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APPROXIMATING COMMON FIXED POINTS OF
NONEXPANSIVE MAPPINGS IN BANACH SPACES

NASEER SHAHZAD AND REEM AL-DUBIBAN

Abstract. Let K be a nonempty closed convex subset of a real uniformly
convex Banach space E and S, T : K → K two nonexpansive mappings such
that F (S) ∩ F (T ) := {x ∈ K : Sx = Tx = x} 6= ∅. Suppose {xn} is
generated iteratively by

x1 ∈ K, xn+1 = (1− αn)xn + αnS[(1− βn)xn + βnTxn],

n ≥ 1, where {αn}, {βn} are real sequences in [0, 1]. In this paper, we discuss
the weak and strong convergence of {xn} to some x∗ ∈ F (S) ∩ F (T ).

2000 Mathematics Subject Classification: 47H09, 47J25.
Key words and phrases: Common fixed point, nonexpansive mapping,
Banach space.

1. Introduction

Let K be a nonempty subset of a real normed linear space E. Let T be a
self-mapping of K. Then T is said to be nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖ (1.1)

for all x, y ∈ K. The set of fixed points of T is denoted by F (T ). For the last
thirty years, weak and strong convergence theorems for nonexpansive mappings
have been established by a number of authors (see, e.g., [1], [2], [4], [10], [12],
[14]–[16]).

In 1995, Xu [18] introduced and studied the Mann and Ishikawa iteration
schemes with errors. Since then, these schemes have been further investigated
by a number of authors for approximating fixed points of nonlinear mappings.
Recently, Khan and Fukhar-ud-din [7] studied the following iterative scheme
with errors involving two nonexpansive mappings





x1 ∈ K,

xn+1 = αnxn + βnSyn + γnvn,

yn = α′nxn + β′nTxn + γ′nun,

(1.2)

where {αn}, {βn}, {γn}, {α′n}, {β′n}, {γ′n} are real sequences in [0, 1] such that

αn + βn + γn = 1 = α′n + β′n + γ′n, (1.3)
∞∑

n=1

γn < ∞,

∞∑
n=1

γ′n < ∞, (1.4)

ISSN 1072-947X / $8.00 / c© Heldermann Verlag www.heldermann.de



530 N. SHAHZAD AND R. AL-DUBIBAN

and {un}, {vn} are bounded sequences in K. They obtained the following
results.

Theorem KF1 ([7, Theorem 1]). Let E be a uniformly convex Banach space
satisfying Opial’s conditon and K a nonempty closed convex bounded subset of
E. Let S, T : K → K be two nonexpansive mappings with F := F (S)∩F (T ) 6=
∅. Let {αn}, {βn}, {γn}, {α′n}, {β′n}, {γ′n} be real sequences in [0, 1] satisfying
(1.3), (1.4) and αn, α

′
n ∈ [ε, 1 − ε] for some ε ∈ (0, 1). For arbitrary x1 ∈ K,

define the sequence {xn} by the recursion (1.2). Then {xn} converges weakly
to some common fixed point of S and T .

Theorem KF2 ([7, Theorem 2]), Let E be a uniformly convex Banach space
and K a nonempty closed bounded convex subset of E. Let S, T : K → K be
two nonexpansive mappings with F := F (S) ∩ F (T ) 6= ∅. Let {αn}, {βn},
{γn}, {α′n}, {β′n}, {γ′n} be real sequences in [0, 1] satisfying (1.3), (1.4) and
αn, α′n ∈ [ε, 1− ε] for some ε ∈ (0, 1). For arbitrary x1 ∈ K, define the sequence
{xn} by the recursion (1.2). Suppose S and T satisfy condition (A′), i.e. there
exists a nondecreasing function f : [0,∞) → [0,∞) with f(0) = 0, f(r) > 0 for
all r ∈ (0,∞) such that 1

2
(‖x − Tx‖ + ‖x − Sx‖) ≥ f(d(x, F )) for all x ∈ K.

Then {xn} converges strongly to some common fixed point of S and T .

Remark 1.1.

(1) If S = T and γn = γ′n = 0 for all n, then the iteration scheme (1.2)
reduces to the Ishikawa iteration scheme [4].

(2) If S = T and β′n = γ′n = 0 for all n or if T = I and γ′n = 0 for all n , then
the iteration scheme (1.2) reduces to the Mann iteration scheme with
errors and if, in addition, γn = 0 for all n, it reduces to the well-known
Mann iteration process [9].

The purpose of this paper is to study the following iteration scheme without
error terms 




x1 ∈ K,

xn+1 = (1− αn)xn + αnSyn,

yn = (1− βn)xn + βnTxn,

(1.5)

where {αn}, {βn} are real sequences in [0, 1].
We note that Theorem KF1 is not new; see, for instance, the following results.

Theorem TT ([15, Theorem 3.3]). Let E be a uniformly convex Banach
space satisfying Opial’s condition or whose norm is Fréchet differentiable and
K a nonempty closed convex subset of E. Let S, T : K → K be two nonexpansive
mappings with F := F (S) ∩ F (T ) 6= ∅. Let {αn}, {βn} be real sequences in
[a, b] for some a, b ∈ R with 0 < a ≤ b < 1. For arbitrary x1 ∈ K, define
the sequence {xn} by the recursion (1.5). Then {xn} converges weakly to some
common fixed point of S and T .

Theorem KKT ([8, Theorem 3.5]). Let E be a uniformly convex Banach
space satisfying Opial’s condition or whose norm is Fréchet differentiable and K
a nonempty closed convex subset of E. Let S, T : K → K be two nonexpansive
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mappings with F := F (S) ∩ F (T ) 6= ∅. Let {αn}, {βn}, {γn}, {α′n}, {β′n},
{γ′n} be real sequences in [0, 1] satisfying (1.3), (1.4) and αn, α′n ∈ [a, b] for
some a, b ∈ R with 0 < a ≤ b < 1. For arbitrary x1 ∈ K, define the sequence
{xn} by the recursion (1.2). Then {xn} converges weakly to some common fixed
point of S and T .

We remark that once a convergence theorem has been proved for an iteration
scheme without errors, such as (1.5), it is not always difficult to establish the
corresponding result for the case with errors such as Theorem KF1, Theorem
KF2 and Theorem KKT above under the conditions (1.3) and (1.4). As pointed
out by Chidume [2], if error terms satisfying (1.3) and (1.4) are introduced in
either the Mann or the Ishikawa iterative scheme, the proofs of the results are
basically unnecessary repetitions of the proofs when no error terms are added.
Usually, we are interested, in mathematics, in simpler algorithms, unless the
better rate of convergence or some other advantage is gained. This is not
the case with both Theorem KF1 and Theorem KF2. We use the iteration
process (1.5) for approximating the common fixed point of two nonexpansive
maps (when such a common fixed point exists) and to prove some strong and
weak convergence theorems for such maps. Our results improve, complement
and extend some known results including Theorem KF1 and Theorem KF2. It
is worth mentioning that our weak convergence result applies not only to Lp-
spaces with 1 < p < ∞ but also to other spaces which do not satisfy Opial’s
condition or have a Fréchet differentiable norm ([5]).

2. Preliminaries

Let E be a real Banach space. Then E is said to have the Kadec-Klee property
if for every sequence {xn} in E, xn → x weakly and ‖xn‖ → ‖x‖ strongly
together imply ‖xn − x‖ → 0.

The following lemmas are needed in the sequel.

Lemma 2.1 (see, e.g., [16]). Let {λn} and {σn} be sequences of nonnegative

real numbers such that λn+1 ≤ λn + σn, ∀ n ≥ 1 and
∞∑

n=1

σn < ∞. Then lim
n→∞

λn

exists. Moreover, if there exists a subsequence {λnj
} of {λn} such that λnj

→ 0
as j →∞, then λn → 0 as n →∞.

Lemma 2.2 (see, e.g., [5]). Let E be a real reflexive Banach space such that
its dual E∗ has the Kadec-Klee property. Let {xn} be a bounded sequence in E
and x∗, y∗ ∈ ωw(xn); here ωw(xn) denotes the weak w-limit set of {xn}. Suppose
lim

n→∞
‖txn + (1− t)x∗ − y∗‖ exists for all t ∈ [0, 1]. Then x∗ = y∗.

Lemma 2.3 (see, e.g., [8]). Let K be a nonempty closed convex subset of
a Banach space E. Let S, T : K → K be two nonexpansive mappings with
x∗ ∈ F := F (S) ∩ F (T ). Suppose that {xn} is defined by (1.2) and that for
every n, a mapping Tn : K → K is defined by

Tnx = αnx + βnS[α′nx + β′nTx + γ′nx] + γnx
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for x ∈ K. If there are αn, α
′
n ∈ [a, b] for some a, b ∈ R with 0 < a ≤ b < 1,

then {TnTn−1...T1x− xn+1} converges strongly to 0 as n →∞.

Lemma 2.4 (see, e.g., [13]). Let E be a uniformly convex Banach space and
{αn} a sequence in [ε, 1 − ε] for some ε ∈ (0, 1). Suppose {xn} and {yn} are
sequences in E such that lim sup

n→∞
‖xn‖ ≤ r, lim sup

n→∞
‖yn‖ ≤ r, and lim sup

n→∞
‖αnx+

(1− αn)yn‖ = r hold for some r ≥ 0. Then lim
n→∞

‖xn − yn‖ = 0.

Lemma 2.5 (see, e.g., [17]). Let p > 1 and R > 1 be two fixed numbers
and E a Banach space. Then E is uniformly convex if and only if there exists
a continuous, strictly increasing, and convex function g : [0,∞) → [0,∞) with
g(0) = 0 such that ‖λx + (1− λ)y‖p ≤ λ‖x‖p + (1− λ)‖y‖p −Wp(λ)g(‖x− y‖)
for all x, y ∈ BR(0) = {x ∈ E : ‖x‖ ≤ R}, and λ ∈ [0, 1], where Wp(λ) =
λ(1− λ)p + λp(1− λ).

3. Main Results

Lemma 3.1. Let E be a real normed space and K a nonempty closed convex
subset of E. Let S, T : K → K be two nonexpansive mappings with x∗ ∈ F :=
F (S) ∩ F (T ). Let {αn}, {βn} be real sequences in [0, 1]. For arbitrary x1 ∈ K,
define the sequence {xn} by the recursion (1.5). Then lim

n→∞
‖xn − x∗‖ exists.

Proof. Notice that

‖xn+1 − x∗‖ = ‖(1− αn)xn + αnSyn − x∗‖
≤ (1− αn)‖xn − x∗‖+ αn‖Syn − x∗‖
≤ (1− αn)‖xn − x∗‖+ αn‖(1− βn)xn + βnTxn − x∗‖
≤ (1− αn)‖xn − x∗‖+ αn[(1− βn)‖xn − x∗‖+ βn‖xn − x∗‖]
= ‖xn − x∗‖.

Hence lim
n→∞

‖xn− x∗‖ exists and so {xn} is bounded. This completes the proof.

¤
Lemma 3.2. Let E be a real uniformly convex Banach space and K a

nonempty closed convex subset of E. Let S, T : K → K be two nonexpansive
mappings with F := F (S) ∩ F (T ) 6= ∅. Let {αn}, {βn} be real sequences in
[ε, 1− ε] for some ε ∈ (0, 1). For arbitrary x1 ∈ K, define the sequence {xn} by
the recursion (1.5). Then

lim
n→∞

‖xn − Txn‖ = 0 = lim
n→∞

‖xn − Sxn‖.
Proof. Let x∗ ∈ F and yn = (1 − βn)xn + βnTxn. Then, by Lemma 3.1,
lim

n→∞
‖xn − x∗‖ exists and so {xn} is bounded. Therefore, there exists R > 0

such that xn − x∗, yn − x∗ ∈ BR(0) for all n ≥ 1. Set r = lim
n→∞

‖xn − x∗‖. If

r = 0, then by the continuity of S and T the conclusion follows. Now suppose
r > 0. We follow [14] (see also [15], [8] or [7]). Using Lemma 2.5, we obtain

‖yn − x∗‖2 = ‖(1− βn)xn + βnTxn − x∗‖2



APPROXIMATING COMMON FIXED POINTS 533

= ‖βn(Txn − x∗) + (1− βn)(xn − x∗)‖2

≤ βn‖Txn − x∗‖2 + (1− βn)‖xn − x∗‖2

−W2(βn)g(‖Txn − xn‖)
≤ βn‖xn − x∗‖2 + (1− βn)‖xn − x∗‖2

= ‖xn − x∗‖2,

so
lim sup

n→∞
‖yn − x∗‖ ≤ r,

and

‖xn+1 − x∗‖2 = ‖(1− αn)xn + αnSyn − x∗‖2

≤ αn‖yn − x∗‖2 + (1− αn)‖xn − x∗‖2

−W2(αn)g(‖Syn − xn‖)
≤ αn‖xn − x∗‖2 + (1− αn)‖xn − x∗‖2

−W2(αn)g(‖Syn − xn‖)
≤ ‖xn − x∗‖2 −W2(αn)g(‖Syn − xn‖). (3.1)

Since W2(αn) ≥ 2ε3, we have from (3.1) that

2ε3

∞∑
n=1

g(‖Syn − xn‖) ≤ ‖x1 − x∗‖2 < ∞

Thus we have lim
n→∞

g(‖Syn − xn‖) = 0. Since g is strictly increasing and contin-

uous at 0, we have
lim

n→∞
‖Syn − xn‖ = 0.

Since S is nonexpansive, we have

‖xn − x∗‖ ≤ ‖xn − Syn‖+ ‖yn − x∗‖,
which on taking lim inf

n→∞
yields

r ≤ lim inf
n→∞

‖yn − x∗‖.
Consequently,

lim
n→∞

‖βn(Txn − x∗) + (1− βn)(xn − x∗)‖ = lim
n→∞

‖yn − x∗‖ = r.

Since
lim sup

n→∞
‖Txn − x∗‖ ≤ r,

by Lemma 2.4 we have lim
n→∞

‖Txn − xn‖ = 0. Also,

‖Sxn − xn‖ ≤ ‖Sxn − Syn‖+ ‖Syn − xn‖
≤ ‖xn − yn‖+ ‖Syn − xn‖
≤ ‖Txn − xn‖+ ‖Syn − xn‖.
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This implies that lim
n→∞

‖Sxn − xn‖ = 0. This completes the proof. ¤

The following result was proved by Shahzad in [14] (using Lemma 2.2), which
contains Theorem TT for the case when E is a uniformly convex space whose
norm is Fréchet differentiable.

Theorem 3.3. Let E be a real uniformly convex Banach space such that its
dual E∗ has the Kadec–Klee property and K a nonempty closed convex subset of
E. Let S, T : K → K be two nonexpansive mappings with F := F (S)∩F (T ) 6=
∅. Let {αn}, {βn} be real sequences in [ε, 1−ε] for some ε ∈ (0, 1). For arbitrary
x1 ∈ K, define the sequence {xn} by the recursion (1.5). Then {xn} converges
weakly to some common fixed point of S and T .

As we have remarked above, once a result has been proved for (1.5), it is
not difficult to prove it for the iteration process (1.2). For example, combining
Theorem 3.3 and Lemma 2.3, we can obtain the following result which can be
applied to the spaces not covered by Theorem KF1 and Theorem KKT. For
details, see [8], [5], and [14].

Theorem 3.4. Let E be a real uniformly convex Banach space such that its
dual E∗ has the Kadec–Klee property and K a nonempty closed convex subset of
E. Let S, T : K → K be two nonexpansive mappings with F := F (S)∩F (T ) 6=
∅. Let {αn}, {βn}, {γn}, {α′n}, {β′n}, {γ′n} be real sequences in [0, 1] satisfying
(1.3), (1.4) and αn, α

′
n ∈ [ε, 1 − ε] for some ε ∈ (0, 1). For arbitrary x1 ∈ K,

define the sequence {xn} by the recursion (1.2). Then {xn} converges weakly to
some common fixed point of S and T .

The mappings S, T : K → K with F := F (S)∩ F (T ) 6= ∅ are said to satisfy
condition (B) if there is a nondecreasing function f : [0,∞) → [0,∞) with
f(0) = 0 and f(r) > 0 for all r ∈ (0,∞) such that for all x ∈ K

max{‖x− Tx‖, ‖x− Sx‖} ≥ f(d(x, F )).

When S = I, the identity map or S = T , condition (B) reduces to condition
(I) of Senter and Dotson [12]. Our condition (B) also contains condition (A′)
of Khan and Fakhar-ud-din [7] (see, for the definition of condition (A′), the
statement of Theorem KF2). We further note that when S = I, condition
(A′) of Khan and Fakhar-ud-din [7] does not reduce to condition (I) of Senter
and Dotson [12]. A mapping T : K → K is called (1) demicompact if any
bounded sequence {xn} in K such that {xn− Txn} converges has a convergent
subsequence; (2) semi-compact (or hemicompact) if any bounded sequence {xn}
in K satisfying ‖xn−Txn‖ → 0 as n →∞ has a convergent subsequence. Every
demicompact mapping is semi-compact but the converse is not true in general.
It is known [12] that if T : K → K is nonexpansive and demicompact, then T
satisfies condition (I).

Theorem 3.5. Let E be a real uniformly convex Banach space and K a
nonempty closed convex subset of E. Let S, T : K → K be two nonexpansive
mappings with F := F (S) ∩ F (T ) 6= ∅. Let {αn}, {βn} be real sequences
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in [ε, 1 − ε] for some ε ∈ (0, 1). For arbitrary x1 ∈ K, define the sequence
{xn} by the recursion (1.5). Suppose S and T satisfy condition (B). Then {xn}
converges strongly to some common fixed point of S and T .

Proof. Let x∗ ∈ F . Then, by Lemma 3.1, {xn} is bounded and lim
n→∞

‖xn − x∗‖
exists. Also

‖xn+1 − x∗‖ ≤ ‖xn − x∗‖
for all n ≥ 1. This implies that d(xn+1, F ) ≤ d(xn, F ) and so, by Lemma 2.1,
lim

n→∞
d(xn, F ) exists. Also by Lemma 3.2, lim

n→∞
‖xn − Sxn‖ = 0 = lim

n→∞
‖xn −

Txn‖. Since S and T satisfy condition (B), it follows that

lim
n→∞

f(d(xn, F )) = 0.

This implies that lim
n→∞

d(xn, F ) = 0. So we can find a subsequence {xnj
} of

{xn} and a sequence {x∗j} ⊂ F satisfying ‖xnj
− x∗j‖ ≤ 2−j. Put nj+1 = nj + k

for some k ≥ 1. Then

‖xnj+1
− x∗j‖ ≤ ‖xnj+k−1 − x∗j‖ ≤ ‖xnj

− x∗j‖ ≤
1

2j

and so we have ‖x∗j+1 − x∗j‖ ≤ 3
2j+1 . Thus {x∗j} is a Cauchy sequence and so

there exists y∗ ∈ K such that x∗j → y∗ as j →∞. Since F is closed, y∗ ∈ F . As
a result, we have xnj

→ y∗ as j → ∞. Since lim
n→∞

‖xn − y∗‖ exists by Lemma

3.1, the conclusion follows. ¤
Combining Theorem 3.5 and Lemma 2.3, we obtain the following result, which

contains Theorem KF2 as a special case. Unlike Khan and Fakhar-ud-din [7],
we do not impose the boundedness condition on K.

Theorem 3.6. Let E be a real uniformly convex Banach space and K a
nonempty closed convex subset of E. Let S, T : K → K be two nonexpansive
mappings with F := F (S) ∩ F (T ) 6= ∅. Let {αn}, {βn}, {γn}, {α′n}, {β′n},
{γ′n} be real sequences in [0, 1] satisfying (1.3), (1.4) and αn, α′n ∈ [ε, 1− ε] for
some ε ∈ (0, 1). For arbitrary x1 ∈ K, define the sequence {xn} by the recursion
(1.2). Suppose S and T satisfy condition (B). Then {xn} converges strongly to
some common fixed point of S and T .

Finally we prove the following strong convergence theorem.

Theorem 3.7. Let E be a real uniformly convex Banach space and K a
nonempty closed convex subset of E. Let S, T : K → K be two nonexpansive
mappings with F := F (S) ∩ F (T ) 6= ∅. Let {αn}, {βn} be real sequences in
[ε, 1 − ε] for some ε ∈ (0, 1). For arbitrary x1 ∈ K, define the sequence {xn}
by the recursion (1.5). Suppose one of S and T is semi-compact. Then {xn}
converges strongly to some common fixed point of S and T .

Proof. We may assume that T is semi-compact. By Lemma 3.1, {xn} is bounded
and by Lemma 3.2, we have lim

n→∞
‖xn − Txn‖ = 0 = lim

n→∞
‖xn − Sxn‖. So there

exists a subsequence {xm} of {xn} such that xm → x∗ ∈ K as j → ∞. Now
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Lemma 3.2 guarantees that lim
m→∞

‖xm − Txm‖ = 0 = lim
m→∞

‖xm − Sxm‖ and so

‖x∗−Tx∗‖ = 0 = ‖x∗−Sx∗‖. This implies that x∗ ∈ F . Since lim
n→∞

d(xn, F ) = 0,

it follows, as in the proof of Theorem 3.5, that {xn} converges strongly to some
common fixed point of S and T . This completes the proof. ¤

The following proposition was noted in [3] (see [3] for definitions).

Proposition 3.8. Let E be a uniformly convex Banach space and K be a
nonempty closed bounded convex subset of E. Suppose T : K → K. Then T is
semi-compact if T satisfies any of the following conditions:

(1) T is either set-condensing or ball-condensing (or compact);
(2) T is a generalized contraction;
(3) T is uniformly strictly contractive;
(4) T is strictly semicontractive;
(5) T is of strictly semicontractive type;
(6) T is of strongly semicontractive type.

Remarks.

(1) B. E. Rhoades in MR:2004m:47143 and C. E. Chidume in MR2003m:
47133 pointed out that generalizing a convergence theorem for an iter-
ation scheme without errors to the corresponding one with errors con-
tributes nothing to the theory. Moreover, Rhoades in [11] has mentioned
the practical impossibility of carrying out such an iteration scheme.

(2) Let E be a reflexive Banach space. Then the dual E∗ of E has the
Kadec-Klee property if and only if E is asymptotically smooth [6].

(3) It is possible to replace the semi-compactness assumption in Theorem
3.7 by any one of the contractive assumptions (1)–(6) of Proposition 3.8.
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