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GROUND STATE SOLUTIONS OF NONLINEAR
STATIONARY SCHRÖDINGER SYSTEMS WITH

DISCONTINUOUS NONLINEARITY AND VARIABLE
POTENTIAL

TEODORA-LILIANA DINU

Abstract. We establish the existence of an entire solution for a class of
stationary Schrödinger systems with subcritical discontinuous nonlinearities
and lower bounded potentials that blow-up at infinity. The proof is based on
the critical point theory in the sense of Clarke and we apply the Mountain
Pass Lemma for locally Lipschitz functionals. Our result generalizes in a
nonsmooth framework a result of Rabinowitz [16] on the existence of entire
solutions of the nonlinear Schrödinger equation.
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1. Introduction and the Main Result

The Schrödinger equation plays the role of Newton’s laws and conservation
of energy in classical mechanics, that is, it predicts the future behaviour of a
dynamic system. The linear form of Schrödinger’s equation is

∆ψ +
8π2m

~2
(W (x)− V (x)) ψ = 0 ,

where ψ is the Schrödinger wave function, m is the mass, ~ denotes Planck’s
constant, W is the energy, and V stands for the potential energy. The structure
of the nonlinear Schrödinger equation is much more complicated. This equation
describes various phenomena arising in: self-channelling of a high-power ultra-
short laser in matter, in the theory of Heisenberg ferromagnets and magnons, in
dissipative quantum mechanics, in condensed matter theory, in plasma physics
(e.g., the Kurihara superfluid film equation). We refer to [9, 18] for a modern
overview, including applications.

Consider the model problem

i~ψt = − ~
2

2m
∆ψ + V (x)ψ − γ|ψ|p−1ψ in RN (N ≥ 2) , (1)

where p < 2N/(N − 2) if N ≥ 3 and p < +∞ if N = 2. In the study of
this equation Oh [15] supposed that the potential V is bounded and possesses
a non-degenerate critical point at x = 0. More precisely, it is assumed that V
belongs to the class (Va) (for some a) introduced in Kato [13]. Taking γ > 0
and ~ > 0 sufficiently small and using a Lyapunov-Schmidt type reduction, Oh
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[15] proved the existence of a standing wave solution of Problem (1), that is, a
solution of the form

ψ(x, t) = e−iWt/~u(x) . (2)

Note that substituting the ansatz (2) into (1) leads to

−~
2

2
∆u + (V (x)−W ) u = |u|p−1u .

The change of variable y = ~−1x (and replacing y by x) yields

−∆u + 2 (V~(x)−W ) u = |u|p−1u in RN ,

where V~(x) = V (~x).
In a celebrated paper, Rabinowitz [16] continued the study of standing wave

solutions of nonlinear Schrödinger equations. After making a standing wave
ansatz, Rabinowitz reduces the problem to that of studying the semilinear el-
liptic equation

−∆u + b(x)u = f(x, u) in RN ,

under suitable conditions on b and assuming that f is smooth, superlinear and
subcritical.

Inspired by Rabinowitz’ paper, we consider the following class of coupled
elliptic systems in RN (N ≥ 3):{

−∆u1 + a(x)u1 = f(x, u1, u2) in RN ,

−∆u2 + b(x)u2 = g(x, u1, u2) in RN .
(3)

We point out that coupled nonlinear Schrödinger systems describe some phys-
ical phenomena such as the propagation in birefringent optical fibers or Kerr-like
photorefractive media in optics. Another motivation to the study of coupled
Schrödinger systems arises from the Hartree–Fock theory for the double con-
densate, that is a binary mixture of Bose-Einstein condensates in two different
hyperfine states, cf. [6]. System (3) is also important for industrial applications
in fiber communications systems [11] and all-optical switching devices [12]. For
important abstract results in Sobolev spaces with applications to partial differ-
ential equations we refer to the excellent monographs by Gilbarg and Trudinger
[8], and by Hyers, Isac and Rassias [10].

Throughout this paper we assume that a, b ∈ L∞loc(RN) and there exist
a , b > 0 such that a(x) ≥ a , b(x) ≥ b a.e. in RN , and esslim|x|→∞a(x) =
esslim|x|→∞b(x) = +∞. Our aim in this paper is to study the existence of solu-
tions to the above problem in the case when f, g are not continuous functions.
Our goal is to show how variational methods can be used to find existence
results for stationary nonsmooth Schrödinger systems.

Throughout this paper we assume that f(x, ·, ·), g(x, ·, ·) ∈ L∞loc(R2). Denote:

f(x, t1, t2) = lim
δ→0

essinf{f(x, s1, s2); |ti − si| ≤ δ; i = 1, 2},

f(x, t1, t2) = lim
δ→0

esssup{f(x, s1, s2); |ti − si| ≤ δ; i = 1, 2},
g(x, t1, t2) = lim

δ→0
essinf{g(x, s1, s2); |ti − si| ≤ δ; i = 1, 2},
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g(x, t1, t2) = lim
δ→0

esssup{g(x, s1, s2); |ti − si| ≤ δ; i = 1, 2} .

Under these conditions we reformulate Problem (3) as follows:
{
−∆u1 + a(x)u1 ∈ [f(x, u1(x), u2(x)), f(x, u1(x), u2(x))] a.e. x ∈ RN ,

−∆u2 + b(x)u2 ∈ [g(x, u1(x), u2(x)), g(x, u1(x), u2(x))] a.e. x ∈ RN .
(4)

We point out that the corresponding multivalued equation has been consid-
ered by Gazzola and Rădulescu in [7].

Let H1 =H(RN ,R2) denote the Sobolev space of all U =(u1, u2) ∈ (L2(RN))2

with weak derivatives ∂u1

∂xj
, ∂u2

∂xj
(j = 1, . . . , N) also in L2(RN), endowed with the

usual norm

‖U‖2
H1

=

∫

RN

(|∇U |2 + |U |2) dx =

∫

RN

(|∇u1|2 + |∇u2|2 + u2
1 + u2

2) dx .

Given the functions a, b : RN → R as above, define the subspace

E =

{
U = (u1, u2) ∈ H1 ;

∫

RN

(|∇u1|2 + |∇u2|2 + a(x)u2
1 + b(x)u2

2) dx < +∞
}

.

Then the space E endowed with the norm

‖U‖2
E =

∫

RN

(|∇u1|2 + |∇u2|2 + a(x)u2
1 + b(x)u2

2) dx

becomes a Hilbert space.
Since a(x) ≥ a > 0, b(x) ≥ b > 0, we have the continuous embeddings

H1 ↪→ Lq(RN ,R2) for all 2 ≤ q ≤ 2∗ = 2N/(N − 2).
We assume throughout the paper that f, g : RN × R2 → R are nontrivial

measurable functions satisfying the following hypotheses:
{
|f(x, t)| ≤ C(|t|+ |t|p) for a.e. (x, t) ∈ RN × R2

|g(x, t)| ≤ C(|t|+ |t|p) for a.e. (x, t) ∈ RN × R2 ,
(5)

where p < 2∗;




lim
δ→0

esssup

{ |f(x, t)|
|t| ; (x, t) ∈ RN × (−δ, +δ)2

}
= 0

lim
δ→0

esssup

{ |g(x, t)|
|t| ; (x, t) ∈ RN × (−δ, +δ)2

}
= 0;

(6)

f and g are chosen so that the mapping F : RN × R2 → R defined by
F (x, t1, t2) :=

∫ t1
0

f(x, τ, t2) dτ +
∫ t2
0

g(x, 0, τ) dτ satisfies




F (x, t1, t2) =

t2∫

0

g(x, t1, τ) dτ +

t1∫

0

f(x, τ, 0) dτ

and F (x, t1, t2) = 0 if and only if t1 = t2 = 0;

(7)
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there exists a constant µ > 2 such that for any x ∈ RN

0 ≤ µF (x, t1, t2)

≤





t1f(x, t1, t2) + t2g(x, t1, t2); t1, t2 ∈ [0, +∞),

t1f(x, t1, t2) + t2g(x, t1, t2); t1 ∈ [0, +∞), t2 ∈ (−∞, 0],

t1f(x, t1, t2) + t2g(x, t1, t2); t1, t2 ∈ (−∞, 0],

t1f(x, t1, t2) + t2g(x, t1, t2); t1 ∈ (−∞, 0], t2 ∈ [0, +∞) .

(8)

Definition 1. A function U = (u1, u2) ∈ E is called solution to the problem
(4) if there exists a function W = (w1, w2) ∈ L2(RN ,R2) such that

(i) f(x, u1(x), u2(x)) ≤ w1(x) ≤ f(x, u1(x), u2(x)) a.e. x in RN ;

g(x, u1(x), u2(x)) ≤ w2(x) ≤ g(x, u1(x), u2(x)) a.e. x in RN ;

(ii)

∫

RN

(∇u1∇v1 +∇u2∇v2 + a(x)u1v1 + b(x)u2v2) dx =

∫

RN

(w1v1 + w2v2) dx,

for all (v1, v2) ∈ E.

Our main result is the following.

Theorem 1. Assume that conditions (5)–(8) are fulfilled. Then Problem (4)
has at least a nontrivial solution in E.

2. Auxiliary Results

We first recall some basic notions from the Clarke gradient theory for locally
Lipschitz functionals (see [4, 5] for more details). Let X be a real Banach space
and assume that I : X → R is a locally Lipschitz functional. Then the Clarke
generalized gradient is defined by

∂I(u) = {ξ ∈ X∗; I0(u, v) ≥ 〈ξ, v〉 , for all v ∈ X} ,

where I0(u, v) stands for the directional derivative of I at u in the direction v,
that is,

I0(u, v) = lim sup
w→u
λ↘0

I(w + λv)− I(w)

λ
.

Let Ω be an arbitrary domain in RN . Set

EΩ =

{
U = (u1, u2) ∈ H1(Ω;R2) ;

∫

Ω

(|∇u1|2 + |∇u2|2 + a(x)u2
1 + b(x)u2

2) dx < +∞
}

which is endowed with the norm

‖U‖2
EΩ

=

∫

Ω

(|∇u1|2 + |∇u2|2 + a(x)u2
1 + b(x)u2

2) dx .

Then EΩ becomes a Hilbert space.
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Lemma 1. The functional ΨΩ : EΩ → R,ΨΩ(U) =
∫
Ω

F (x, U) dx is locally

Lipschitz on EΩ.

Proof. We first observe that

F (x, U) = F (x, u1, u2) =

u1∫

0

f(x, τ, u2) dτ +

u2∫

0

g(x, 0, τ) dτ

=

u2∫

0

g(x, u1, τ) dτ +

u1∫

0

f(x, τ, 0) dτ

is a Carathéodory functional which is locally Lipschitz with respect to the second
variable. Indeed, by (5)

|F (x, t1, t)− F (x, s1, t)| =
∣∣∣∣

t1∫

s1

f(x, τ, t) dτ

∣∣∣∣ ≤
∣∣∣∣

t1∫

s1

C(|τ, t|+ |τ, t|p) dτ

∣∣∣∣

≤ k(t1, s1, t)|t1 − s1| .
Similarly

|F (x, t, t2)− F (x, t, s2)| ≤ k(t2, s2, t)|t2 − s2| .
Therefore

|F (x, t1, t2)− F (x, s1, s2)| ≤ |F (x, t1, t2)− F (x, s1, t2)|
+ |F (x, t1, s2)− F (x, s1, s2)| ≤ k(V )|(t2, s2)− (t1, s1)| ,

where V is a neighbourhood of (t1, t2), (s1, s2).
Set

χ1(x) = max{u1(x), v1(x)}, χ2(x) = max{u2(x), v2(x)} for all x ∈ Ω .

It is obvious that if U = (u1, u2), V = (v1, v2) belong to EΩ, then (χ1, χ2) ∈ EΩ.
So, by Hölder’s inequality and the continuous embedding EΩ ⊂ Lp(Ω;R2),

|ΨΩ(U)−ΨΩ(V )| ≤ C(‖χ1, χ2‖EΩ
)‖U − V ‖EΩ

,

which concludes the proof. ¤
The following result is a generalization of Lemma 6 in [14].

Lemma 2. Let Ω be an arbitrary domain in RN and let f : Ω×R2 → R be a
Borel function such that f(x, .) ∈ L∞loc(R2). Then f and f are Borel functions.

Proof. Since the requirement is local we may suppose that f is bounded by M
and it is nonnegative. Denote by

fm,n(x, t1, t2) =

( t1+ 1
n∫

t1− 1
n

t2+ 1
n∫

t2− 1
n

|f(x, s1, s2)|m ds1ds2

) 1
m

.
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Since f(x, t1, t2) = lim
δ→0

esssup{f(x, s1, s2) ; |ti − si| ≤ δ ; i = 1, 2} we deduce

that for every ε > 0, there exists n ∈ N∗ such that for |ti− si| < 1
n

(i = 1, 2) we

have |esssupf(x, s1, s2)− f(x, t1, t2)| < ε or, equivalently,

f(x, t1, t2)− ε < esssupf(x, s1, s2) < f(x, t1, t2) + ε . (9)

By the second inequality in (9) we obtain

f(x, s1, s2) ≤ f(x, t1, t2) + ε a.e. x ∈ Ω for |ti − si| < 1

n
(i = 1, 2)

which yields

fm,n(x, t1, t2) ≤ (f(x, t1, t2) + ε)
(√

4/n2
) 1

m . (10)

Let

A =

{
(s1, s2) ∈ R2 ; |ti − si| < 1

n
(i = 1, 2) ; f(x, t1, t2)− ε ≤ f(x, s1, s2)

}
.

By the first inequality in (9) and the definition of the essential supremum we
obtain that |A| > 0 and

fm,n ≤
( ∫ ∫

A

(f(x, s1, s2))
m ds1 ds2

) 1
m

≥ (f(x, s1, s2)− ε) |A|1/m . (11)

Since (10) and (11) imply

f(x, t1, t2) = lim
n→∞

lim
m→∞

fm,n(x, t1, t2) ,

it suffices to prove that fm,n is Borel. Let

M = {f : Ω× R2 → R; |f | ≤ M and f is a Borel function},
N = {f ∈M; fm,n is a Borel function} .

Cf. [2, p.178], M is the smallest set of functions having the following properties:

(i) {f ∈ C(Ω× R2;R); |f | ≤ M} ⊂ M;

(ii) f (k) ∈M and f (k) k→ f imply f ∈M.

Since N contains obviously the continuous functions and (ii) is also true for N
then, by the Lebesgue dominated convergence theorem, we obtain thatM = N .
For f we note that f = −(−f)) and the proof of Lemma 2 is complete. ¤

Let us now assume that Ω ⊂ RN is a bounded domain. By the continu-
ous embedding Lp+1(Ω; R2) ↪→ L2(Ω;R2), we may define the locally Lipchitz
functional ΨΩ : Lp+1(Ω;R2) → R by ΨΩ(U) =

∫
Ω

F (x, U) dx.

Lemma 3. Under the above assumptions and for any U ∈ Lp+1(Ω;R2), we
have

∂ΨΩ(U)(x) ⊂ [f(x, U(x)), f(x, U(x))]× [g(x, U(x)), g(x, U(x))] a.e. x in Ω ,
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in the sense that if W = (w1, w2) ∈ ∂ΨΩ(U) ⊂ Lp+1(Ω;R2) then

f(x, U(x)) ≤ w1(x) ≤ f(x, U(x)) a.e. x in Ω , (12)

g(x, U(x)) ≤ w2(x) ≤ g(x, U(x)) a.e. x in Ω . (13)

Proof. By the definition of the Clarke gradient we have∫

Ω

(w1v1 + w2v2) dx ≤ Ψ0
Ω(U, V ) for all V = (v1, v2) ∈ Lp+1(Ω;R2) .

Choose V = (v, 0) such that v ∈ Lp+1(Ω), v ≥ 0 a.e. in Ω. Thus, by Lemma 2,

∫

Ω

w1v ≤ lim sup
(h1,h2)→U

λ↘0

∫
Ω

( h1(x)+λv(x)∫
h1(x)

f(x, τ, h2(x)

)
dx

λ

≤
∫

Ω

(
lim sup
(h1,h2)→U

λ↘0

1

λ

h1(x)+λv(x)∫

h1(x)

f(x, τ, h2(x)

)
dx

≤
∫

Ω

f(x, u1(x), u2(x))v(x) dx . (14)

Analogously we obtain∫

Ω

f(x, u1(x), u2(x))v(x) dx ≤
∫

Ω

w1v dx for all v ≥ 0 in Ω. (15)

Arguing by contradiction, suppose that (12) is false. Then there exist ε > 0,
a set A ⊂ Ω with |A| > 0 and w1 as above such that

w1(x) > f(x, U(x)) + ε in A . (16)

Taking v = 1A in (14) we obtain∫

Ω

w1v dx =

∫

A

w1 dx ≤
∫

A

f(x, U(x)) dx ,

which contradicts (16). Proceeding in the same way we obtain the corresponding
result for g in (13). ¤

Define ΨΩ : EΩ → R, ΨΩ(U) =
∫
Ω

F (x, U) dx. With the same arguments as in

the proof of Lemma 3 and using the embedding EΩ ↪→ Lp+1(Ω,R2), we obtain

∂ΨΩ(U)(x) ⊂ [f(x, U(x)), f(x, U(x))]× [g(x, U(x)), g(x, U(x))] a.e. x ∈ Ω .

Let V ∈ EΩ. Then Ṽ ∈ E, where Ṽ : RN → R2 is defined by

Ṽ =

{
V (x), x in Ω,

0 otherwise .
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For W ∈ E∗ we consider WΩ ∈ E∗
Ω such that 〈WΩ, V 〉 = 〈W, Ṽ 〉 for all V in EΩ.

Set Ψ : E → R, Ψ(U) =
∫
RN

F (x, U).

Lemma 4. Let W ∈ ∂Ψ(U), where U ∈ E. Then WΩ ∈ ∂ΨΩ(U), in the
sense that WΩ ∈ ∂ΨΩ(U |Ω).

Proof. By the definition of the Clarke gradient we deduce that 〈W, Ṽ 〉 ≤
Ψ0(U, Ṽ ) for all V in EΩ

Ψ0(U, Ṽ ) = lim sup
H→U, H∈E

λ→0

Ψ(H + λṼ )−Ψ(H)

λ

= lim sup
H→U, H∈E

λ→0

∫
RN

(F (x,H + λṼ )− F (x,H)) dx

λ

= lim sup
H→U, H∈E

λ→0

∫
Ω

(F (x,H + λṼ )− F (x,H))dx

λ

= lim sup
H→U, H∈EΩ

λ→0

∫
Ω

(F (x,H + λṼ )− F (x,H))dx

λ
= Ψ0

Ω(U, V ) .

Hence 〈WΩ, V 〉 ≤ Ψ0
Ω(U, V ) which implies WΩ ∈ ∂Ψ0

Ω(U). ¤
By Lemmas 3 and 4 we obtain that for any W ∈ ∂Ψ(U) (with U ∈ E),

WΩ satisfies (12) and (13). We also observe that for Ω1, Ω2 ⊂ RN we have
WΩ1|Ω1∩Ω2 = WΩ2|Ω1∩Ω2 .

Let W0 : RN → R, where W0(x) = WΩ(x) if x ∈ Ω. Then W0 is well defined
and

W0(x) ∈ [f(x, U(x)), f(x, U(x))]× [g(x, U(x)), g(x, U(x))] a.e. x ∈ RN

and, for all ϕ ∈ C∞
c (RN ,R2), 〈W,ϕ〉 =

∫
RN

W0ϕ. By density of C∞
c (RN ,R2) in

E we deduce that 〈W,V 〉 =
∫
RN

W0V dx for all V in E. Hence

W (x) = W0(x) ∈ [f(x, U(x)), f(x, U(x))]

× [g(x, U(x)), g(x, U(x))] a.e. x ∈ RN . (17)

3. Proof of Theorem 1

Define the energy functional I : E → R

I(U) =
1

2

∫

RN

(|∇u1|2 + |∇u2|2 + a(x)u2
1 + b(x)u2

2

)
dx−

∫

RN

F (x, U) dx

=
1

2
‖U‖2

E −Ψ(U) . (18)
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The existence of solutions to problem (4) will be justified by a nonsmooth
variant of the Mountain-Pass Theorem (see Chang [3] and Rădulescu [17]) ap-
plied to the functional I, even if the PS condition is not fulfilled. More precisely,
we check the following geometric hypotheses:

I(0) = 0 and there exists V ∈ E such that I(V ) ≤ 0; (19)

there exist β, ρ > 0 such that I ≥ β on {U ∈ E; ‖U‖E = ρ}. (20)

Verification of (19). It is obvious that I(0) = 0. For the second assertion
we need the following lemma.

Lemma 5. There exist two positive constants C1 and C2 such that

f(x, s, 0) ≥ C1s
µ−1 − C2 for a.e. x ∈ RN ; s ∈ [0, +∞) ,

where the constant µ has been defined in (8).

Proof. We first observe that (8) implies

0 ≤ µF (x, s, 0) ≤
{

sf(x, s, 0) s ∈ [0, +∞) ,

sf(x, s, 0) s ∈ (−∞, 0] ,

which places us in the conditions of Lemma 5 in [14].
Verification of (19) continued. Choose v ∈ C∞

c (RN) − {0} so that
v ≥ 0 in RN . We have

∫
RN

|∇v|2 + a(x)v2 < ∞, hence t(v, 0) ∈ E for all t ∈ R.

Thus by Lemma 5 we obtain

I(t(v, 0)) =
t2

2

∫

RN

|∇v|2 + a(x)v2 dx−
∫

RN

tv∫

0

f(x, τ, 0) dτ

≤ t2

2

∫

RN

|∇v|2 + a(x)v2 dx−
∫

RN

tv∫

0

(C1τ
µ−1 − C2) dτ

=
t2

2

∫

RN

|∇v|2 + a(x)v2 dx + C2t

∫

RN

v dx− C ′
1t

µ

∫

RN

vµ dx < 0

for t > 0 large enough.
Verification of (20). We observe that (6), (7) and (8) imply that, for

any ε > 0, there exists a constant Aε > 0 such that

|f(x, s)| ≤ ε|s|+ Aε|s|p,
|g(x, s)| ≤ ε|s|+ Aε|s|p

for a.e. (x, s) ∈ RN × R2 . (21)
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By (21) and Sobolev’s embedding theorem we have, for any U ∈ E,

|Ψ(U)| = |Ψ(u1, u2)| ≤
∫

RN

|u1|∫

0

||f(x, τ, u2)|dτ +

∫

RN

u2∫

0

|g(x, 0, τ)| dτ

≤
∫

RN

(
ε

2
|(u1, u2)|2 +

Aε

p + 1
|(u1, u2|p+1

)
dx

+

∫

RN

(
ε

2
|u2|2 +

Aε

p + 1
|u2|p+1

)
dx

≤ ε‖U‖2
L2 +

2Aε

p + 1
‖U‖p+1

Lp+1 ≤ εC3‖U‖2
E + C4‖U‖p+1

E ,

where ε is arbitrary and C4 = C4(ε). Thus

I(U) =
1

2
‖U‖2

E −Ψ(U) ≥ 1

2
‖U‖2

E − εC3‖U‖2
E − C4‖U‖p+1

E ≥ β > 0 ,

for ‖U‖E = ρ, with ρ, ε and β sufficiently small positive constants.
Denote

P = {γ ∈ C([0, 1], E); γ(0) = 0, γ(1) 6= 0 and I(γ(1)) ≤ 0}
and

c = inf
γ∈P

max
t∈[0,1]

I(γ(t)) .

Set

λI(U) = min
ξ∈∂I(U)

‖ξ‖E∗ .

Thus, by the nonsmooth version of the Mountain Pass Lemma [3], there exists
a sequence {UM} ⊂ E such that

I(Um) → c and λI(Um) → 0 . (22)

So, there exists a sequence {Wm} ⊂ ∂Ψ(Um); Wm = (w1
m, w2

m) such that

(−∆u1
m + a(x)u1

m − w1
m,−∆u2

m + a(x)u2
m − w2

m) → 0 in E∗ . (23)

Note that, by (8),

Ψ(U) ≤ 1

µ

( ∫

u1≥0

u1(x)f(x, U)dx +

∫

u1≤0

u1(x)f(x, U)dx

+

∫

u2≥0

u1(x)g(x, U)dx +

∫

u2≤0

u2(x)g(x, U)dx

)
. (24)

Therefore, by (17),

Ψ(U) ≤ 1

µ

∫

RN

U(x)W (x) dx =
1

µ

∫

RN

(u1w1 + u2w2) dx ,
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for every U ∈ E and W ∈ ∂Ψ(U). Hence, if 〈·, ·〉 denotes the duality pairing
between E∗ and E, we have

I(Um) =
µ− 2

2µ

∫

RN

(|∇u1
m|2 + |∇um|2 + a(x)|um|1 + b(x)|um|2) dx

+
1

µ
〈(−∆u1

m + a(x)u1
m − w1

m,−∆u2
m + b(x)u2

m − w2
m), Um〉

+
1

µ
〈Wm, Um〉 −Ψ(Um)

≥ µ− 2

2µ

∫

RN

(|∇u1
m|2 + |∇u2

m|2 + a(x)|u1
m|2 + b(x)|u2

m|2) dx

+
1

µ
〈(−∆u1

m + a(x)u1
m − w1

m,−∆u2
m + b(x)u2

m − w2
m), Um〉

≥ µ− 2

2µ
‖Um‖2

E − o(1)‖Um‖E .

This relation in conjunction with (22) implies that the Palais-Smale sequence
{Um} is bounded in E. Thus, it converges weakly (up to a subsequence) in E
and strongly in L2

loc(RN) to some U . Taking into account that Wm ∈ ∂Ψ(Um)
and Um ⇀ U in E, we deduce from (23) that there exists W ∈ E∗ such that
Wm ⇀ W in E∗ (up to a subsequence). Since the mapping U 7−→ F (x, U) ia
compact from E to L1, it follows that W ∈ ∂Ψ(U). Therefore

W (x) ∈ [f(x, U(x)), f(x, U(x))]× [g(x, U(x)), g(x, U(x))] a.e. x ∈ RN

and

(−∆u1
m + a(x)u1

m − w1
m,−∆u2

m + b(x)u2
m − w2

m) = 0

⇐⇒
∫

RN

(∇u1∇v1 +∇u2∇v2 + a(x)u1v1 + b(x)u2v2)dx

=

∫

RN

(w1v1 + w2v2)dx for all (v1, v2) ∈ E.

These last two relations show that U is a solution pf the problem (4).
It remains to prove that U 6≡ 0. If {Wm} is as in (23) then, by relations (22),

(24) and for large m

c

2
≤ I(Um)− 1

2
〈(−∆u1

m + a(x)u1
m − w1

m,−∆u2
m + b(x)u2

m − w2
m), Um〉

=
1

2
〈Wm, Um〉 −

∫

RN

F (x, Um) dx =
1

2
〈Wm, Um〉 −Ψ(x, Um)

≤ 1

2

( ∫

u1≥0

u1(x)f(x, U)dx +

∫

u1≤0

u1(x)f(x, U)dx
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+

∫

u2≥0

u1(x)g(x, U)dx +

∫

u2≤0

u2(x)g(x, U)dx

)
. (25)

Now, taking into account the definition of f, f , g, g we deduce that f, f , g, g
verify (19), too. So by (25) we obtain

c

2
≤

∫

RN

(ε|Um|2 + Aε|um|p+1) = ε‖Um‖2
L2 + Aε‖Um‖p+1

Lp+1 .

So, {Um} does not converge strongly to 0 in Lp+1(RN ;R2). From now on, a
standard argument implies that U 6≡ 0, which concludes our proof. ¤
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