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SELFADJOINT OPERATORS AND GENERALIZED CENTRAL
ALGORITHMS IN FRECHET SPACES

SOSO TSOTNIASHVILI AND DAVID ZARNADZE

Abstract. The paper gives an extension of the fundamental principles of
selfadjoint operators in Fréchet–Hilbert spaces, countable-Hilbert and nu-
clear Fréchet spaces. Generalizations of the well known theorems of von
Neumann, Hellinger–Toeplitz, Friedrichs and Ritz are obtained. Definitions
of generalized central and generalized spline algorithms are given. The re-
striction A∞ of a selfadjoint operator A defined on a dense set D(A) of the
Hilbert space H to the Frechet space D(A∞) is substantiated. The extended
Ritz method is used for obtaining an approximate solution of the equation
A∞u = f in the Frechet space D(A∞). It is proved that approximate so-
lutions of this equation constructed by the extended Ritz method do not
depend on the number of norms that generate the topology of the space
D(A∞). Hence this approximate method is both a generalized central and
generalized spline algorithm.

Examples of selfadjoint and positive definite elliptic differential operators
satisfying the above conditions are given. The validity of theoretical results
in the case of a harmonic oscillator operator is confirmed by numerical cal-
culations.
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Introduction

Symmetrical and selfadjoint operators in Fréchet–Hilbert, countable-Hilbert
and nuclear Fréchet spaces were introduced and investigated in [1–5]. Since the
class of these spaces contains products of Hilbert space sequences, the theory
considered in this paper actually includes the theory of selfadjoint operators
in spaces of functions with a countable number of arguments, but differs from
the theory constructed in [6]. On the basis of the results announced in [3] and
proved below, in [4] the Ritz method was extended for equations with positive
definite operators in the above-indicated Fréchet spaces.

In this paper the Ritz method is used to obtain an approximate solution of
the equation

Au = f (1)

with a positive definite operator A in the Hilbert space H, assuming that the
right-hand part is sufficiently smooth. We first consider the restriction of equa-
tion (1) in the countable-Hilbert space D(A∞) [7–8] (the space D(A∞) coincides
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with the space C∞(A) ([9], p. 345) which is the set of C∞-elements of the op-
erator A). Then we prove that the restriction of the operator A denoted by
A∞ is continuous and selfadjoint in the space D(A∞). Due to this notation,
spaces D(A∞) acquire a new meaning that differs from the classical case where
D(A∞) was the whole symbol, where A∞, if taken separately, meant nothing.
From now on the symbol D(A∞) will also denote the definition domain of the
operator A∞ which obviously coincides with the space D(A∞). Since the space
D(A∞) is everywhere dense in its strongly adjoint space D(A∞)′β, A∞ admits
a continuous extension to it. Further, we prove that for the equation

A∞u = f (2)

the extended Ritz method converges in the energetic space EA∞ of the opera-
tor A∞. In that case, the space EA∞ coincides with the space D(A∞) and its
topology is stronger than that of the energetic space HA of the operator A. The
obtained results are applied to an equation with strongly degenerating elliptical
operators and with a harmonic oscillator operator in the Hilbert space L2(R).
For the latter operator, the space D(A∞) coincides with the Schwartz space
S(R) of fast decreasing functions [7]. Therefore if we take as base functions
the eigenfunctions {ϕj} of this operator, i.e., the Hermite functions, then the
sequence of approximate solutions converges to an exact solution in the space
S(R), the topology of which is stronger than that of the Sobolev space. Our
numerical experiments confirm the validity of the theoretical results.

We used the obtained results also for the operator K−1 in the ill-posed prob-
lem

Ku = f (3)

in the Hilbert space H with a compact selfadjoint operator K : H → H. This
enabled us to immediately establish that the restriction of the operator K−1 is
continuous and selfadjoint in the Fréchet space D(K−∞) = D((K−1)∞). Since
the space D(K−∞) is everywhere dense in its strongly adjoint space D(K−∞)′β,
it admits a continuous extension to it. This means that in the latter space
initial equation (3) is strongly well-posed. The weak well-posedness of these
problems was proved in [10–11].

Section 1 contains the definitions of selfadjoint and positive definite opera-
tors in Fréchet spaces, the topologies of which are generated by sequences of
Hilbertian seminorms. For such spaces we generalize the well known theorems
of Neumann, Hellinger–Toeplitz and Friedrichs. We also give the definition of
an energetic space of a positive definite operator and represent this space as
the projective limit of a sequence of energetic spaces of projection operators in
Hilbert spaces.

In Section 2, we justify our consideration of the restriction of the selfadjoint
operator A defined on a dense subset D(A) of the Hilbert space H to the
countable-Hilbert space D(A∞). Using the general results obtained in Section 1
we prove that the above-mentioned restriction A∞ to the Fréchet space D(A∞)
is continuous and selfadjoint. Moreover, we prove that if the operator A is
positive definite in H and has a purely pointwise spectrum, then A∞ is an
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isomorphism of the space D(A∞) onto and its energetic space EA∞ coincides
with D(A∞).

In Section 3, the extended Ritz method is used to obtain an approximate
solution of equation (2) in the Fréchet space D(A∞), where A∞ is again the
restriction of the operator A with a purely pointwise spectrum. We choose
eigenfunctions of the operator A as base functions and prove that the subspaces
spanned over the first eigenvector m possess an orthogonal complement in the
Fréchet space D(A∞). This means that approximate solutions do not depend
on the number of norms that generate the topology of the space D(A∞). It
is shown that a sequence of approximate solutions is convergent in the space
D(A∞), the topology of which is stronger than that of the initial Hilbert space
(Theorem 4). We give the definitions of a generalized central and generalized
spline algorithm and prove that the algorithm given in Theorem 4 is both gen-
eralized central and generalized spline. An analogous result was obtained in [12]
(see also [13]). Examples of selfadjoint and positive definiite elliptical differen-
tial operators satisfying the conditions of Theorem 4 are given. Further, it is
indicated that the obtained results can be applied to the well known Lagrange,
Legendre and Tricomi differential operators

The results of numerical experiments are presented, which confirm the validity
of theoretical investigations in the case of a harmonic oscillator operator.

At the end of Section 3 the obtained results are applied to the ill-posed
problem (3) in a Hilbert space. In particular, by applying them to the inverse
compact selfadjoint operator we prove the strong and the weak well-posedness
of equations with such operators. These results are also applied to operators
mapping a separable Hilbert space into the same space and admitting a singular
decomposition.

1. Extension of the von Neumann, Hellinger–Toeplitz and
Friedrichs Theorems to the Case of Symmetrical Operators

in Fréchet Spaces

Let us recall some definitions from [3]. Let E be the complex Fréchet space
with an increasing sequence of Hilbertian seminorms {‖ · ‖n}, where ‖x‖n =

(x, x)
1/2
n for each x ∈ E and (·, ·)n is a semiscalar product on E. The term

“semiscalar product” means that the inner product (·, ·)n has no property
(x, x)n = 0 ⇒ x = 0. Let A be a linear operator with the dense definition
domain D(A) which, for the sake of simplicity, in what follows will be called a
dense linear operator. If for y ∈ E there exists an element y∗ such that

(Ax, y)n = (x, y∗)n (4)

for each x∈D(A) and n∈N, then using the equality A∗y = y∗ we define the
operator A∗ : H → H which we call the Hilbert adjoint operator to A. In other
words, D(A∗) consists of y ∈ E for which there exists a vector y∗ such that (4)
is fulfilled for all x ∈ D(A) and n ∈ N. It should also be noted that the operator
A∗ differs from the ordinary topological adjoint operator A′ [3].
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The dense operator A is called symmetrical if A ⊂ A∗, i.e., if the adjoint
operator A∗ is an extension of A.

The symmetrical operator A can also be defined in the following equivalent
manner: the operator A is called symmetrical if

(Ax, y)n = (x,Ay)n

for all x, y ∈ D(A) and n ∈ N.
The symmetrical operator A is called selfadjoint if A = A∗.
The symmetrical operator A is called positive definite if for each n ∈ N there

exists γn > 0 such that

(Ax, x)n ≥ γ2
n(x, x)n for all x ∈ D(A) and n ∈ N.

Let us now give the generalizations of the von Neumann theorems on sym-
metrical and selfadjoint operators.

Theorem 1. Let E be the Fréchet space with a generating increasing sequence
of Hilbertian seminorms {‖ · ‖n}. Then the following statements are true:

a) The symmetrical operator A defined on the whole space D(A) = E is
selfadjoint and continuous. Moreover, if E is a Fréchet–Hilbert space, then
A ∈ L0(E), i.e., for each n ∈ N there exists Cn > 0 such that

‖Ax‖n ≤ Cn‖x‖n for all x ∈ E.

b) The symmetrical operator A with the dense image R(A) possesses the
symmetrical inverse operator A−1. Moreover, if A is positive definite, then
A−1 ∈ L0(E).

c) Let A be the symmetrical operator with the dense image R(A) in E. Then
A is selfadjoint if and only if A−1 is selfadjoint.

d) The symmetrical operator A, the image R(A) of which coincides with E,
is selfadjoint.

Proof. a) By the symmetry of A we have D(A) ⊂ D(A∗), but D(A) = E and
therefore D(A∗) = E, i.e., A = A∗. Let us prove that the operator A is closed.
Indeed, let um → u, Aum → v0 for m → ∞. Then for each n ∈ N and v ∈ E
we have

(v0, v)n = lim
m→∞

(Aum, v)n = lim
m→∞

(um, A v)n = (u,Av)n = (Au, v)n,

i.e., v0 = Au. Thus the operator A is closed and therefore continuous.
If E is a Fréchet–Hilbert space, then the factor space E/Ker‖ · ‖n is a Hilbert

space with the scalar product 〈Knx, Kny〉n = (x, y)n and associated norm

‖K̂nx‖n = 〈Knx,Knx〉1/2 = ‖x‖n for each x, y ∈ E, where Kn : E → E/Ker‖·‖n

is the canonical mapping. Then the operator An defined by the equality

An(Knx) = Kn(Ax) (5)

is positive definite on the whole Hilbert space En = (E/Ker‖ · ‖n, ‖̂ · ‖n).
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The condition for the operator An to be correct is as follows: for any x1 and
x2 from E the condition x1 − x2 ∈ Ker Kn implies A(x1 − x2) ∈ Ker Kn. The
operator An is symmetrical. Indeed, let Knx, Kny ∈ En. Then

〈An(Knx), Kny〉 = 〈Kn(Ax), Kny〉 = (Ax, y)n = (x,Ay)n

= 〈Knx, Kn(Ay)〉 = 〈Knx, An(Kny)〉.
Therefore, by virtue of the classical Hellinger–Toeplitz theorem, An is continu-
ous for each n ∈ N, i.e., A ∈ L0(E).

In the sequel we will call the operator An the projection of the operator A

onto the factor space (E/Ker‖ · ‖n, ‖̂ · ‖n), keeping in mind that this definition
is meaningful for the operator A acting from the Fréchet space E into.

b) Let us prove that the equality Ax = 0 implies x = 0. Indeed, for all
y ∈ D(A) and n ∈ N we have (x,Ay)n = (Ax, y)n = 0. Hence, by the density of
R(A) in E, we obtain that x ∈ Ker‖ · ‖n for each n ∈ N, i.e., x = 0. Therefore
there exists the inverse operator A−1 with the dense domain D(A−1) = R(A)
and A−1Au = u for all u ∈ D(A). Also, AA−1v = v for all v ∈ D(A−1).

Let us now prove that the equalities

(A−1u, v)n = (u,A−1v)n

are fulfilled for all u, v ∈ D(A−1) and n ∈ N . Indeed, if A−1u = x and
A−1v = y, then u = Ax v = Ay. Hence by the symmetry of the operator A we
have

(A−1u, v)n = (x,Ay)n = (Ax, y)n = (u,A−1v)n

for all n ∈ N , i.e., A−1 is symmetrical.
Further, the fact that the operator A is positive definite implies that for each

n ∈ N there exists γn > 0 such that

(Au, u)n ≥ γ2
n(u, u)n for all u ∈ D(A) .

From the Cauchy–Bunyakovski inequality (Au, u)n ≤ ‖Au‖n‖u‖n it follows
that γ2

n(u, u)n ≤ ‖Au‖n‖u‖n . Hence for u ∈ D(A), if ‖u‖n = 0, then in the
latter relation we have an equality, and if ‖u‖n 6= 0, then we have the inequality

γ2
n‖u‖n ≤ ‖Au‖n ,

i.e., A−1 ∈ L0(E).
c) Let A = A∗. In proving the statement b), it was shown that A−1 exists

and is symmetrical. Therefore there exists its adjoint operator (A−1)∗. It is
sufficient to prove that (A−1)∗ = (A∗)−1, since from the condition it follows
that A−1 = (A∗)−1. If u ∈ D(A) and v ∈ D((A−1)∗), then for each n ∈ N we
have

(u, v)n = (A−1Au, v)n = (Au, (A−1)∗v)n = (u,A∗(A−1)∗v)n .

This means that (A−1)∗v ∈ D(A) and A∗(A−1)∗v = v. Analogously, if u ∈
D(A−1) and v ∈ D(A∗), then for each n ∈ N we have

(u, v)n = (AA−1u, v)n = (A−1u,A∗v)n = (u, (A−1)∗A∗v)n ,
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i.e., A∗v ∈ D(A−1)∗ and (A−1)∗A∗v = v. Hence it follows that (A−1)∗ =
(A∗)−1. The converse statement is proved by applying to A−1 the already proven
statement.

d) By virtue of the statement b) there exists a symmetrical inverse operator
A−1. Keeping in mind that D(A−1) = R(A) = E and by virtue of a), we observe
that the operator A−1 is selfadjoint, i.e., A−1 = (A−1)∗. Then, by virtue of c),
A = A∗ and A is selfadjoint. ¤

Note that the statement a) is a generalization of the well-known Hellinger–
Toeplitz theorem on the continuity of a symmetrical operator defined on the
whole space.

Using Theorem 1, we prove our next generalization of the well known Fried-
richs–Stone–Wintner theorem [14].

Theorem 2. Let E be a Fréchet space with a generating increasing sequence of
Hilbertian seminorms {‖ · ‖n} and A be a symmetrical positive definite operator
with the dense image R(A). Then A possesses a selfadjoint and positive definite

extension Ã such that R(Ã) = E.

Proof. By virtue of the proposition b) of Theorem 1 there exists a symmetrical
inverse operator A−1to the operator A and A−1 ∈ L0(E). The operator C = A−1

can be continuously extended uniquely to the whole space E. We denote this

extension by C̃. For all x ∈ E it is defined by the equality C̃x = lim
k→∞

A−1xk,

where xk ∈ R(A) and lim
k→∞

xk = x.

Let us prove that C̃ is also symmetrical. Indeed, let x, y ∈ E and lim
k→∞

xk = x,

lim
m→∞

ym = y, where xk, ym ∈ R(A).

Then for each n ∈ N we have

(C̃x, y)n = ( lim
k→∞

A−1xk, lim
m→∞

ym)n = lim
k→∞

lim
m→∞

(A−1xk, ym)n

= lim
k→∞

lim
m→∞

(xk, A
−1ym)n = lim

m→∞
lim
k→∞

(xk, A
−1ym)n = (x, C̃y)n .

From the proposition a) of Theorem 1 it follows that C̃ is selfadjoint. Since

C̃ is the extension of A−1, we have R(C̃) ⊃ R(A−1) = D(A), i.e., R(C̃) is
everywhere dense in E. If we now apply the proposition c) of Theorem 1 to the

operator C̃, we establish that C̃−1 is also selfadjoint. It is shown that C̃−1 is

the selfadjoint extension of the operator A. Denote C̃−1 by Ã. Let us show that

if x ∈ D(A), then Ãx = Ax. Indeed, then Ax ∈ R(A) and A−1Ax = CAx = x,

i.e., Ax = C−1x and therefore Ãx = Ax. Since R(Ã) = D(C̃) = E, Ã satisfies
all the requirements of Theorem 2. ¤

Corollary. Let E be a Fréchet space with a generating sequence of Hilbertian
seminorms {‖ · ‖n} and A : E → E be a symmetrical and positive definite

operator with the dense image R(A). Then A possesses an extension Ã such

that the equation Ãu = f has a unique solution for each f ∈ E.
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It remains unknown whether Theorem 2 holds without the requirement
R(A) = E. In the case of Hilbert spaces this follows from the fact that the
operator A is positive definite ([9], Theorem X.26, p. 205)

Let us show that the solution of the equation Au = f belongs to the energetic
space of the operator A which is now defined like in the classical case.

Let (E, τ) be a Fréchet space with a generating sequence of Hilbertian semi-
norms {‖ · ‖n} and A : E → E be a symmetrical and positive definite operator.
We equip D(A) both with the induced topology τ ∩D(A) and the topology τA

generated by the sequence of Hilbertian seminorms

[x] n = [x, x] 1/2
n , x ∈ D(A), n ∈ N, (6)

where

[x, y] n = (Ax, y) n, x, y ∈ D(A), n ∈ N.

From the fact that the operator A is positive definite it follows that the
topology τA is not weaker than the topology τ. We denote by EA the completion
of D(A) in the topology τA and call it the energetic space of A. The values [x, y] n

and [x] n are called energetic products and energetic seminorms, respectively. In
[4], the energetic space EA is represented as a projective limit of the sequence
of energetic spaces HAn of projection operators An which are the completion
E/ Ker ‖ · ‖n with respect to the norm

[Knx]An = 〈AnKnx,Knx〉n, Knx ∈ D(An).

Since we need only the particular case of this theorem, we will not prove it
in a general form.

2. Selfadjointness of the Restriction to the Fréchet space
D(A∞) of the Selfadjoint Operator A in the Hilbert space H

Let H be the Hilbert space and A be the selfadjoint operator with a purely
pointwise spectrum from H into H. According to ([8], §5.6.1), A is called an
operator with a purely pointwise spectrum if its spectrum consists of isolated
points of finite multiplicity and has no finite limiting points.

The topology of the well known countable-Hilbert space D(A∞)=
∞⋂

k=1

D(Ak−1))

can be given by the following sequence of Hilbertian norms

‖x‖n = (‖x‖2 + ‖Ax‖2 + · · ·+ ‖An−1x‖2)1/2, x ∈ D(A), n ∈ N, (7)

that are generated by scalar products

(x, y)n = (x, y) + (Ax,Ay) + · · ·+ (An−1x,An−1y), x, y ∈ D(A∞). (8)

The space D(A∞) coincides with the space H if and only if the operator A is
bounded. Also note that the sequence {hk} converges to h in the space D(A∞)
if and only if Anhk converges to Anh in H for each n ∈ N.

In [7], the conditions are given in terms of distribution of the modules of
eigenvalues of the operator A on the straight line, under which the space D(A∞)
is Montel, nuclear or isomorphic to the space of quickly decreasing sequences s.
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It is well known that each Fréchet space is isomorphic to a subspace of the
product of sequences of Banach spaces. The space D(A∞) is isomorphic to
a subspace M of the Fréchet–Hilbert space HN [1], the topology of which is
generated by the following sequence of semiscalar products

(x, y)n = (x1, y1) + · · ·+ (xn, yn), x = {xk}, y = {yk} ∈ HN , n ∈ N. (9)

The above-mentioned isomorphism (it actually is an isometry) is obtained by
the mapping

D(A∞) 3 x → Orb(A, x) := {x,Ax, . . . , An−1x, . . .} ∈ M ⊂ HN .

Therefore the space D(A∞) is isomorphic to the space of all orbits orb(A, x) for
the operator A at a point x ∈ D(A∞) considered in the induced topology of the
space HN . Using this representation we define the operator A∞ : D(A∞) →
D(A∞) by the equality

A∞x = A∞{x,Ax, A2x, . . .} = {Ax,A2x, . . .}. (10)

Actually, A∞ is the restriction on D(A∞) of the operator AN defined on HN by
the equality

AN({xk}) = {Axk} ∈ HN .

Theorem 3. Let A be the selfadjoint operator in the Hilbert space H with
the dense domain D(A). Then the following propositions are true:

a) The operator AN is a selfadjoint operator in the Fréchet–Hilbert space HN

with a sequence of Hilbertian seminorms (9) and the domain D(A)N .
b) The operator A∞, defined by equality (10) on the whole space D(A∞) is

a continuous selfadjoint operator in the space D(A∞).
c) If the operator A has a purely pointwise spectrum, then A∞ possesses a

selfadjoint inverse operator (A∞)−1 in the space D(A∞). Further, if A is positive
definite in H, then A∞ is an isomorphism of the space D(A∞) onto and the
energetic space EA∞ of the operator A∞ coincides with D(A∞).

Proof. a) It is not difficult to show that the Hilbert adjoint operator of AN in
the Fréchet–Hilbert space HN is (A∗)N with the domain D(A∗)N and therefore
the condition implies that the operator AN is selfadjoint in HN .

b) It is obvious that the definition domain of the operator A∞ is the whole
space D(A∞), i.e., from now on the notation of the space D(A∞) is also the
notation of the definition domain of the operator A∞ (which is natural). Let
x, y ∈ D(A∞), then for each n ∈ N we have

(A∞x, y)n = (Ax, y) + (A2x,Ay) + · · ·+ (Anx,An−1y)

= (x,Ay) + (Ax,A2y) + · · ·+ (An−1x,Any) = (x,A∞y)n.

Hence, by virtue of the proposition a) of Theorem 1, we obtain that A∞ is a
continuous selfadjoint operator in the space D(A∞).

c) By Rellich’s theorem ([8], §5.6.1) the selfadjoint operator in the Hilbert
space H has a purely pointwise spectrum if and only if the embedding of the
definition domain D(A) (with the norm ‖u‖D(A) = ‖Au‖ + ‖u‖) into H is
compact. Hence it follows that the space D(A∞) is a space of the type (FS), i.e.,
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is a projective limit of a sequence of Hilbert spaces with compact embeddings.
In particular, in our case the space D(A∞) is Montel, i.e., each closed bounded
set in it is compact. By virtue of Theorem 3 from [15], the operator A possesses a
complete system of orthonormalized in H eigenelements {ϕk} (with eigenvalues
λk) which is at the same time an unconditional basis in D(A∞). (If the space
D(A∞) is nuclear, then this basis is absolute). Hence it follows that the image
R(A∞) of the operator A∞ is everywhere dense in the space D(A∞), since
each eigenelement of the operator A is also an eigenelement for the operator
A∞ and is contained in its image. Indeed, by virtue of the above-mentioned
isomorphism, for any k ∈ N we have

A∞ϕk = A∞(ϕk, Aϕk, A
2ϕk, . . .) = (Aϕk, A

2ϕk, A
3ϕk, . . .)

= (λkϕk, λkAϕk, λkA
2ϕk, . . .) = λk(ϕk, Aϕk, A

2ϕk, . . .) = λkϕk.

Therefore, by the proposition c) of Theorem 1, we conclude that A∞ possesses
a selfadjoint inverse operator (A∞)−1.

Let now A be a positive definite operator in H, then for x ∈ D(A∞) and
n ∈ N we have

(A∞x, x)n = (Ax, x) + (A2x,Ax) + · · ·+ (Anx,An−1x)

≥ γ[(x, x) + (Ax,Ax) + · · ·+ (An−1x,An−1x)] = γ2(x, x)n, (11)

i.e., A∞ is also positive definite in D(A∞). By virtue of the proposition b)
of Theorem 1 (A∞)−1 ∈ L0(D(A∞)). Since by Theorem 2 (A∞)−1 possesses

a selfadjoint extension ˜(A∞)−1 such that D( ˜(A∞)−1) = D(A∞), we obtain
˜(A∞)−1 = (A∞)−1. Therefore A∞ is an isomorphism of the space D(A∞) onto.
The energetic space EA∞ of the operator A∞ is considered using the topology

τA∞ which is generated by the sequence of norms (6) and has the form

[x]2n = (A∞x, x)n = (Ax, x) + · · ·+ (Anx, An−1x). (12)

By virtue of (11) we have [x]2n ≥ γ2(x, x)n. Thus the topology τA∞ is not weaker
than the topology of the space D(A∞) and therefore these topologies coincide,
i.e., EA∞ = D(A∞). In particular, this means that the equation A∞u = f has
a unique, strongly stable solution in D(A∞) for any f ∈ D(A∞). ¤

3. Application of the Extended Ritz Method for Obtaining an
Approximate Solution of the Equation with a Strongly

Degenerating Elliptical Operator

To obtain an approximate solution of equation (2) in the space D(A∞) we
apply the extension of the Ritz method from [4] (approximation methods of the
solution of operator equations in Fréchet spaces were previously considered in
[18]–[19]). Since we need only the particular case of this method, we do not
give its proof in the general case. As basic functions we choose a sequence
of eigenfunctions {ϕj} of the operators A and A∞. For l ∈ N , a system of
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equations for defining the coefficients of an approximate solution is written in
the form

m∑

k=1

[ϕk, ϕj] lαk = (f, ϕj) l, j = 1, . . . , m, (13)

i.e.,
m∑

k=1

(A∞ϕk, ϕj)lak = (f, ϕj) l, j = 1, . . . ,m,

where

[ϕk, ϕj] l = (A∞ϕk, ϕj) l = (Aϕk, ϕj) + (A 2ϕk, Aϕj) + · · ·+ (Alϕk, A
l−1ϕj)

= (λk + λ2
kλj + · · ·+ λ l

kλj
1−1)(ϕk, ϕj). (14)

Moreover, we have

(f, ϕj) l = (f, ϕj) + (Af, Aϕj) + · · ·+ (A l−1f,A l−1ϕj) = (f, ϕj)

+λ2
j(f, ϕj) + · · ·+ λ

2(l−1)
j (f, ϕj) = (1 + λ2

j + · · ·+ λ
2(l−1)
j )(f, ϕj).

If the sequence {ϕj} is orthogonal in H, then from (14) we obtain

[ϕk, ϕj]l =

{
0, when k 6= j,

[ϕj]
2
l = (λj + λ3

j + · · ·+ λj
2l−1), when k = j;

Hence it follows that

αj =
(1 + λ2

j + · · ·+ λJ
2(l−1))(f, ϕj)

λj(1 + λ2
j + · · ·+ λJ

2(1−1))‖ϕj‖2
=

(f, ϕj)

λj‖ϕj‖2
.

Therefore an approximate solution takes the form

um =
m∑

j=1

(f, ϕj)

λj‖ϕj‖2
ϕj. (15)

If the sequence {ϕj} is orthonormalized in H, then

um =
m∑

j=1

(f, ϕj)

λj

ϕj. (16)

Note that approximate solutions (16) do not depend on l ∈ N. Therefore, by
virtue of the classical Ritz theorem, this sequence converges to a solution of
equation (2) with respect to energetic norms [·]n (12). Indeed, in that case the
canonical mappings KA∞,n : EA∞ → EA∞/ Ker[·]n are the identical mappings
Jn : D(A∞) → (D(A∞), [·]n) defined by the equality

Jnx = Jn(x,Ax, . . .) = (x,Ax, . . . , A n−1x),

while the projection operators (5) written as

A∞
n (Jnx) = Jn(A∞x) = Jn({Ax,A2x, . . . , }) = (Ax,A2x, . . . , Anx)
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are the operators considered in Hilbert spaces (D̃(A∞), [·]n), where (D̃(A∞), [·]n)
is the completion of the normed space (D(A∞), [·]n). But the norms [·]n are
isometric to the norms [·]A∞n for each n ∈ N, where

[Jnx]A∞n = 〈A∞
n Jnx, Jnx〉1/2

n = ((Ax, x) + · · ·+ (Anx,An−1x))1/2.

Therefore the sequence {um} converges to (A∞)−1f in the energetic space EA∞

and, accordingly, in the space D(A∞). We have thereby proved that the follow-
ing statement is true.

Theorem 4. Let A be a selfadjoint positive definite operator in the Hilbert
space H with an orthogonal sequence of eigenfunctions {ϕj}. Then the sequence
of approximate solutions {um} constructed by the extended Ritz method (15)
converges to a solution of equation (2) in the space D(A∞).

Now we will give the definitions of a generalized spline algorithm and a ge-
neralized central algorithm which are respectively a generalization of the spline
algorithm and the central algorithm from [20]. Further, it will be shown that
the algorithm costructed in Theorem 4 for an approximate solution of equation
(2) in the space D(A∞) is simultaneously a generalized central and a generalized
spline algorithm. For the metrization of the space D(A∞) we use the metric from
[19] constructed for an increasing sequence of norms { [·]n }. For an arbitrary
Fréchet space with an increasing sequence of seminorms { ‖ · ‖n } this metric
has the form

d(x, y) =





‖x− y‖1, when ‖x− y‖1 ≥ 1,

2−n+1, when ‖x− y‖n ≤ 2−n+1 and

‖x− y‖n+1 ≥ 2−n+1 (n ∈ N),

‖x− y‖n+1, when 2−n ≤ ‖x− y‖n+1 < 2−n+1 (n ∈ N),

0, when x− y = 0.

(17)

Let F1 be a linear space, G be the normed space over the scalar field of real
or complex numbers and S : F1 → G be a linear operator. Let F be a balanced
convex subset of the space F1. Let U(f) be the computed approximation of
an element S(f). To compute U(f) we need to have certain knowledge about
the elements f ∈ F. Let y = I(f) = [L1(f), . . . , Lm(f) ] be the computed
nonadaptive information with cardinality m (as different from [20] we denote
this infomartion by I), where L1, . . . , Lm are linear functionals on F1. If y =
I(f) is known, then the approximation of U(f) computed by means of this
information gives an element of the space G which is the approximation of the
element S(f). Therefore U(f) = ϕ(I(f)), where ϕ : I(F1) → G is the mapping
called the algorithm.

The local error for U = (ϕ, I) is defined as follows: given y = I(f), the
element ϕ(y) has to approximate all elements from the set S(I−1y), where
S(I−1y) = {S(f), f ∈ I−1(y)} and I−1(y) = {f ∈ F ; I(f) = y}. The value

e(ϕ, I, y) = sup{‖S(f ′)− ϕ(y)‖; f ′ ∈ I−1(y)}
is called the local error.
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The radius of the set S(I−1(y)) is denoted by r(I, y) and called the local radius
of the information I at a point y. Let the set S(I−1(y)) have the Chebyshev
center m = m(y) for each y ∈ I(F ). Then the algorithm ϕc(y) = m(y) is called
central. For the central algorithm we have

r(I, y) = rad S(I−1(y)) = inf{sup{‖S(f ′)− g‖; f ′ ∈ I−1(y)}; g ∈ G}
= sup{‖S(f ′)−m(y)‖; f ′ ∈ I−1(y)} = e(ϕc, I, y),

i.e., the local error of the central algorithm coincides with the local radius and
is therefore minimal.

Sometimes it is convenient to assume that the set F is generated by the
restriction operator T : F1 → X, where (X, ‖ · ‖F ) is the normed space and
F = {f ∈ F1; ‖T (f)‖F ≤ 1}. Indeed, the space X coincides with Ker µ⊥

F
, where

µ
F

is the Minkovski functional for the set F , Ker µ⊥
F

is an algebraic complement

of a subset Ker µ
F
, T : F1 → Ker µ⊥

F
an algebraic projector, and the norm ‖ ·‖X

on X is defined by the equality ‖Tf‖X = µ
F
(f).

σ = σ(y) is called the interpolation spline for y ∈ I(F1) if I(σ) = y and

‖Tσ‖ = min{‖Tz‖; z ∈ F1, I(z) = y}.
According to [12], for the above-mentioned mapping T , the nonadaptive in-

formation I and each y ∈ I(F1), the interpolation spline exists if and only if the
subspace Ker I is proximinal in F1 with respect to µF .

If the interpolation spline exists and is unique, then the spline algorithm is
defined by the equality

Φs(y) = S(σ(y)), y ∈ I(F1), (18)

where σ(y) is the interpolation spline for y.
Using the result from [12], we will now give the definition of a generalized

spline in terms of best approximations. Let F1 be a metrizable, locally convex
space on which there exists a metric d, invariant with respect to translation and
having absolutely convex balls Kr = {x ∈ F1; d(x, 0) ≤ r}, such that (F1, d)
is a metric linear space. Denote by qr(·) the Minkowski functional of a ball
Kr, and by | · | the quasinorm of the metric d. Let, further, I be again the
nonadaptive information of cardinality m, y ∈ I(F1), I(f) = y for some f ∈ F1

and d(f, Ker I) = r. Then σ = f − h∗ is called the generalized interpolation
spline if I(σ) = y,

d(f, Ker I) = d(f, h∗) = r = d(σ, 0) = |σ|
and

inf{qr(f − h); h ∈ Ker I} = qr(f − h∗) = qr(σ),

i.e., the generalized spline σ minimizes not only the metric but also the corre-
sponding Minkowski functional.

Note that this definition does not depend on the choice of an element f ∈ F1

for which I(f) = y and d(f, Ker I) = r. Indeed, since if

I(f1) = I(f2) = y, f2 − f1 = z ∈ Ker I, d(f1, Ker I) = d(f1, h
∗
1),
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and

inf{qr(f1 − h); h ∈ Ker I)} = qr(f1 − h∗1),

then

d(f2, Ker I) = d(f2, h
∗
1 + z) = d(f1, h

∗
1)

and

inf{qr(f2 − h); h ∈ Ker I} = qr(f2 − h∗1 + z) = qr(f1 − h∗1).

By virtue of the results obtained in [21] for metric (17), in terms of the above
notation σ = f −h∗ is a generalized interpolation spline if and only if I(σ) = y,

d(f, Ker I) = d(f, h∗) = r 6= 2−n+1 (n ∈ N)

and

E(f, Ker I, Vn) := inf{ ‖f − h‖n; h ∈ Ker I} = ‖f − h∗‖n,

when r = 2−n+1 (n ∈ N),

where Vn = {x ∈ F1; ‖x‖n ≤ 1} and { ‖ · ‖n} is an increasing sequence of
seminorms that participates in the definition of the metric. For V1 = V2 =
· · · = F we prove that Kr = rF, | · | = µ

F
(·) and the generalized interpolation

spline coincides with the classical one.
We use the fact that the Minkowski functionals qr(·) of the balls Kr of this

metric have the form qr(x) = r−1‖ · ‖n, where

r ∈ In =

{
[1,∞[ for n = 1,

[2−n+1, 2−n+2[ for n ≥ 2.

When the generalized spline exists and is unique, then the generalized spline
algorithm is also defined by equality (18).

It should be noted that the existence of a generalized spline in the case of
nonadaptive information of cardinality 1 in terms of the proximality of closed
hypersubspaces was considered by many mathematicians and the final results
were obtained in [21].

Let us now define the notion of a generalized central algorithm in the case of
metric (17).

Let I be nonadaptive information of cardinality m ≥ 1, y ∈ I(F1) = Rm,
I(f) = y and d(f, Ker I) = r ∈ In for some f ∈ F1. We call the value

e(ϕ, I, y) = sup{‖S(f)− ϕ(y)‖; f ∈ I−1(y) ∩ Vn},
the local error of the algorithm ϕ at a point y.

Denote by r(I, y) the local radius of the nonadaptive information I at a point
y defined by the equality

r(I, y) = rad(S(I−1(y) ∩ Vn)).

Let for each y there exists a Chebyshev center m(y) of the set S(I−1(y)∩Vn).
Then the algorithm ϕc is defined by the equality

ϕc(y) = m(y), y ∈ Rm,
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and called generalized central. As has been noted above, if V1 = V2 = · · · = F,
then the notion of generalized centrality coincides with the classical definition.

Denote by rn(I) the global radius of nonadaptive information defined by the
equality

rn(I) = sup{r(I, y); y ∈ I(Vn)}.
Assume that the topology of the Fréchet space E is given by a sequence

of Hilbert seminorms {‖ · ‖n}, i.e., each seminorm ‖ · ‖n is generated by the
semiscalar product (x, y)n and Vn = {x ∈ E; ‖x‖n ≤ 1}. For such spaces the
notion of orthogonality is naturally defined as follows: elements x, y ∈ E are
called orthogonal if (x, y)n = 0 for each n ∈ N. A subspace M possesses an
orthogonal complement M⊥ in E if each element x ∈ E is represented as a sum
x = y + z, where y ∈ M, z ∈ M⊥ and (y, z)n = 0 for each n ∈ N. In other
words, this means that in subspaces M and M⊥ each element x ∈ E possesses a
unique best approximation y and z, respectively, with respect to all seminorms
‖ · ‖n generated by (·, ·)n.

Theorem 5. Let E = F1 be a Fréchet space with a decreasing sequence of
absolutely convex neighborhoods of zero Vn = {x ∈ E; ‖x‖n ≤ 1} for which
seminorms ‖ · ‖n are generated by semiscalar products and metric (17), Kn be
the canonical mapping F1 → F1/ Ker ‖ · ‖n, G be the normed space, S : F1 → G
be a linear operator, I be nonadaptive information of cardinality m ≥ 1 and
r1(I) < ∞. Then if the subspace Ker I possesses an orthogonal complement in
F1 and Kn(Ker I) is closed in (F1/ Ker ‖·‖n, ‖̂·‖n), then there exists a generalized
spline algorithm Φs which is linear and generalized central.

Proof. Let I be nonadaptive information of cardinality m ≥ 1, y ∈ I(F1) = Rm,
I(f) = y and d(f, Ker I) = r ∈ In for some f ∈ F1. Since the subspace Ker I
possesses an orthogonal complement in F1, for each f ∈ F1 there exist h ∈ Ker I
and σ ∈ Ker I⊥ such that f = h + σ and (h, σ)n = 0 for each n ∈ N, where
(·, ·)n is a semiscalar product generating a seminorm ‖ · ‖n. This means that h
and σ are elements of the best approximation of f in the subspaces Ker I and
Ker I⊥ and with respect to metric (17). Therefore σ is a generalized spline and
the correspondence y → σ is linear. Thus the spline algorithm Φs is linear.

It remains to prove that Φs is generalized central, i.e., that the set S(I−1(y)∩
Vn) has a Chebyshev center for each y ∈ Rm. By virtue of [20, p. 50] this
statement follows from the fact that the set I−1(y) ∩ Vn is symmetrical with
respect to σ ([20], p. 97) and therefore the set S(I−1(y) ∩ Vn) is symmetrical
with respect to Φs(y) = S(σ).

According to [12], the condition r1(I) < ∞ is equivalent to the inequality

‖S‖Ker I = sup{‖S(h)‖; h ∈ Ker I, ‖h‖1 ≤ 1} < ∞. ¤

Let H be the Hilbert space with a scalar product (·, ·), S be a selfadjoint
positive definite operator from H into H with a sequence of eigenvectors {ϕi},
and F1 be the Fréchet space D(S∞) with the sequence of Hilbertian norms

[x]2n = (S∞x, x)n = (Sx, x) + (S2x, Sx) + · · ·+ (Snx, Sn−1x),
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where Vn = {x ∈ D(S∞); [x]n ≤ 1}, the information If = [ (Sf, ϕ1), . . . ,
(Sf, ϕm)] = (y1, . . . , ym) and Ker I = {x ∈ D(S∞); [x, ϕ1] = 0, . . . , [x, ϕm] = 0}.
Its orthogonal subspace Ker I⊥ = span{ϕ1, . . . , ϕm}. Ker I possesses an orthog-
onal complement in the Fréchet space D(S∞), since the best approximation of
an element u ∈ D(S∞) in Ker I⊥ does not depend on n, and the spline σ is
the best approximation of an element u in Ker I⊥. Therefore the conditions of
Theorem 5 are fulfilled and thus there exists a generalized spline and spline al-
gorithm for the solution of the equation S∞u = f, which is generalized central.
In reality, we have the information (y1, . . . , ym) = [ (Su, ϕ1), . . . , (Su, ϕm)] and
we find the best approximation of an element u in the subspace Ker I, which
possesses an orthogonal complement Ker I⊥ spanned over ϕ1, . . . , ϕm. Hence the
spline σ is the best approximation for u in Ker I⊥ with respect to all energetic
norms [·]n and coincides with the approximate solution constructed by the Ritz
method.

It will be also noted that an operator A : F1 → F1 ⊂ GN , where F1 is
a Fréchet space, generates the sequence of linear problems with the solution
operator An : F1 → G and with the set of problem elements Vn ([20], p. 56).

In particular, according to [13] the conditions of Theorem 5 are satisfied by

a) the information I in Fréchet-Hilbert spaces F1 for which a subspace
Ker I is again a Fréchet-Hilbert space;

b) by the information I in countable-Hilbert spaces generated by continu-
ous functionals of the space (F1, ‖ · ‖1)

′.

We will now give a few examples of selfadjoint and positive definite differential
operators in Hilbert spaces, which satisfy the conditions of Theorem 4. These
examples are taken mainly from [7] and [8].

For an arbitrary domain Ω ⊂ Rl we as usual denote by C∞(Ω) the space of
all infinitely differentiable functions defined in Ω. Further, let ρ(x) ∈ C∞(Ω) be
a positive function such that

1. For any multi-index γ there exists Cγ > 0 such that |Dγρ(x)|≤Cγρ
1+|γ|(x),

for all x ∈ Ω.
2. For any K > 0 there exist numbers εk > 0 and rk > 0 such that ρ(x) > K

if d(x) ≤ εk or |x| ≥ rk when x ∈ Ω (d(x) is a distance from x to the boundary
∂(Ω)).

Denote by Sρ(x)(Ω) the metrizable, locally convex space

Sρ(x)(Ω) = {f ∈ C∞(Ω); ‖f‖n,α = sup ρn(x)|Dαf(x)| < ∞,

for all n = 0, 1, . . . and all multi-indices α}. (19)

Note that for each bounded domain Ω there exists a function ρ(x) for which
ρ−1(x) actually coincides with d(x).

As is known ([8], § 6.2.3), the space Sρ(x)(Ω) is a Fréchet space that contains
C∞

0 (Ω) as a dense subspace. In what follows, we will consider spaces Sρ(x)(Ω)
contained in the space Lp(Ω) (1 ≤ p < ∞). This is equivalent to the condition:
there exists a > 0 for which ρ−a(x) ∈ L1(Ω). By virtue of the theorem ([8],
§ 6.2.3), the space Sρ(x)(Ω) is a nuclear Fréchet space isomorphic to the space
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of fast decreasing sequences s. It will be shown below that the well known
Schwartz space S(R) is a particular case of such spaces.

Let Ω ⊂ Rl be an arbitrary domain and ρ(x) be the above-mentioned weight
function. Further, let r ∈ N , µ and ν be real numbers, ν > µ + 2r. Put

χq =
1

2 r
(ν(2 r − q) + µq), q = 0, 1, . . . , 2r.

The class N r
µ,ν(Ω, ρ(x)) consists of all differentiable operators of the form

Au =
m∑

q=0

∑

|j|=2q

ρχ2q(x)bα(x)Dαu +
∑

|β|<2r

αβ(x)Dβu.

Here bα(x) ∈ C∞(Ω) (|α| = 2q, where q = 0, 1, . . . , r) are real functions whose
all derivatives of which (including the functions themselves) are bounded in Ω.
Besides, it is assumed that there exists a positive number C such that for all
ξ ∈ Rn and x ∈ Ω

(−1)r
∑

|α|=2 r

bα(x)ξα ≥ C|ξ|2r, b(0,...,0)(x) ≥ C,

(−1)q
∑

|α|=2 q

bα(x)ξα ≥ 0, q = 1, . . . , r − 1

(ellipticity condition). Finally, αβ(x) ∈ C∞(Ω) (0 ≤ |β| < 2r) and Dγαβ(x) =
o(ρχ|β|+|γ|) for any multi-index γ.

The class Rr
µ,ν(Ω, ρ(x)) is quite a wide class of degenerating elliptical differ-

ential operators. We will give an example of an operator from this class. The
operator A given by the relations

Au = −∆u + ρν(x)u, ν > 2, D(A) = C∞
0 (Ω) (20)

is essentially selfadjoint in L2(Ω), i.e., its closure A is a selfadjoint operator
in L2(Ω), D(A) = W 2

2 (Ω , 1 , ρ2ν) ([8], § 6.4.3) and A has a purely pointwise
spectrum. Moreover, A is positive definite. A sequence of eigenfunctions {ϕj}
of the operator A belongs to the space Sρ(x)(Ω). It is also proved that D(A

j
) =

W j
2 (Ω , 1 , ρ2νj) ([8], § 6.4.3) and the space Sρ(x)(Ω) is isomorphic to the space

D(A
∞

), where the topology of the space D(A
∞

) is given by the sequence of
Hilbertian norms (7), while the topology of the space Sρ(x)(Ω) by the sequence
{‖ · ‖n,α}. Therefore if we consider the equation

−∆u + ρν(x)u = f (21)

in the Fréchet space Sρ(x)(Ω) with the sequence of norms (19), then by virtue
of proposition b) of Theorem 3 (see also [8], § 6.4.3) it has a unique solution
for each f ∈ Sρ(x)(Ω). If the sequence of eigenfunctions {ϕj} is orthogonal in
the space L2(Ω), then the sequence of approximate solutions {um} constructed
by the extended Ritz method and given by equality (15) converges in the space
Sρ(x)(Ω) to a solution of equation (21).
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Let us now give a concrete definition of the result in the one-dimensional case
for the Hermite operator, i.e., for the harmonic oscillator

Au = −u′′(t) + t2u

without imposing additional boundary conditions. It is a selfadjoint and positive
definite operator in the Hilbert space L2(R). According to [15], the Schwartz
space S(R) serves as the space D(A∞) for the operator A. The eigenfunctions of
the operator are Hermite functions (wave functions of the harmonic oscillator)
([16], p. 115), since (

− d2

dt2
+ t2

)
ϕj = (2j + 1)ϕj ,

where ϕ0 = π−1/4e
t2

2 and

ϕj(t) = (2jj!)−1/2(−1)jπ−1/4e
t2

2

(
d

dt

)(j)

e−t2 (j ≥ 1) . (22)

This means that λj = 2j + 1, j = 1, 2, . . . . The sequence {ϕj} is the or-
thonormal basis in the space L2(R) and, by virtue of the nuclearity of the space
S(R), it is also the absolute basis in the latter space. Let us consider the space
S(R) with the sequence of Hilbertian norms

‖h‖n =

(
‖h‖2 +

∥∥∥∥
(
− d2

dt2
+ t2

)
h

∥∥∥∥
2

+ · · ·+
∥∥∥∥∥
(
− d2

dt2
+ t2

)n−1

h

∥∥∥∥∥

2 )1/2

, (23)

where ‖ · ‖ is the norm of the space L2(R).
Let the operator A∞ be the restriction of the operator A to the space S(R) ⊂

D(A) with the topology of the latter space taken into account. By virtue of
(16), an approximate solution of the equation A∞u = f has the form

um =
m−1∑
j=1

(f, ϕj)

2j + 1
ϕj , (24)

where {ϕj} are defined by equality (22). The sequence of approximate solutions
{um} converges to a solution of the equation A∞u = f in the topology of the
space S(R).

The program realizing the convergence of a sequence of approximate solutions
for various functions from the space S(R) has been written in the PASCAL
algorithmic language in cooperation with S. Razmadze. The obtained numerical
results have confirmed the above theoretical conclusions. Numerical analogues
of approximate solutions (24) converge to a solution of the equation A∞u = f
for sufficiently large numbers of the norms from (23) for various functions from
the space S(R).

The obtained results can be applied to essentially selfadjoint and positive
definite Legendre operators Am,k (2k ≤ m) ([8], § 7.4.1) and Tricomi operators

Bn,k ([8], § 7.6.3). These works also give the representations of spaces D(A
∞
m,k)

([8], § 7.4.4) and D(B
∞
m,k) ([8], § 7.6.3).
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Let H be a Hilbert space. Let us consider equation (3), where K is the one-
to-one compact selfadjoint operator. Let K−1 be the selfadjoint operator having
eigenvectors {ϕj}, generating an orthonormalized basis of the space H and cor-
responding to the eigenvalues {λj}(|λ1| ≤ |λ2| ≤ . . .). This means that in the
Hilbert space H, Hadamard’s second condition of solution uniqueness is fulfilled,
but the third condition of solution stability is not. By virtue of proposition b)
of Theorem 3 the restriction K−1 on the countable-Hilbert space D(K−∞) is
a continuous selfadjoint operator on the Fréchet space D(K−∞). Moreover,
by virtue of the remark made after the proof of Theorem 1.5, it follows from
[16] that the space D(K−∞) is everywhere dense in its strongly adjoint space
D(K−∞)′β which in this case is represented as the inductive limit of the increas-

ing sequence of Hilbert spaces {(D(K−∞), ‖ ·‖n)′}. Therefore the operator K−1

can be continuously extended to the spaces D(K−∞)′β. The extended operator

K−1 maps the space D(K−∞)′β into and is continuous. Therefore we obtain the
strong well-posedness of problem (3) as different from its weak well-posedness
in [10], [11]. We have thereby proved that our next statement is true.

Theorem 6. Let K : H → H be the one-to-one compact and selfadjoint
operator whose inverse operator K−1 is selfadjoint and has a discrete spectrum.
Then for each f ∈ D(K−∞)′β there exists a unique and strongly stable solution
of equation (3) in the space D(K−∞)′β.

Note that the operator K−1 is continuous also when D(K−∞)′ is equipped
with a weak topology, which, by [11], means that problem (3) is weakly well-
posed.

Let us now consider the equation

Ru = f , (25)

where R : H → M is the operator acting from the Hilbert space H into the
Hilbert space M . Let u0 = R+f be a generalized solution in the sense of
Moore–Penrose ([22], p. 96), i.e., be an element of a minimal norm giving a
minimal value of ‖Ru− f‖. In the literature we also encounter other names: a
quasisolution in the sense of V. K. Ivanov [10] or a best approximate solution
in the sense of [23]. An element u0 = R+f is a generalized solution if and only
if u0 satisfies the equation R∗Ru = R∗f and belongs to the subspace Im R∗.

Let now the operator R : H → M admit a singular decomposition, i.e., be
represented in the form

Ru =
∞∑

k=1

σk(u, fk)gk,

where σk > 0, {fk} and {gk} are orthonormalized sequences in the spaces H
and M , respectively. Then, by virtue of [22, p. 99] we obtain the representation

R+f =
∞∑

k=1

σ−1
k (f, gk)fk, f ∈ Im R + (Im R)⊥.
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The operator R∗Ru : H → H has the form

R∗Ru =
∞∑

k=1

σ2
k(u, fk)fk

and is a selfadjoint and only positive operator. If the sequence {σk} is bounded
(resp. σk ↘ 0, resp. σk ↗ ∞), then the operator R∗R is a continuous (resp.
compact, resp. positive definite with a purely pointwise spectrum) selfadjoint
operator.

In the last case, let us consider the Fréchet space D((R∗R)∞ with the sequence
of norms

‖x‖n = (‖x‖2 + ‖R∗Rx‖2 + · · ·+ ‖(R∗R)n−1x‖2)1/2

generated by the scalar products

(x, y)n = (x, y) + (R∗Rx, R∗Ry) + · · ·+ ((R∗R)n−1x, (R∗R)n−1y).

By virtue of the above reasoning, the restriction of the operator R∗R to
the Fréchet space D((R∗R)∞) is denoted by (R∗R)∞ and is a selfadjoint and
positive definite operator on the Fréchet space D((R∗R)∞). We use (15) to solve
the equation (R∗R)∞u = R∗f in the Fréchet space D((R∗R)∞) and obtain that
if R∗f ∈ D((R∗R)∞), the sequence of approximate solutions

um =
m∑

k=1

σ−2
k (R∗f, fk)fk, where R∗f =

∞∑

k=1

σk(f, gk)fk,

converges to R+f in the Fréchet space D((R∗R)∞).
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