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INVERSION OF AHLFORS AND GRUNSKY INEQUALITIES

SAMUEL KRUSHKAL

Abstract. We solve the old Kühnau’s problem on the exact lower bound in
the inverse inequality estimating the dilatation of a univalent function by its
Grunsky norm and in the related Ahlfors inequality for Fredholm eigenvalues.
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1. The Ahlfors inequality for oriented quasiconformal Jordan curves (quasicir-

cles) on the Riemann sphere L ⊂ Ĉ = C ∪ {∞}
1

ρL

≤ qL (1)

is fundamental in the theory of Fredholm eigenvalues. Here qL is the reflection
coefficient of L and ρL is its (first nontrivial) Fredholm eigenvalue (see, e.g., [1],
[2], [6], [9]).

It suffices to take the images L = fµ(S1) of the unit circle S1 under qua-

siconformal self-maps of Ĉ with Beltrami coefficients µ(z) = ∂zf/∂zf sup-
ported in the unit disk ∆ = {z : |z| < 1} and hydrodynamic normalization
f(z) = z + const +O(|z|−1) at z = ∞. Then qL equals a minimal dilatation
k(fµ) = ‖µ||∞ among such maps, and inequality (1.1) is reduced to the Grunsky
inequality

κ(f) := sup
x

∣∣∣
∞∑

m,n=1

√
mn αmnxmxn

∣∣∣ ≤ k(f), (2)

where αmn are the Grunsky coefficients of f defined by

log
f(z)− f(ζ)

z − ζ
= −

∞∑
m,n=1

αmnz
−mζ−n, (z, ζ) ∈ (∆∗)2,

and x = (xn) runs over the unit sphere S(l2) of the Hilbert space l2 with

‖x‖2 =
∞∑
1

|xn|2, choosing the principal branch of logarithmic function (cf. [4],

[9]). The quantity κ(f) is called the Grunsky norm of f . By Kühnau–Schiffer
theorem κ(f) is reciprocal of ρL(see [10], [13]).
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We denote the collection of univalent nonvanishing functions f(z) = z + b0 +
b1z

−1 + . . . by Σ and its subset of functions with quasiconformal extensions
across S1 by Σ0.

The point is that for most of f ∈ Σ, we have in (1.2) the strict inequality
κ(f) < k(f) (see, e.g., [8]). On the other hand, the functions with κ(f) = k(f)
are crucial in many applications of the Grunsky inequality technique. Moreover,
by theorem of Pommerenke and Zhuravlev, any f ∈ Σ with κ(f) ≤ k < 1
belongs to Σ0 and has a k1-quasiconformal extension with k1 = k1(k) ≥ k (see
[11], [7], pp. 82–84). An explicit not sharp bound k1(k) is given in [10].

The important problem on the sharp estimation of the dilatation k(f) by the
Grunsky norm of f , or equivalently, by the Fredholm eigenvalue of f(S1) was
first stated by Kühnau in 1981 and still remains open. Our main result is the
following theorem which solves this problem and has many other applications.

Theorem 1. For f ∈ Σ0 we have the estimate

k(f) ≤ 3

2
√

2
κ(f) = 1.07 . . .κ(f) (3)

(similarly for Fredholm eigenvalues ρf(S1)), which is asymptotically sharp as
κ → 0. The equality holds for the map

f3,t(z) =

{
z(1 + t/z3)2/3 if |z| > 1,

z[1 + t(|z|/z)3]2/3 if |z| ≤ 1
(4)

with t = const ∈ (0, 1).

Note that the Beltrami coefficient of this map in the disk ∆ is µ3(z) = t|z|/z.

2. The proof of this theorem consists of several independent stages which will
be outlined below.

10. It suffices to establish the assertion of Theorem 1 for f ∈ Σ0 having
Teichmüller extremal quasiconformal extensions onto ∆, i.e., with the Beltrami
coefficient µf (z) = k|ϕ(z)|/ϕ(z), where k = const ∈ (0, 1) and ϕ is integrable
holomorphic function in ∆. This means that f is represented in the universal
Teichmüller space T by a Strebel point [f ]. Such points are dense in T (see [3],
[14]).

Recall that T is the space of quasisymmetric homeomorphisms of the unit
circle S1 factorized by Möbius maps. It inherits a complex Banach structure
factorizing the ball of conformal structures

Belt(∆)1 = {µ ∈ L∞(C) : µ|∆∗ = 0, ‖µ‖ < 1}
on ∆ so that µ, ν ∈ Belt(∆)1 are equivalent if the corresponding maps wµ, wν ∈
Σ0 coincide on S1. The equivalence classes are in the one-to-one correspondence
with the Schwarzian derivatives Sf := (w′′/w′)′ − w′′/w′)2/2 of f ∈ Σ0 in the

complementary disk ∆∗ = {z ∈ Ĉ : |z| > 1}.
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For elements µ ∈ Belt(∆)1 we define

〈µ, ϕ〉∆ =

∫∫

∆

µ∗0(z; f)ψ(z)dxdy, ϕ ∈ L1(∆),

and put µ∗(z) = µ(z)/‖µ‖∞ so that ‖µ∗‖∞ = 1, and ‖ϕ‖1 := ‖ϕ‖L1(∆).
20. We first prove

Theorem 2. For every function f ∈ Σ0 with a unique extremal extension
fµ0 to ∆, we have the sharp bound

k(fµ0) ≤ 1

α(fµ0)
min
|t|=1

κ(f tµ0) (5)

with

α(fµ0) = sup
ψ∈A2

1,‖ϕ‖A1
=1

|〈µ∗0, ϕ〉∆|, (6)

where

A2
1 = {ϕ ∈ L1(∆) : ϕ = ψ2, ψ is holomorphic}.

Proof of Theorem 2 is geometric and relies on certain deep properties of
conformal (semi)metrics ds = λ(z)|dz| on the disk ∆ with λ(z) ≥ 0 of negative
integral curvature bounded from above. The curvature is understood in the
supporting sense of Ahlfors or, more generally, in the potential sense of Royden
(see, e.g., [12]). For such metrics we have

Lemma 3 ([12]). If a circularly symmetric conformal metric λ(|z|)|dz| in ∆
has curvature at most −4 in the potential sense, then λ(r) ≥ a(1− a2r2), where
a = λ(0).

On the extremal disk

∆(µ∗0) = {φT(tµ∗0) : t ∈ ∆} ⊂ T,

where φT denotes the projection Belt(∆)1 → T, the infinitesimal Kobayashi-
Teichmüller metric λK of T is isometrically equivalent to hyperbolic metric
ds = |dz|/(1− |z|2) on ∆ of curvature −4.

Further, the Grunsky coefficients of f ∈ Σ0 allows us to construct the holo-
morphic maps

h̃x(t) := hx(ϕt) =
∞∑

m,n=1

√
mn αmn(ϕt) xmxn : ∆ → ∆,

where ϕt = S
f tµ∗0 and again x = (xn) ∈ S(l2). Then sup {|h̃x(t)| : x ∈ S(l2)} =

κ(fµ∗0). Pull-backing the hyperbolic metric to ∆(µ∗0) by applying these maps,
we get the conformal metrics

λehx
(t) := h̃∗x(λhyp) = |h̃′x(t)|/(1− |h̃x(t)|2)
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of Gaussian curvature −4 at noncritical points. Take their upper envelope

λ̃{(t) = sup{λehx
(t) : x ∈ S(l2)} and pass to the upper semicontinuous regular-

ization

λ{(t) = lim sup
t′→t

λ̃{(t
′).

This yields a logarithmically subharmonic metric on ∆ whose curvature in the
supporting and in the potential sense both are less than or equal −4. Its circular
mean

M[λ{](|t|) = (2π)−1

2π∫

0

λ{(re
iθ)dθ

is a circularly symmetric metric with curvature also at most −4 in the potential
sense.

To calculate the value of M[λ{](0), one can apply the standard variational
method to the maps fµ ∈ Σ0 and to their Grunsky coefficients, which yields

M[λ{](0) = λ{(0) = α(fµ0). (7)

Further, applying Lemma 3, we get

M[λ{](r) ≥ α(f0)

1− α(f0)2r2

and, integrating both sides of this inequality over a radial segment [0, %] with
% = ‖µ0‖∞,

%∫

0

M[λ{](r)dr ≥ tanh−1[α(fµ0)%] = tanh−1[α(fµ0)k(f%µ∗0)]

= tanh−1[α(fµ0)k(fµ0)].

On the other hand, since the disk ∆(µ∗0) is geodesic, we have

t∫

0

λ{(fµ0)(t)|dt| = tanh−1[κ(fµ0)].

Using these relations, one obtains the desired estimates (5), (6).
30. To get (3), we have to estimate (6) from below. To this end, we apply

the following important result.

Lemma 4 ([5], [6]). The equality κ(f) = k(f) for a function f ∈ Σ holds

if and only if f is the restriction to ∆∗ of a quasiconformal self-map wµ0 of Ĉ
with Beltrami coefficient µ0 satisfying the condition

sup |〈µ0, ϕ〉∆| = ‖µ0‖∞,

where the supremum is taken over holomorphic functions ϕ ∈ A2
1(∆) with

‖ϕ‖1 = 1.
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If, in addition, the class [f ] contains a frame map (is a Strebel point), then
µ0 is of the form

µ0(z) = ‖µ0‖∞|ψ0(z)|/ψ0(z) with ψ0 ∈ A2
1 in ∆. (8)

For analytic curves f(S1), the equality (8) is given also in [10].
In view of this lemma and Theorem 2, we can restrict ourselves in the proof

of (3) to finding a minimal value of the functionals lµ(ψ) = |〈µ∗, ϕ〉∆| on the set
{ϕ ∈ A2

1, ‖ϕ‖1 = 1} for µ∗ = |ψ|/ψ defined by integrable holomorphic functions
in ∆ of the form

ψ(z) = zm(c0 + c1z + · · · ), m = 1, 3, 5, . . . .

A long complicate evaluation yields that this minimum equals 2
√

2
3

and is at-
tained on the map (4).
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