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OSCILLATIONS OF HIGHER ORDER FUNCTIONAL
DIFFERENTIAL EQUATIONS WITH IMPULSES

CHAOLONG ZHANG AND WEIZHEN FENG

Abstract. A kind of higher order sub-and super-linear FDE with impulses
is studied in this paper. Several criteria on the oscillations of solutions are
given. In particular, in the case where the coefficients of equations are posi-
tive and continuous functions, we find some suitable impulse functions such
that all solutions of the equation are oscillatory under the impulse control.
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1. Introduction

Recent years have seen on increasing number of papers dealing with the os-
cillatory behavior of ODE(FDE) with impulses. There are some good results
on the oscillation of first order ODE with impulses [1]–[5]. The oscillation of
second order ODE with impulses is studied in [6]–[8], and the oscillation of sec-
ond order FDE in [9]–[11]. Some results on the oscillation of higher order ODE
are obtained in [12], [13]. However papers, where the oscillation of higher order
FDE is investigated, are very rare.

In this paper, we mainly study a kind of higher order sub- and super-linear
FDE with impulses under conditions (A) and (B). We can always find some
suitable impulse functions such that all solutions of the equation can become
oscillatory under the impulse control. We believe that the oscillation under the
impulse control is significant both in the theory and in applications.

2. Main Results

We consider the system




x(2n)(t) + p(t)|x(t− τ)|r sgn(x(t− τ)) = 0, t ≥ t0, t 6= tk,

x(i)(t+k ) = a
(i)
k x(i)(tk), i = 0, 1, . . . , 2n− 1, k = 1, 2, . . . ,

x(i)(t+0 ) = x
(i)
0 , i = 0, 1, . . . , 2n− 1,

x(t) = φ(t), t0 − τ ≤ t ≤ t0,

(1)

where

x(i)(tk) = lim
h→0−

x(i−1)(tk + h)− x(i−1)(tk)

h
,

x(i)(t+k ) = lim
h→0+

x(i−1)(tk + h)− x(i−1)(t+k )

h
,
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φ : [t0 − τ, t0] → R has at most a finite number of discontinuous points of first
kind and is left continuous at these points, 0 ≤ t0 < t1 < · · · < tk < · · · ,
lim
k→∞

tk = +∞, x(0)(t) = x(t), n is a natural number. Here we always assume

that the following conditions hold:

(A) a
(i)
k > 0, i = 0, 1, . . . , 2n − 1, τ ≥ 0, r > 0, tk+1 − tk > τ, p(t) is

nonnegative and continuous on [t0, +∞), and p(t) is not always equal to 0 in
[t, +∞) for t ≥ t0;

(B) (t1 − t0) +
a

(i)
1

a
(i−1)
1

(t2 − t1) +
a

(i)
1 a

(i)
2

a
(i−1)
1 a

(i−1)
2

(t3 − t2)

+ · · ·+ a
(i)
1 a

(i)
2 · · · a(i)

m

a
(i−1)
1 a

(i−1)
2 · · · a(i−1)

m

(tm+1 − tm) + · · · = +∞. (2)

Definition 1. A function x : [t0− τ, +∞) → R is said to be a solution of (1)

on [t0 − τ, +∞) starting from (t0, φ, x
(0)
0 , x

(1)
0 , . . . , x

(2n−1)
0 ) if

(i) x(i)(t) is continuous on [t0, +∞) \ {tk, k ∈ N}, i = 0, 1, . . . , 2n− 1;

(ii) x(t) = φ(t), t ∈ [t0 − τ, t0], x(i)(t+0 ) = x
(i)
0 , i = 0, 1, . . . , 2n− 1;

(iii) x(t) satisfies the first equality of (1) on [t0, +∞) \ {tk, k ∈ N};
(iv) x(i)(t) has two-side limits and is left continuous at the points tk, k =

1, 2, . . . , x(i)(tk) satisfies the second equality of (1), i = 0, 1, 2, . . . , 2n− 1.

Remark 1. Let x0(t) = x(t), x1(t) = x′(t), . . . , x2n−1(t) = x(2n−1)(t). Then
equation (1) can be changed into





x′0(t) = x1(t),

x′1(t) = x2(t),

· · · · · · · · · · · ·
x′2n−2(t) = x2n−1(t), t ≥ t0, t 6= tk,

x′2n−1(t) = −p(t)|x0(t− τ)|r sgn x0(t− τ),

xi(t
+
k ) = a

(i)
k xi(tk), i = 0, 1, . . . , 2n− 1, k = 1, 2 . . . ,

x0(t) = φ(t), t0 − τ ≤ t ≤ t0,

x(i)(t+0 ) = x
(i)
0 .

The global existence and uniqueness of solution of (1) can be found in [14]–[15].
In the following, we always assume that solutions of (1) exist on [t0, +∞).

Definition 2. A solution of (1) is said to be non-oscillatory if it is eventually
positive or eventually negative. Otherwise, this solution is said to be oscillatory.

Lemma 1. Let x(t) be a solution of (1), and conditions (A), (B) be satisfied.
Suppose that there exist an i ∈ {1, 2, . . . , 2n− 1} and some T ≥ t0 such that
x(i)(t) > 0 (< 0), x(i+1)(t) ≥ 0 (≤ 0) for t ≥ T . Then there exists some T1 ≥ T
such that x(i−1)(t) > 0 (< 0) for t ≥ T1.
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Proof. Without loss of generality, suppose that T = t1, x(i)(t) > 0, x(i+1)(t) ≥ 0
for t ∈ (tk, tk+1] (k = 1, 2, . . . ). Hence x(i)(t) > 0 is monotonically nondecreasing
in (tk, tk+1]. For t ∈ (t1, t2], we have

x(i)(t) ≥ x(i)(t+1 ).

Integrating the above inequality, we have

x(i−1)(t2) ≥ x(i−1)(t+1 ) + x(i)(t+1 )(t2 − t1). (3)

Similarly to (3),

x(i−1)(t3) ≥ x(i−1)(t+2 ) + x(i)(t+2 )(t3 − t2). (4)

By x(i)(t2) ≥ x(i)(t+1 ) and (3), (4), we have

x(i−1)(t3) ≥ x(i−1)(t+2 ) + x(i)(t+2 )(t3 − t2)

= a
(i−1)
2 x(i−1)(t2) + a

(i)
2 x(i)(t2)(t3 − t2)

≥ a
(i−1)
2 [x(i−1)(t+1 ) + x(i)(t+1 )(t2 − t1)] + a

(i)
2 x(i)(t2)(t3 − t2)

≥ a
(i−1)
2

[
x(i−1)(t+1 ) + x(i)(t+1 )(t2 − t1) +

a
(i)
2

a
(i−1)
2

x(i)(t+1 )(t3 − t2)

]
.

Applying mathematical induction for any natural number m we have

x(i−1)(tm) ≥ a
(i−1)
m−1 · · · a(i−1)

3 a
(i−1)
2

{
x(i−1)(t+1 ) + x(i)(t+1 )

[
(t2 − t1)

+
a

(i)
2

a
(i−1)
2

(t3 − t2) + · · ·+ a
(i)
2 a

(i)
3 · · · a(i)

m−1

a
(i−1)
2 a

(i−1)
3 · · · a(i−1)

m−1

(tm − tm−1)

]}
. (5)

By condition (B) and a
(i)
k >0, for all sufficiently large m, we have x(i−1)(tm)>0.

That is, there exists a natural number N such that tN ≥ T and for m ≥ N ,
we have x(i−1)(tm) > 0. Since x(i)(t) > 0, we have x(i−1)(t) > x(i−1)(tk) > 0 for
t ∈ (tk, tk+1] where k ≥ N . Hence for t ≥ tN , we have x(i−1)(t) > 0. The proof
of Lemma 1 is completed. ¤

Lemma 2. Let x(t) be a solution of (1) and conditions (A), (B) be satisfied.
Suppose that there exist an i ∈ {1, 2, . . . , 2n} and some T ≥ t0 such that x(t) >
0, x(i)(t) ≤ 0 for t ≥ T , x(i)(s) is not always equal to 0 in [t, +∞) (t ≥ T ).
Then x(i−1)(t) > 0 for all sufficiently large t.

Proof. Let T = t0. We claim that x(i−1)(tk) > 0 for any tk ≥ T .
If this is not true, then there exists some tj ≥ T such that x(i−1)(tj) ≤ 0.

Since x(i)(t) ≤ 0, x(i−1)(t) is non-increasing in (tk, tk+1] for k ≥ j and x(i)(s)
is not always equal to 0 in [t, +∞), there exists some tl ≥ tj such that x(i)(t)
is not always equal to 0 in (tl, tl+1]. Without loss of generality, we can assume
that l = j. So we have

x(i−1)(tj+1) < x(i−1)(t+j ) = a
(i−1)
j x(i−1)(tj) ≤ 0.
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For t ∈ (tj+1, tj+2] we have

x(i−1)(tj+2) ≤ x(i−1)(t+j+1) = a
(i−1)
j+1 x(i−1)(tj+1) < 0.

By induction, we have x(i−1)(t) < 0, t ∈ (tj+m, tj+m+1] for all sufficiently large
m. Thus we have x(i−1)(t) < 0, x(i)(t) ≤ 0, t ∈ (tj+1, +∞). By Lemma 1, for all
sufficiently large t we have x(i−2)(t) < 0. Applying Lemma 1 repeatedly, for all
sufficiently large t we have x(t) < 0. This is a contradiction to x(t) > 0(t ≥ T )!
Hence we have x(i−1)(tk) > 0 for any tk. So we have x(i−1)(t) > 0 for all
sufficiently large t. The proof of Lemma 2 is completed. ¤

Lemma 3. Let x(t) be a solution of (1) and conditions (A), (B) be satisfied.
Suppose there exist some T ≥ t0 such that x(t) > 0 for t ≥ T . Then there exists
some T ′ ≥ T and l ∈ {1, 3, . . . , 2n− 1} such that for t ≥ T ′,





x(i)(t) > 0, i = 0, 1, . . . , l,

(−1)i−1x(i)(t) > 0, i = l + 1, . . . , 2n− 1,

x(2n)(t) ≤ 0.

(6)

Proof. Let T = t0. Since x(t) > 0 (t ≥ t0), by (1) and that p(t) is nonnegative
and is not always equal to 0 on any (t, +∞), we have

x(2n)(t) = −p(t)[x(t− τ)]r ≤ 0,

and x(2n)(s) is not always equal to 0 in (t, +∞) for t ≥ t0. By Lemma 2,
we have x(2n−1)(t) > 0 for sufficiently large t. Without loss of generality, let
x(2n−1)(t) > 0 for t ≥ t0. So x(2n−2)(t) is nondecreasing on (tk, tk+1]. If for any
tk, x(2n−2)(tk) < 0, then x(2n−2)(t) < 0 (t ≥ t0). If there exists some tj such that

x(2n−2)(tj) ≥ 0, by x(2n−2)(t) is nondecreasing on (tk, tk+1] and a
(2n−2)
k > 0, we

get x(2n−2)(t) > 0 for t > tj. So there exists some T1 ≥ T such that one of the
following statements holds:

(A1) x(2n−1)(t) > 0, x(2n−2)(t) > 0, t ≥ T1;

(B1) x(2n−1)(t) > 0, x(2n−2)(t) < 0, t ≥ T1.

When (A1) holds, by Lemma 1, we have x(2n−3)(t) > 0 for all sufficiently large t.
Applying Lemma 1 repeatedly, for all sufficiently large t, we have x(2n−1)(t) > 0,
x(2n−2)(t) > 0, . . . , x′(t) > 0, x(t) > 0, and (6) holds with l = 2n− 1.

When (B1)holds, by Lemma 2, we have x(2n−3)(t) > 0 for all sufficiently large
t. By deducing further, there exists some T2 ≥ T1 such that one of the following
statements holds:

(A2) x(2n−3)(t) > 0, x(2n−4)(t) > 0, t ≥ T2;

(B2) x(2n−3)(t) > 0, x(2n−4)(t) < 0, t ≥ T2.

Repeating the above reasoning, we can get that there exists some T ′ ≥ T and
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l ∈ {1, 3, . . . , 2n− 3} such that for t ≥ T ′,




x(i)(t) > 0, i = 0, 1, . . . , l,

(−1)i−1x(i)(t) > 0, i = l + 1, l + 2, . . . , 2n− 1,

x(2n)(t) ≤ 0.

The proof of Lemma 3 is completed. ¤

Remark 2. If x(t) is an eventually negative solution of (1), we obtain results
similar to Lemmas 2 and 3.

Theorem 1. If conditions (A), (B) hold, a
(0)
k ≥ 1 for k = 1, 2, . . . and

t1∫

t0

p(t) dt +
1

a
(2n−1)
1

t2∫

t1

p(t) dt +
1

a
(2n−1)
1 a

(2n−1)
2

t3∫

t2

p(t) dt

+ · · ·+ 1

a
(2n−1)
1 a

(2n−1)
2 · · · a(2n−1)

m

tm+1∫

tm

p(t) dt + · · · = +∞, (7)

then every solution of (1) is oscillatory.

Proof. Let x(t) be a non-oscillatory solution of (1). Without loss of generality,
let x(t) > 0 (t ≥ t0). By Lemma 3 and (1), there exists T ′ ≥ t0 such that for
t ≥ T ′ we have

x(2n)(t) ≤ 0, x(2n−1)(t) > 0, x′(t) > 0, x(t) > 0. (8)

Since a
(0)
k ≥ 1 (k = 1, 2, . . . ), there exists some natural number l such that x(t) is

nondecreasing in [tl, +∞), x(t+l ) ≤ x(tl+1) ≤ x(t+l+1) ≤ x(tl+2) ≤ x(t+l+2) ≤ · · · .
Let j be some natural number such that [tj − τ, +∞) ⊂ [tl, +∞). Then (1)
yields

x(2n)(t) = −p(t)xr(t− τ), t > tj, t 6= tk. (9)

Integrating (9) from tj to tj+1, we have

x(2n−1)(tj+1)− x(2n−1)(t+j ) = −
tj+1∫

tj

p(t)xr(t− τ)dt. (10)

By (10) and that x(t) is increasing, we have

x(2n−1)(tj+1) = x(2n−1)(t+j )−
tj+1∫

tj

p(t)xr(t− τ)dt

≤ x(2n−1)(t+j )− [x(tj − τ)]r

tj+1∫

tj

p(t)dt
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= a
(2n−1)
j x(2n−1)(tj)− [x(tj − τ)]r

tj+1∫

tj

p(t)dt. (11)

Similarly to (11), we have

x(2n−1)(tj+2) = a
(2n−1)
j+1 x(2n−1)(tj+1)− [x(tj+1 − τ)]r

tj+2∫

tj+1

p(t)dt

≤ a
(2n−1)
j+1

[
a

(2n−1)
j x(2n−1)(tj)− [x(tj − τ)]r

tj+1∫

tj

p(t)dt

]
− [x(tj − τ)]r

tj+2∫

tj+1

p(t)dt

≤ a
(2n−1)
j+1

{
a

(2n−1)
j x(2n−1)(tj)− [x(tj − τ)]r

[ tj+1∫

tj

p(t)dt

+
1

a
(2n−1)
j+1

tj+2∫

tj+1

p(t)dt

]}
. (12)

By mathematical induction we have for any natural number m ≥ 2,

x(2n−1)(tj+m) ≤ a
(2n−1)
j+m−1a

(2n−1)
j+m−2 · · · a(2n−1)

j+1

{
a

(2n−1)
j+1 x(2n−1)(tj)

− [x(tj − τ)]r
[ tj+1∫

tj

p(t)dt +
1

a
(2n−1)
j+1

tj+2∫

tj+1

p(t)dt +
1

a
(2n−1)
j+2 a

(2n−1)
j+1

tj+3∫

tj+2

p(t)dt

+ · · ·+ 1

a
(2n−1)
j+m−1a

(2n−1)
j+m−2 · · · a(2n−1)

j+1

tj+m∫

tj+m−1

p(t)dt

]}
. (13)

By (7), (13) and a
(i)
k > 0, for all sufficiently large m, we have

x(2n−1)(tj+m) < 0.

This contradicts the fact that x(2n−1)(t) > 0 for all sufficiently large t. So every
solution of (1) is oscillatory. The proof of Theorem 1 is completed. ¤

Corollary 1. Assume that conditions (A) and (B) hold, and a
(0)
k ≥ 1,

a
(2n−1)
k ≤ 1 for k = 1, 2, . . . . If

∫ +∞
p(t)dt = +∞, then every solution of

(1) is oscillatory.

Proof. By a
(2n−1)
k ≤ 1, we have

1

a
(2n−1)
1 a

(2n−1)
2 · · · a(2n−1)

k

tk+1∫

tk

p(t)dt ≥
tk+1∫

tk

p(t)dt.
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As m → +∞,
∫ tm+1

t0
p(t)dt → +∞, condition (7) of Theorem 1 holds. By

Theorem 1, we know that every solution of (1) is oscillatory. ¤

Corollary 2. Assume that conditions (A) and (B) hold and there exists an

α > 0 such that a
(0)
k ≥ 1, 1

a
(2n−1)
k

≥ ( tk+1

tk
)α for k = 1, 2, . . . . If

∫ +∞
tαp(t)dt =

+∞, then every solution of (1) is oscillatory.

Proof. By 1

a
(2n−1)
k

≥ ( tk+1

tk
)α, we have

1

a
(2n−1)
1 a

(2n−1)
2 · · · a(2n−1)

k

tk+1∫

tk

p(t)dt ≥
( 1

t1

)α
tk+1∫

tk

tαp(t)dt.

Then

t1∫

t0

p(t)dt +
1

a
(2n−1)
1

t2∫

t1

p(t)dt +
1

a
(2n−1)
1 a

(2n−1)
2

t3∫

t2

p(t)dt ≥
( 1

t1

)α
tm+1∫

t1

tαp(t)dt.

As m → +∞,
∫ tm+1

t1
p(t)dt → +∞, condition (7) of Theorem 1 holds. Theorem

1 implies that every solution of (1) is oscillatory. ¤

Theorem 2. Suppose that conditions (A), (B) hold and for any natural num-
ber k, tk − tk−1 > τ > 0. Let either

(a) :

t1∫

t0+τ

p(t)dt +
[a

(0)
1 ]r

a
(2n−1)
1

t2∫

t1+τ

p(t)dt +
[a

(0)
1 ]r[a

(0)
2 ]r

a
(2n−1)
1 a

(2n−1)
2

t3∫

t2+τ

p(t)dt

+ · · ·+ [a
(0)
1 ]r[a

(0)
2 ]r · · · [a(0)

m ]r

a
(2n−1)
1 a

(2n−1)
2 · · · a(2n−1)

m

tm+1∫

tm+τ

p(t)dt + · · · = +∞ (14)

or

(b) :

t0+τ∫

t0

p(t)dt +
1

a
(2n−1)
1

t1+τ∫

t1

p(t)dt +
[a

(0)
1 ]r

a
(2n−1)
1 a

(2n−1)
2

t2+τ∫

t2

p(t)dt

+ · · ·+ [a
(0)
1 ]r[a

(0)
2 ]r · · · [a(0)

m−1]
r

a
(2n−1)
1 a

(2n−1)
2 · · · a(2n−1)

m

tm+τ∫

tm

p(t)dt + · · · = +∞ (15)

hold. Then every solution of (1) is oscillatory.

Proof. Suppose that (1) has a non-oscillatory solution x(t). Without the loss of
generality suppose that T ′ = t0 and x(t) > 0 (t ≥ t0). Lemma 3 and (1) imply
that there exists T ′ = t0 such that for t ≥ T ′,

x(2n)(t) ≤ 0, x(2n−1)(t) > 0, x′(t) > 0, x(t) > 0. (16)
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Then

x(2n−1)(tk+m) ≤ x(2n−1)(t+k+m−1) = a
(2n−1)
k+m−1x

(2n−1)(tk+m−1)

≤ a
(2n−1)
k+m−1x

(2n−1)(t+k+m−2)

= a
(2n−1)
k+m−1a

(2n−1)
k+m−2x

(2n−1)(tk+m−2)

≤ · · · · · · · · · · · ·
≤ a

(2n−1)
k+m−1a

(2n−1)
k+m−2 · · · a(2n−1)

3 a
(2n−1)
2 a

(2n−1)
1 x(2n−1)(t1),

x(t+k ) = a
(0)
k x(tk) ≥ a

(0)
k x(t+k−1) ≥ a

(0)
k a

(0)
k−1x(tk−1)

≥ · · · · · · · · · · · ·
≥ a

(0)
k a

(0)
k−1 · · · a(0)

2 a
(0)
1 x(t1).

If condition (a) holds, then for t ∈ (t1, t2],

x(2n)(t) = −p(t)[x(t− τ)]r. (17)

Integrating (17) from t1 to t2, we have

x(2n−1)(t2) = x(2n−1)(t+1 )−
t2∫

t1

p(t)[x(t− τ)]rdt

≤ a
(2n−1)
1 x(2n−1)(t1)− [x(t+1 )]r

t2∫

t1+τ

p(t)dt

≤ a
(2n−1)
1 x(2n−1)(t1)− [a

(0)
1 ]r[x(t1)]

r

t2∫

t1+τ

p(t)dt.

Similarly,

x(2n−1)(t3) ≤ a
(2n−1)
2 x(2n−1)(t2)− [x(t+2 )]r

t3∫

t2+τ

p(t)dt

≤ a
(2n−1)
2

[
a

(2n−1)
1 x(2n−1)(t1)− [a

(0)
1 ]r[x(t1)]

r

t2∫

t1+τ

p(t)dt

]

− [a
(0)
1 ]r[a

(0)
2 ]r[x(t1)]

r

t3∫

t2+τ

p(t)dt

= a
(2n−1)
2 a

(2n−1)
1 x(2n−1)(t1)

− [x(t1)]
r

[
[a

(0)
1 ]ra

(2n−1)
2

t2∫

t1+τ

p(t)dt + [a
(0)
1 ]r[a

(0)
2 ]r

t3∫

t2+τ

p(t)dt

]
.
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Suppose that, for any natural number k

x(2n−1)(tk) ≤ a
(2n−1)
1 a

(2n−1)
2 · · · a(2n−1)

k−2 a
(2n−1)
k−1 x(2n−1)(t1)

− [x(t1)]
r

{ k−1∑
i=1

[a
(0)
1 ]r · · · [a(0)

i ]ra
(2n−1)
i+1 · · · a(2n−1)

k−1

ti+1∫

ti+τ

p(t)dt

}
.

Integrating (17) from tk to tk+1, we have

x(2n−1)(tk+1) ≤ a
(2n−1)
k x(2n−1)(tk)− [x(t+k )]r

tk+1∫

tk+τ

p(t)dt

≤ a
(2n−1)
k a

(2n−1)
1 a

(2n−1)
2 · · · a(2n−1)

k−1 x(2n−1)(t1)

− [x(t1)]
r

{ k−1∑
i=1

[a
(0)
1 ]r · · · [a(0)

i ]ra
(2n−1)
i+1 · · · a(2n−1)

k−1

ti+1∫

ti+τ

p(t)dt

}

− [a
(0)
1 ]r[a

(0)
2 ]r · · · [a(0)

k−1]
r[a

(0)
k ]r[x(t1)]

r

tk+1∫

tk+τ

p(t)dt

= a
(2n−1)
1 a

(2n−1)
2 · · · a(2n−1)

k−1 a
(2n−1)
k x(2n−1)(t1)

− [x(t1)]
r

{ k∑
i=1

[a
(0)
1 ]r · · · [a(0)

i ]ra
(2n−1)
i+1 · · · a(2n−1)

k

ti+1∫

ti+τ

p(t)dt

}
.

By mathematical induction, we know that for any natural number m

x(2n−1)(tm) ≤ a
(2n−1)
1 a

(2n−1)
2 · · · a(2n−1)

m−1 x(2n−1)(t1)

− [x(t1)]
r

{ m−1∑
i=1

[a
(0)
1 ]r · · · [a(0)

i ]ra
(2n−1)
i+1 · · · a(2n−1)

m−1

ti+1∫

ti+τ

p(t)dt

}
.

Therefore

x(2n−1)(tm) ≤ a
(2n−1)
1 a

(2n−1)
2 · · · a(2n−1)

m−1 [x(t1)]
r

{
x(2n−1)(t1)

[x(t1)]r

−
{ m−1∑

i=1

[a
(0)
1 ]r · · · [a(0)

i ]r

a
(2n−1)
1 · · · a(2n−1)

i

ti+1∫

ti+τ

p(t)dt

}}
.

The above inequality and (14) imply that x(2n−1)(tm) ≤ 0 for m large enough.
Thus x(2n−1)(t) ≤ 0 for all sufficiently large t. This contradicts x(2n−1)(t) > 0
for t ≥ T ′. So every solution of (1) is oscillatory.
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If condition (b) holds, integrating (17) from t1 to t2, we have

x(2n−1)(t2) = x(2n−1)(t+1 )−
t2∫

t1

p(t)[x(t− τ)]rdt

≤ x(2n−1)(t+1 )−
t1+τ∫

t1

p(t)[x(t− τ)]rdt

≤ a
(2n−1)
1 x(2n−1)(t1)− [x(t1 − τ)]r

t1+τ∫

t1

p(t)dt.

Similarly,

x(2n−1)(t3) ≤ a
(2n−1)
2 x(2n−1)(t2)− [x(t2 − τ)]r

t2+τ∫

t2

p(t)dt

≤ a
(2n−1)
2 x(2n−1)(t2)− [x(t+1 )]r

t2+τ∫

t2

p(t)dt

≤ a
(2n−1)
2

{
a

(2n−1)
1 x(2n−1)(t1)− [x(t1 − τ)]r

t1+τ∫

t1

p(t)dt

}

− [a
(0)
1 ]r[x(t1 − τ)]r

t2+τ∫

t2

p(t)dt

= a
(2n−1)
2 a

(2n−1)
1 x(2n−1)(t1)

− [x(t1 − τ)]r
{

a
(2n−1)
2

t1+τ∫

t1

p(t)dt + [a
(0)
1 ]r

t2+τ∫

t2

p(t)dt

}
.

By mathematical induction, for any natural number m

x(2n−1)(tm) ≤ a
(2n−1)
1 a

(2n−1)
2 · · · a(2n−1)

m−1 x(2n−1)(t1)

− [x(t1 − τ)]r
{ m−1∑

i=1

[a
(0)
1 ]r · · · [a(0)

i−1]
ra

(2n−1)
i+1 · · · a(2n−1)

m−1

ti+τ∫

ti

p(t)dt

}
.

Hence

x(2n−1)(tm) ≤ a
(2n−1)
1 a

(2n−1)
2 · · · a(2n−1)

m−1 [x(t1 − τ)]r
{

x(2n−1)(t1)

[x(t1 − τ)]r
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−
{ m−1∑

i=1

[a
(0)
1 ]r · · · [a(0)

i−1]
r

a
(2n−1)
1 · · · a(2n−1)

i

ti+τ∫

ti

p(t)dt

}}
.

The above inequality and (15) imply that x(2n−1)(tm) ≤ 0 for m large enough.
So x(2n−1)(t) ≤ 0 for all sufficiently large t. This contradicts x(2n−1)(t) > 0 for
t ≥ T ′. So every solution of (1) is oscillatory.

Summing up the above discussion, we can see that every solution of (1) is
oscillatory. The proof is completed. ¤

Consider {
x(2n)(t) + p(t)|x(t− τ)|r sgn(x(t− τ)) = 0, t ≥ t0,

x(t) = φ(t), t0 − τ ≤ t ≤ t0
(18)

and 



x(2n)(t) + p(t)|x(t− τ)|r sgn(x(t− τ)) = 0,

x(i)(t+k ) = Ik(i)(x
(i)(tk)) for i = 0, 1, . . . , 2n− 1,

x(i)(t+0 ) = x
(i)
0 for k = 0, 1, . . . ,

x(t) = φ(t), t0 − τ ≤ t ≤ t0.

(19)

where Ik(i)(x) is continuous on (−∞, +∞) and xIk(i)(x) > 0 (x 6= 0), k =
1, 2, . . . , ϕ(t) : [t0 − τ, t0] → R has at most a finite number of discontinuous
points of first kind and is left continuous at those points.

Theorem 3. If p(t) > 0 is continuous on [0, +∞), r > 0, r 6= 1, then for
any {tm} : 0 < t1 < t2 < · · · < tm < · · · , tm − tm−1 > τ > 0, one can find
suitable impulsive functions Ik(i)(x) such that under the impulsive effects (18)
transforms to (19), all solutions of (19) are oscillatory.

Proof. Let ck =
∫ tk+1

tk+τ
p(t)dt, c0 = 1 and Ik(i)(x) = dkx (a

(i)
k = dk), where

dk = ( ck−1

ck
)

1
r−1 , k = 1, 2, . . . . Then

dr−1
1 =

1

c1

, (d1d2)
r−1 =

1

c2

, . . . , (d1d2 · · · dm)r−1 =
1

cm

.

Hence

t1∫

t0+τ

p(t)dt +
[a

(0)
1 ]r

a
(2n−1)
1

t2∫

t1+τ

p(t)dt +
[a

(0)
1 ]r[a

(0)
2 ]r

a
(2n−1)
1 a

(2n−1)
2

t3∫

t2+τ

p(t)dt

+ · · ·+ [a
(0)
1 ]r[a

(0)
2 ]r · · · [a(0)

m ]r

a
(2n−1)
1 a

(2n−1)
2 · · · a(2n−1)

m

tm+1∫

tm+τ

p(t)dt

≥ dr−1
1 c1 + (d1d2)

r−1c2 + · · ·+ (d1d2 · · · dm)r−1cm = m.

Therefore the condition (a) of Theorem 2 holds. We can see that every solution
of (19) is oscillatory. ¤
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Remark 3. Though the condition on p(t) cannot guarantee that all solutions
of (18) are oscillatory, we can see from Theorem 3 that if we give some suitable
impulsive effects to it, all solutions can become oscillatory.

3. Examples

Example 1. Consider the system




x(2n)(t) + x2n−1(t− 1
2
) = 0, t ≥ t0 = 1, t 6= 2k, k = 1, 2, . . . ,

x((2k)+) = 2x(2k), x(i)((2k)+) = k
k+1

x(i)(2k), i = 1, . . . , 2n− 1,

x(1) = x0, x(i)(1+) = x
(i)
0 ,

x(t) = φ(t), t ∈ [1
2
, 1].

(20)

where a
(0)
k = 2 > 1, a

(i)
k = k

k+1
, i = 1, 2, . . . , 2n−1, p(t) = 1, tk = 2k, τ = 1

2
> 0,

tk+1 − tk = 2k+1 − 2k = 2k > 1
2
, t0 = 1, γ = 2n− 1. It is obvious that condition

(A) is satisfied. As to condition (B), for i > 1, a
(i)
k = k

k+1
we have

(t1−t0)+(t2−t1)+(t3−t2)+· · ·+(tm+1−tm)+ · · ·=1+21+22+· · ·+2m+ · · ·=+∞.

For i = 1, a
(0)
k = 2, a

(1)
k = k

k+1
we have

(t1 − t0) +
1

2×2
(t2−t1) +

1

3×22
(t3−t2) + · · ·+ 1

(m + 1)×2m
(tm+1−tm) + · · ·

= 1 +
1

2× 2
2 +

1

3× 22
22 + · · ·+ 1

(m + 1)× 2m
2m + · · ·

= 1 +
1

2
+

1

3
+ · · ·+ 1

m + 1
+ · · · = +∞.

So, condition (B) holds.

Since a
(2n−1)
k = k

k+1
, we have

t1∫

t0

p(t)dt +
1

a
(2n−1)
1

t2∫

t1

p(t)dt +
1

a
(2n−1)
1 a

(2n−1)
2

t3∫

t2

p(t)dt

+ · · ·+ 1

a
(2n−1)
1 a

(2n−1)
2 · · · a(2n−1)

m

tm+1∫

tm

p(t)dt + · · ·

=

t1∫

t0

1dt + 2

t2∫

t1

1dt + 3

t3∫

t2

1dt + · · ·+ (m + 1)

tm+1∫

tm

1dt + · · ·

= (t1 − t0) + 2(t2 − t1) + 3(t3 − t2) + · · ·+ (m + 1)(tm+1 − tm) + · · ·
= 1 + 2× 2 + 3× 22 + · · ·+ (m + 1)× 2m + · · · = +∞.

Therefore we get that the conditions of Theorem 1 hold. So we can see that
every solution of (20) defined on [t0, +∞) is oscillatory.
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Example 2. Consider the sublinear system:



x(2n)(t) + 2
t
x

1
9 (t− ln 2) = 0, t ≥ t0 = 1

2
, t 6= k, k = 1, 2, . . . ,

x(k+) = x(k), x(i)(k+) = k
k+1

x(i)(k), i = 1, . . . , 2n− 1,

x(
1

2
) = x0, x(i)(1

2

+
) = x

(i)
0 ,

x(t) = φ(t), t ∈ [1
2
− ln 2, 1

2
],

(21)

where a
(0)
k = 1, a

(i)
k = k

k+1
, i = 1, 2, . . . , 2n− 1, τ = ln 2, tk = k, tk+1 − tk = 1 >

ln 2, p(t) = 2
t
, γ = 1

9
, t0 = 1

2
. It is obvious that condition (A) is satisfied. As to

condition (B), for i > 1, a
(i)
k = k

k+1
we have

(t1 − t0) + (t2 − t1) + (t3 − t2) + · · ·+ (tm+1 − tm) + · · · = +∞.

For i = 1, a
(0)
k = 1, a

(1)
k = k

k+1
we obtain

(t1 − t0) +
1

2
(t2 − t1) +

1

3
(t3 − t2) + · · ·+ 1

m + 1
(tm+1 − tm) + · · ·

=
1

2
+

1

2
+

1

3
+ · · ·+ 1

m + 1
+ · · · = +∞.

So, condition (B) holds.

Let α = 1, a
(0)
k = 1, 1

a
(2n−1)
k

= k+1
k
≥ ( tk+1

tk
)α = k+1

k
,

∫ +∞
t · p(t)dt = +∞.

Therefore the conditions of Corollary 2 are satisfied. Then every solution of
(21) defined on [t0, +∞) is oscillatory.
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