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GLOBAL EXISTENCE AND ENERGY DECAY OF
SOLUTIONS TO A PETROVSKY EQUATION WITH

GENERAL NONLINEAR DISSIPATION AND SOURCE TERM

NOUR-EDDINE AMROUN AND ABBES BENAISSA

Abstract. We consider the nonlinearly damped semilinear Petrovsky equa-
tion

u′′ −∆2
xu + g(u′) = b u|u|p−2 on Ω× [0,+∞[

and prove the global existence of its solutions by means of the stable set
method in H2

0 (Ω) combined with the Faedo–Galerkin procedure. Further-
more, we study the asymptotic behavior of solutions when the nonlinear
dissipative term g does not necessarily have a polynomial growth near the
origin.
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1. Introduction

We consider the initial boundary value problem

(P )





u′′ −∆2
xu + g(u′) = b u|u|p−2 in Ω× [0, +∞[,

u = ∂νu = 0 on Γ× [0, +∞[,

u(x, 0) = u0(x), u′(x, 0) = u1(x) on Ω,

where Ω is a bounded domain in Rn with a smooth boundary ∂Ω = Γ.
For the problem (P ) when g(s) = δ|s|m−2s (m ≥ 1), S. A. Messaoudi [7] ob-

tained relations between m and p for which the global existence or alternatively
finite time blow up takes place. More precisely, he showed that solutions with
any initial data continue to exist globally in time if m ≥ p and blow up in finite
time if m < p and the initial energy is negative. To prove the global existence
he used a new method introduced by Georgiev and Todorova [2] based on the
fixed point theorem.

In [3], for a wave equation (∆xu instead of ∆2
xu in (P )) Ikehata by using

the stable set method due to Sattinger [10] proved that a global solution exists
with no relation between p and m, and Todorova [11] proved that an energy
decay rate is E(t) ≤ (1 + t)−2/(m−2) for t ≥ 0, for which she used the general
method on energy decay introduced by Nakao [9]. Unfortunately, the methods
used by Messaoudi and Todorova do not seem to be applicable to the case of
more general functions g.

Our purpose in this paper is to give the global solvability in the class H2
0 and

the energy decay estimates of solutions to the problem (P ) when g(s) does not
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necessarily have a polynomial growth near zero and a source term of the form
b |y|p−2y with a small parameter b. As proved in [4] and [11], a decay rate of
the global solution depends on the polynomial growth near zero of g(s).

We use some ideas from [6] (see also [1]) introduced in the study of decay
rates of solutions to the wave equation utt − ∆xu + g(ut) = 0 in Ω × R+. So,
to obtain global decaying solutions to the problem (P ), we use the argument
combining the Galerkin approximation scheme (see [5]) with the concept of a
stable set in H2

0 and the method in [6] to derive a decay rate of the solution.
We conclude this section by stating our plan and giving some notations. In

Section 2 we formulate some lemmas needed for our arguments. Sections 3 and
4 are devoted to the proof of the global existence and decay estimates for the
problem (P ).

Throughout this paper all the functions considered are real-valued. We omit
the space variable x of u(t, x), ut(t, x) and simply denote u(t, x), ut(t, x) by u(t),
u′(t), respectively, when no confusion arises. Let l be a number with 2 ≤ l ≤ ∞.
We denote by ‖ · ‖l the Ll norm over Ω. In particular, the L2 norm is denoted
‖ · ‖2. (·) denotes the usual L2 inner product. We use the familiar function
spaces H2

0 , H4.

2. Preliminaries

Let us state the precise hypotheses on p and g.
(H1) Assume that

2 < p ≤ ∞ (n = 1, 2, 3, 4) or 2 < p ≤ 2n− 2

n− 4
(n ≥ 5). (1)

(H2) g is an odd increasing C1 function and

c1|s| ≤ |g(s)| ≤ c2|s|r if |s| ≥ 1 with 1 ≤ r ≤ ∞ (n = 1, 2, 3, 4)

or 1 ≤ r ≤ n + 4

n− 4
(n ≥ 5),

where c1 and c2 are positive constants.
We first state three well known lemmas that will be needed later.

Lemma 2.1 (Sobolev–Poincaré inequality). Let q be a number with 2 ≤ q <
+∞ (n = 1, 2, 3, 4) or 2 ≤ q ≤ 2n/(n − 4) (n ≥ 5), then there is a constant
C∗ = C(Ω, q) such that

‖u‖q ≤ C∗‖∆u‖2 for u ∈ H2
0 (Ω). (2)

We denote by c various positive constants which may be different at different
occurrences.

Lemma 2.2 ([6]). Let E : R+ → R+ be a non-increasing function and φ :
R+ → R+ an increasing C1 function such that

φ(0) = 0 and φ(t) → +∞ as t → +∞.



GLOBAL EXISTENCE AND ENERGY DECAY OF SOLUTIONS 399

Assume that there exist σ ≥ 0 and ω > 0 such that

+∞∫

S

E1+σ(t)φ′(t) dt ≤ 1

ω
Eσ(0)E(S), 0 ≤ S < +∞.

Then

E(t) ≤ E(0)

(
1 + σ

1 + ωσφ(t)

) 1
σ

∀t ≥ 0, if σ > 0,

E(t) ≤ cE(0)e1−ωφ(t) ∀t ≥ 0, if σ = 0.

Remark 2.1. A ‘weight function’ φ(t) was sufficiently used by Martinez [6],
and Mochizuki and Motai [8] to establish a decay rate of solutions to a hyper-
bolic PDE.

Lemma 2.3 ([6]). There exists an increasing function φ : R+ → R such that
φ is concave and φ(t) → +∞ as t → +∞, φ′(t) → 0 as t → +∞, and

+∞∫

1

φ′(t)
(
g−1(φ′(t))

)2
dt < +∞.

In order to state and prove our main results, we first introduce the following
notation:

I(t) = I(u(t)) = ‖∆xu(t)‖2
2 − b‖u(t)‖p

p,

J(t) = J(u(t)) =
1

2
‖∆xu(t)‖2

2 −
b

p
‖u(t)‖p

p,

E(t) = E(u(t), u′(t)) = J(t) +
1

2
‖u′(t)‖2

2.

Then we can define the stable set as

H =
{
w ∈ H2

0 (Ω) | I(w) > 0
} ∪ {0},

where we use w instead of w(·, t).

3. Global Existence

Throughout this section we assume u0 ∈ H4(Ω)∩H and u1 ∈ H2
0 (Ω)∩L2r(Ω).

We employ the Galerkin method to construct a global solution. Let T > 0 be
fixed and denote by Vm the space generated by {w1, w2, . . . , wm}, where the set
{wm; m ∈ N} is a basis of L2, H2

0 and H4 ∩ H2
0 . We construct approximate

solutions um (m = 1, 2, 3, . . .) in the form

um(t) =
m∑

j=1

gjmwj,
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where gjm (j = 1, 2, . . . , m) are determined by the following ordinary differential
equations:

(u′′m(t), wj) + (∆xum(t), ∆xwj) + (g(u′m(t)), wj)

= (b|um(t)|p−2um(t), wj), 1 ≤ j ≤ m, (3)

um(0) = u0m =
m∑

j=1

(u0, wj)wj → u0 in H4 ∩H2
0 as m → +∞, (4)

u′m(0) = u1m =
m∑

j=1

(u1, wj)wj → u1 in H2
0 ∩ L2r as m → +∞. (5)

By virtue of the theory of ordinary differential equations, system (3)–(5) has
a unique local solution which is extended to a maximal interval [0, Tm[ (with
0 < Tm ≤ +∞) by the Zorn lemma, since the nonlinear terms in (3) are locally
Lipschitz continuous. Note that um(t) is a C2-function.

In the next step, we obtain a priori estimates for the solution so that it can
be extended outside [0, Tm[ to obtain one solution defined for all t > 0.

We can utilize a standard compactness argument for the limiting procedure
and it suffices to derive some a priori estimates for um. But this procedure allows
us to employ the energy method for a smooth solution u(t) to the problem (P )
(the results should be in fact applied to approximated solutions).

Remark 3.1. By multiplying the first equation of (P ) by u′(t), integrating
over Ω, and using integration by parts and the boundary conditions we get

E ′(t) = −
∫

Ω

g(u′(t))u′(t) dx ≤ 0 ∀t ∈ [0, T ).

Lemma 3.1. Assume that (H1) holds. Let u(t) be a solution with the initial
data {u0, u1} satisfying u0 ∈ H and u1 ∈ L2(Ω). If {u0, u1} satisfies

η = 1− b Cp
∗

(
2p

p− 2
E(u0, u1)

)(p−2)/2

> 0, (6)

then u(t) ∈ H for all t ∈ [0, +∞) and there exists a constant M =
M(‖∇xu0‖2, ‖u1‖2) > 0 such that

‖∆xu(t)‖2
2 + ‖u′(t)‖2

2 ≤ M for t ≥ 0,

and
t∫

0

∫

Ω

g(u′(s))u′(s) ds ≤ M for t ≥ 0. (7)

Proof. Since I(u0) > 0, it follows from the continuity of u(t) that

I(u(t)) ≥ 0 (8)
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for some interval near t = 0. Let tmax be a maximal time (possibly tmax = Tm),
when (8) holds on [0, tmax). On the other hand,

J(t) =
1

2
‖∆xu(t)‖2

2 −
b

p
‖u(t)‖p

p

=
p− 2

2p
‖∆xu(t)‖2

2 +
1

p
I(u(t))

≥ p− 2

2p
‖∆xu(t)‖2

2 ∀t ∈ [0, tmax);

hence

‖∆xu(t)‖2
2 ≤

2p

p− 2
J(t) ≤ 2p

p− 2
E(t)

≤ 2p

p− 2
E(u0, u1) ∀t ∈ [0, tmax). (9)

Using (2), (6), and (9), we deduce that

b‖u(t)‖p
p ≤ b Cp

∗‖∆xu(t)‖p
2 = b Cp

∗‖∆xu(t)‖p−2
2 ‖∆xu(t)‖2

2

≤ b Cp
∗

(
2p

p− 2
E(u0, u1)

)(p−2)/2

‖∆xu(t)‖2
2

< ‖∆xu(t)‖2
2 ∀t ∈ [0, tmax); (10)

Therefore we get

‖∆xu(t)‖2
2 − b‖u(t)‖p

p > 0 on [0, tmax).

This implies that we can take tmax = Tm. Furthermore, by the fact that the
energy is non-increasing we have

E(u0, u1) ≥ E(t) =
1

2
‖∆xu(t)‖2

2 −
b

p
‖u(t)‖p

p +
1

2
‖u′(t)‖2

2

=
p− 2

2p
‖∆xu(t)‖2

2 +
1

p
I(u(t)) +

1

2
‖u′(t)‖2

2

≥ p− 2

2p
‖∆xu(t)‖2

2 +
1

2
‖u′(t)‖2

2 on [0, tmax),

since I(u(t)) ≥ 0, and hence

‖∆xu(t)‖2
2 + ‖u′(t)‖2

2 ≤ C1E(u0, u1) on [0, tmax). (11)

These estimates imply that the (approximated) solution u(t) exists globally in
[0, +∞). This ends the proof of Lemma 3.1. ¤

Estimate (11) yields

∆xum is bounded in L∞loc(0,∞; L2). (12)

Lemma 3.2. There exists K1 > 0 such that ‖g(u′m)‖
L

r+1
r (Ω×[0,T ])

≤ K1 for

all m ∈ N.
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Proof. If we define

Am = {(x, t) ∈ Q\|u′m(x, t)| ≤ 1}
and

Bm = {(x, t) ∈ Q\|u′m(x, t)| > 1},
where Q = Ω× [0, T ], then from (H2):

T∫

0

∫

Ω

|g(u′m(x, t))| r+1
r dx dt

=

∫

Am

∫
|g(u′m(x, t))| r+1

r dx dt +

∫

Bm

∫
|g(u′m(x, t))| r+1

r dx dt

≤
T∫

0

∫

Ω

sup
|s|≤1

|g(s)| r+1
r dx dt + c2

∫

Bm

∫
|g(u′m(x, t))||u′m(x, t)| dx dt.

Hence, by (7), we have

T∫

0

∫

Ω

|g(u′m(x, t))| r+1
r dx dt ≤ |Q| sup

|s|≤1

|g(s)| r+1
r + c2 M for m ∈ N

which completes the proof. Here |Q| denotes the Lebesgue measure in Rn+1. ¤

Lemma 3.3. There exists a constant M′ such that

‖u′′m(t)‖2 + ‖∆xu
′
m(t)‖2 ≤ M ′

for all m ∈ N.

Proof. From (3) we obtain

‖u′′m(0)‖2 ≤ ‖∆2
xu0m‖2 + ‖g(u1m)‖2 + ‖f(u0m)‖2

≤ ‖∆2
xu0m‖2 + ‖g(u1m)‖2 + k1‖∆xu0m‖p−1

2 ,

where we set f(u) = bu|u|p−2. Using the Gagliardo–Nirenberg inequality, we
have

‖f(u0m)‖2 ≤ c‖∆2
xu0m‖p−1

2 .

Since g(u1m) is bounded in L2(Ω) by (H2), from (4) and (5) we obtain

‖u′′m(0)‖2 ≤ C.

Differentiating (3) with respect to t, we get

(u′′′m(t) + ∆2
xu

′
m(t) + u′′m(t)g′(u′m)− u′mf ′(um), wj) = 0.
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Multiplying it by 2g′′jm(t) and summing over j from 1 to m give

d

dt

(‖u′′m(t)‖2
2 + ‖∆xu

′
m(t)‖2

2

)
+ 2

∫

Ω

u′′2m(t)g′(u′m(t)) dx

≤ 2b(p− 1)

∫

Ω

|u′′m(t)||u′m(t)||um(t)|p−2 dx. (13)

Next, we are are going to analyze the term on the right-hand side of (13).
Making use of the generalized Hölder inequality, observing that p−2

2(p−1)
+ 1

2(p−1)
+

1
2

= 1, using Lemmas 2.1 and 3.1 we conclude that
∣∣∣∣
∫

Ω

u′′m(t)u′m(t)f ′(um(t)) dx

∣∣∣∣ ≤ b(p− 1)‖um(t)‖p−2
2(p−1)‖u′m(t)‖2(p−1)‖u′′m(t)‖2

≤ C1‖∆xum(t)‖p−2
2 ‖∆xu

′
m(t)‖2‖u′′m(t)‖2

≤ C2

(‖∆xu
′
m(t)‖2

2 + ‖u′′m(t)‖2
2

)
, (14)

where C1 and C2 are positive constants independent of m and t ∈ [0, T ].
Combining (13) and (14) we deduce

d

dt

(‖u′′m(t)‖2
2 + ‖∆xu

′
m(t)‖2

2

)
+ 2

∫

Ω

u′′2mg′(u′m) dx

≤ C2

(‖u′′m(t)‖2
2 + ‖∆xu

′
m(t)‖2

2

)
,

Integrating the last inequality over (0, t) and applying Gronwall’s lemma, we
obtain

‖u′′m(t)‖2
2 + ‖∆xu

′
m(t)‖2

2 ≤ eC2T
(‖u′′m(0)‖2

2 + ‖∆xu
′
m(0)‖2

2

)

for all t ∈ R+. Therefore we conclude that

u′′m is bounded in L∞loc(0,∞; L2), (15)

∆xu
′
m is bounded in L∞loc(0,∞; L2). (16)

Furthermore, we claim that

u′m is precompact in L2
∞(0,∞; L2). (17)

Indeed, it follows from (15) and (16) that

u′m is bounded in L∞loc(0,∞; H2
0 )

and
u′′m(t) is bounded L∞loc(0,∞; L2(Ω)). (18)

Applying a compactness argument, (17) follows. ¤
Applying the Dunford–Pettis theorem we conclude from (12), Lemma 3.2,

(15) and (16) replacing, if needed, the sequence um with a subsequence that

um → u weak-star in L∞loc(0,∞; H2
0 ), (19)

u′m → u′ weak-star in L∞loc(0,∞; H2
0 ),
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u′′m → u′′ weak-star in L∞loc(0,∞; L2), (20)

g(u′m) → χ weak-star in L
q+1

q (Ω× (0, T ))

for suitable functions u ∈ L∞(0, T ; H2
0 ) and χ ∈ L

q+1
q (Ω× (0, T )) for all T ≥ 0.

We have to show that u is a solution of (P ).

Lemma 3.4. For each T > 0, g(u′) ∈ L1(Q) and ‖g(u′)‖L1(Q) ≤ K1, where
K1 is obtained in Lemma 3.2.

Proof. By (H2) and (17) we have

g(u′m(x, t)) → g(u′(x, t)) a.e. in Q,

0 ≤ g(u′m(x, t))u′m(x, t) → g(u′(x, t))u′(x, t) a.e. in Q.

Hence, by (7) and Fatou’s lemma we have

T∫

0

∫

Ω

u′(x, t)g(u′(x, t)) dx dt ≤ K for T > 0. (21)

Now, using (21), the proof follows similarly to Lemma 3.2. ¤
Lemma 3.5. g(u′m) → g(u′) in L1(Ω× (0, T )).

Proof. Let E ⊂ Ω× [0, T ] and set

E1 =

{
(x, t) ∈ E; g(u′m(x, t)) ≤ 1√

|E|

}
, E2 = E \ E1,

where |E| is the measure of E. If M(r) := inf{|s|; s ∈ R and |g(s)| ≥ r},
then ∫

E

|g(u′m)| dxdt ≤
√
|E|+

(
M

(
1√
|E|

))−1 ∫

E2

|u′mg(u′m)| dxdt.

Applying (7) we deduce that sup
m

∫

E

|g(u′m)| dxdt → 0 as |E| → 0. From Vitali’s

convergence theorem we deduce that g(u′m) → g(u′) in L1(Ω× (0, T )), hence

g(u′m) → g(u′) weak star in L
r+1

r (Q),

and this implies that

T∫

0

∫

Ω

g(u′m)v dx dt →
T∫

0

∫

Ω

g(u′)v dx dt for all v ∈ Lr+1(0, T ; H2
0 ) (22)

as m → +∞. Using the compactness of H2
0 in L2, we see that

T∫

0

∫

Ω

b|um|p−2umv dx dt →
T∫

0

∫

Ω

b|u|p−2uv dx dt for all v∈Lr+1(0, T ; H2
0 ) (23)
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as m → +∞. It follows at once from (18), (19), (20), (22) and (23) that for
each fixed v ∈ Lr+1(0, T ; H2

0 )

T∫

0

∫

Ω

(u′′m + ∆2
xum + g(u′m)− b|um|p−2um)v dx dt

→
T∫

0

∫

Ω

(u′′ + ∆2
xu + g(u′)− b|u|p−2u)v dx dt

as m → +∞.
Hence

T∫

0

∫

Ω

(u′′ + ∆2
xu + g(u′)− b|u|p−2u)v dx dt = 0, v ∈ Lr+1(0, T ; H2

0 ).

Thus the problem (P ) admits a global weak solution u such that u ∈
W 1,∞(0, T ; H2

0 (Ω)) ∩W 2,∞(0, T ; L2(Ω)).
The uniqueness of this solution is a consequence of the monotonicity of g and

that f is a locally Lipschitz function. ¤

4. Asymptotic Behavior

Before stating and proving the decay result, we start with

Lemma 4.1. Suppose that (2) holds and u0 ∈ H and u1 ∈ L2(Ω) satisfy (6).
Then

b‖ u(t)‖p
p ≤ (1− η)‖∆xu(t)‖2

2

Proof. It suffices to rewrite (10) as

b‖u(t)‖p
p ≤

{
1−

[
1− b Cp

∗

(
2p

p− 2
E(u0, u1)

)(p−2)/2 ]}
‖∆xu(t)‖2

2.

Theorem 4.1. Suppose that (1) holds and u0 ∈ H and u1 ∈ L2(Ω) satisfy
(6). Then the solution satisfies the decay estimates

E(t) ≤ c

(
G−1

(
1

t

))2

,

where G(s) = sg(s). If, in addition, s 7→ g(s)/s is non-decreasing on [0, µ] for
some µ > 0, then we have

E(t) ≤ c

(
g−1

(
1

t

))2

.

Examples.

• 1) If g(s) = e−1/sp
for 0 < s < 1, p > 0, then we have

E(t) ≤ c

(ln t)2/p
.
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• 2) If g(s) = e−e1/s
for 0 < s < 1, then we have

E(t) ≤ c

(ln(ln t))2
.

Proof of Theorem 4.1. We multiply the first equation of (P ) by Eφ′u, where φ
is a function satisfying all the hypotheses of Lemma 2.3. We obtain

0 =

T∫

S

Eφ′
∫

Ω

u(u′′ −∆2
xu + g(u′)− b|u|p−2u) dx dt

=

[
Eφ′

∫

Ω

uu′ dx

]T

S

−
T∫

S

(E ′φ′ + Eφ′′)
∫

Ω

uu′ dx dt− 2

T∫

S

Eφ′
∫

Ω

u′2 dx dt

+

T∫

S

Eφ′
∫

Ω

(
u′2 + |∆xu|2 − 2b

p
|u|p

)
dx dt +

T∫

S

Eφ′
∫

Ω

ug(u′) dx dt

+

T∫

S

Eφ′
∫

Ω

b

(
2

p
− 1

)
|u|p dx dt.

Since

b

(
1− 2

p

) ∫

Ω

|u|p dx ≤ (1− η)
p− 2

p

∫

Ω

|∆xu|2 dx

≤ (1− η)
p− 2

p

2p

p− 2
E(t)

= 2(1− η)E(t),

we deduce that

2η

T∫

S

E2φ′ dt ≤ −
[
Eφ′

∫

Ω

uu′ dx

]T

S

+

T∫

S

(E ′φ′ + Eφ′′)
∫

Ω

uu′ dx dt

+ 2

T∫

S

Eφ′
∫

Ω

u′2 dx dt−
T∫

S

Eφ′
∫

Ω

ug(u′) dx dt +

T∫

S

Eφ′
∫

Ω

ug(u′) dx dt

≤ −
[
Eφ′

∫

Ω

uu′ dx

]T

S

+

T∫

S

(E ′φ′ + Eφ′′)
∫

Ω

uu′ dx dt

+ 2

T∫

S

Eφ′
∫

Ω

u′2 dx dt + c(ε)

T∫

S

Eφ′
∫

|u′|≤1

g(u′)2 dx dt
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+ ε

T∫

S

Eφ′
∫

|u′|≤1

u2 dx dt +

T∫

S

Eφ′
∫

|u′|>1

ug(u′) dx dt

for every ε > 0. Moreover, using the Hölder inequality, Lemma 2.1 and the
Young inequality, we obtain

T∫

S

Eφ′
∫

|u′|>1

ug(u′) dx dt

≤
T∫

S

Eφ′
( ∫

Ω

|u|r+1 dx

) 1
(r+1)

( ∫

|u′|>1

|g(u′)| (r+1)
r dx

) r
(r+1)

dt

≤ c

T∫

S

E
3
2 φ′

( ∫

|u′|>1

u′g(u′) dx

) r
(r+1)

dt ≤
T∫

S

φ′E
3
2 (−E ′)

r
(r+1) dt

≤ c

T∫

S

φ′(E
3
2
− r

r+1 )
(
(−E ′)

r
(r+1) E

r
r+1

)
dt ≤ c(ε′)

T∫

S

φ′(−E ′E) dt

+ ε′
T∫

S

φ′E(r+1)( 3
2
− r

(r+1)) dt

≤ c(ε′)E(S)2 + ε′E(0)
(r−1)

2

T∫

S

φ′E2 dt.

Choosing ε and ε′ small enough, we deduce that

T∫

S

E2φ′ dt ≤ −
[
Eφ′

∫

Ω

uu′ dx

]T

S

+

T∫

S

(E ′φ′ + Eφ′′)
∫

Ω

uu′ dx dt

+ c

T∫

S

Eφ′
∫

Ω

u′2 dx dt

≤ cE(S) + c

T∫

S

Eφ′
∫

Ω

u′2 dx dt.

Majorizing the last term of the above inequality, we have

T∫

S

Eφ′
∫

Ω

u′2 dx dt =

T∫

S

Eφ′
∫

Ω1

u′2 dx dt +

T∫

S

Eφ′
∫

Ω2

u′2 dx dt
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+

T∫

S

Eφ′
∫

Ω3

u′2 dx dt,

where, for t ≥ 1,

Ω1 := {x ∈ Ω, |u′| ≤ h(t)},
Ω2 := {x ∈ Ω, h(t) < |u′| ≤ h(1)},
Ω3 := {x ∈ Ω, |u′| > h(1)},

and h(t) := g−1(φ′(t)), which is a positive non-increasing function satisfying
h(t) → 0 as t → +∞. Since

•
T∫

S

Eφ′
∫

Ω1

u′2 dx dt ≤ c

T∫

S

E(t)φ′(t)
( ∫

Ω1

h(t)2 ds

)
dt

≤ cE(S)

T∫

S

φ′(t)(g−1(φ′(t)))2 dt

≤ cE(S),

• for x ∈ Ω2 we have φ′(t) = g(h(t)) ≤ |g(u′)| (as g is non-decreasing) and
hence

T∫

S

Eφ′
∫

Ω2

u′2 dx dt ≤
T∫

S

E

∫

Ω2

|g(u′)|u′2 dx dt

≤ h(1)

T∫

S

E

∫

Ω2

u′g(u′) dx dt

≤ h(1)

2
E(S)2,

• for s ≥ h(1) (as g(s) ≥ cs) we have

T∫

S

Eφ′
∫

Ω3

u′2 dx dt ≤ c

T∫

S

Eφ′
∫

Ω

u′g(u′) dx dt

≤ c

T∫

S

E(−E ′) dx dt

≤ cE(S)2,

then we deduce that
T∫

S

E2φ′ dt ≤ cE(S),
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and, thanks to Lemma 2.2, we obtain

E(t) ≤ c

φ(t)
∀t ≥ 1.

Let s0 be such that g( 1
s0

) ≤ 1; since g is non-decreasing, we have

ψ(s) ≤ 1 + (s− 1)
1

g
(

1
s

) ≤ s
1

g
(

1
s

) =
1

G
(

1
s

) ∀s ≥ s0,

hence

s ≤ φ

(
1

G
(

1
s

)
)

and
1

φ(t)
≤ 1

s
with t :=

1

G
(

1
s

) .

Thus

1

φ(t)
≤ G−1

(
1

t

)
.

Now define H(s) :=
g(s)

s
, where H is non-decreasing, H(0) = 0, then we use

the function h(t) := H−1(φ′(t)). On Ω2 there holds

φ′(t)u′2 ≤ |H(u′)|u′2 = u′g(u′),

and the same calculations as above with

φ−1(t) = 1 +

t∫

1

1

H
(

1
s

) ds

yield

E(t) ≤ c

(
g−1

(
1

t

))2

. ¤

Remark 4.1. We can extend all the results obtained above to the case p = 2.
But we need some modification of Lemma 3.1, in that case the smallness of |Ω|
plays an essential role in our argument. Indeed,

J(u(t)) ≥ 1

2
‖∆xu‖2

2 −
1

2
bC2

∗‖∆xu‖2
2

≥ 1

2
(1− bC2

∗)‖∆xu‖2
2.

If the condition b C2
∗ < 1 is fulfilled, then we find a similar result to Lemma

3.1. This condition implies that |Ω| is small in some sense.
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