, 1, y) = 0,
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where

f (t, x, y) = eπtπ (m + π (a (x, y) + b (x, y))) sin (πx) sin (πy) ;

ϕ (x, y) = 0;

a (x, y) = 2 + sin (πx) sin (πy) ;

b (x, y) = 2 + 0.5 sin (πx) sin (πy) .

The solution of the problem is u (t, x, y) = emπt sin (πx) sin (πy) .

Fig. 1. Dependence of the relative error on the time step

Fig. 1 shows the dependence of a relative error of the approximate solution
on the time step logarithm (the time step logarithm is on the horizontal axis
and the relative error of the approximate solution is on the vertical axis). Fig. 2
gives the dependence of the absolute error of the approximate solution on the
time step logarithm (the time step logarithm is on the horizontal axis and the
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absolute error of the approximate solution is on the vertical axis). In both
figures the calculations are carried out for the following values of the time step:
τk = 1/Nk, Nk =

[
10 ∗ 1.2k

]
, k = 0, 1, . . . , 30, and the spatial step is assumed to

be constant hx = hy = 0.001. Both figures deal with three cases: m = 1, m = 3
and m = 5. Our aim was to find the convergence rate of the method by means
of a numerical experiment. If the method is of third order, then, starting from
some value of τ , the graph of the function (solution error logarithm) should
approach the straight line, the tangent of which equals three. Both figures
clearly show that starting from τ = 0.01 (Log(τ) = −2), the graph approaches
the straight line, the tangent of which equals three with sufficient accuracy,
which confirms the theoretical result proved in the paper.

Fig. 2. Dependence of the absolute error on the time step
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Note that we used the classical difference formulas for approximation of sec-
ond derivatives by spatial variables. It is obvious that u1, u2, . . . , uk are complex
functions, but their imaginary parts are O (τ 3).
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1. H. A. Alibekov and P. E. Sobolevskĭı, The stability of difference schemes for para-
bolic equations. (Russian) Dokl. Akad. Nauk SSSR 232(1977), No. 4, 737–740.

2. G. A. Baker, Jr., and P. Graves-Morris, Pade approximants. (Translated from
English into Russian) Mir, Moscow, 1986.

3. P. R. Chernoff, Note on product formulas for operator semigroups. J. Functional
Analysis 2(1968), 238–242.

4. P. R. Chernoff, Semigroup product formulas and addition of unbounded operators.
Bull. Amer. Math. Soc. 76(1970), 395–398.

5. N. Dunford and J. T. Schwartz, Linear operators. Part I: General theory. (Russian)
Izdat. Inostran. Lit., Moscow, 1962.

6. Z. Gegechkori, J. Rogava, and M. Tsiklauri, Sequential-parallel method of high
degree precision of Cauchy abstract problem solution. Rep. Enlarged Sess. Semin. I. Vekua
Inst. Appl. Math. 14(1999), No. 3, 45–48.

7. Z. Gegechkori, J. Rogava, and M. Tsiklauri, High-degree precision decomposition
method for an evolution problem. Comput. Methods Appl. Math. 1(2001), No. 2, 173–187.

8. Z. Gegechkori, J. Rogava, and M. Tsiklauri, High degree precision decomposition
formulas of semigroup approximation. Rep. Enlarged Sess. Semin. I. Vekua Inst. Appl.
Math. 16(2001), No. 1-3, 89–92.

9. Z. Gegechkori, J. Rogava, and M. Tsiklauri, High degree precision decomposition
method for the evolution problem with an operator under a split form. M2AN Math.
Model. Numer. Anal. 36(2002), No. 4, 693–704.

10. D. G. Gordeziani, Application of a locally one-dimensional method to the solution of
multi-dimensional parabolic equations of the order 2m. (Russian) Soobshch. Akad. Nauk
Gruzin. SSR 39(1965), 535–541.

11. D. G. Gordeziani and G. V. Meladze, The modelling of multidimensional quasilinear
equations of parabolic type by one-dimensional equations. (Russian) Soobshch. Akad.
Nauk Gruzin. SSR 60(1970), 537–540.

12. D. G. Gordeziani and G. V. Meladze, The simulation of the third boundary
value problem for multidimensional parabolic equations in an arbitrary domain by one-
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