A LOCAL SYSTEM OF SPACES AND A BIGRADED MODEL OF FIBRATION

NODAR BERIKASHVILI

Dedicated to the memory of G. Lomadze

Abstract. On the singular complex of a space, a local system of acyclic spaces is constructed leading, for Serre fibrations, to a bigraded differential model for the chain complex of the total space.

2000 Mathematics Subject Classification: 55T10, 55R20, 55N10, 55S05.

Key words and phrases: Local system, singular complex, spectral sequence, bigraded model, bigraded algebra.

1. INTRODUCTION

In independent works [4] and [3] the following bigraded model of the chain complex of a fibration $F \to E \xrightarrow{\pi} B$ is given: the bigraded generators of the bigraded model $C_{**}(E) = \{C_{pq}(E,G)\}$ are continuous maps $\sigma^{pq} : \Delta^p \times \Delta^q \to E$ such that the composition $\pi \sigma^{pq} : \Delta^p \times \Delta^q \to B$ does not depend on the second argument. The differentials d' and d'' are defined in an obvious way via the differentials of standard simplexes Δ^p and Δ^q .

In [1] another bigraded model in the case B is a polyhedron, B = |K|, is considered as a bicomplex $C_{**}(E) = C_p(B, C_q(\pi^{-1}[\operatorname{st}(\sigma)], G))$, where $\operatorname{st}(\sigma)$ denotes the star of a simplex $\sigma \in K$. The proof, in the spirit of Zeeman's dihomology [6], is an easy one. The general case of a fibration with arbitrary Bis reduced then to that of polyhedron B by a standard but tedious technique.

Our aim is to construct the bigraded model of E by an analog technique for the general case of B. If $\operatorname{Sing}(B)$ is the singular complex of the space B, then in general it is not any longer an acyclic complex $\operatorname{st}(\sigma^m)$, $\sigma^m \in \operatorname{Sing}(X)$ (for example, $\operatorname{st}(\sigma^0)$ is homologically isomorphic to $\operatorname{Sing}(B)$ when B is a connected space). In Section 2 we construct such a system of spaces. In Section 3 we construct the bigraded model of a Serre fibration. In Sections 4 and 5 we equip the cohomology version of a bigraded model with cochain operations $\smile -$ and $\smile_i -$.

The main result of this paper was announced in [2]

2. A LOCAL SYSTEM OF SPACES ON THE SINGULAR COMPLEX

Let X be a space and $\operatorname{Sing}(X)$ be its singular complex. If $\sigma^m \in \operatorname{Sing}(X)$, i.e.,

$$\sigma^m: \Delta^m \to X,$$

ISSN 1072-947X / \$8.00 / © Heldermann Verlag www.heldermann.de

N. BERIKASHVILI

and if (i_1, i_2, \ldots, i_k) is a subset of the set $(0, 1, 2, \ldots, m)$, then its complementary subset, i.e., the subset

$$(\cdots \hat{i_1} \cdots \hat{i_2}, \dots, \hat{i_k} \cdots) \subset (0, 1, 2, \dots, m)$$

is a (m-k)-dimensional face of $\Delta^m = (0, 1, 2, 3, ..., m)$. Let denote it by $\Delta^m_{i_1 i_2 \cdots i_k}$. The restriction of σ^m on $\Delta^m_{i_1 i_2 \cdots i_k}$ let us call by the $(i_1, i_2, ..., i_k)$ -th face of σ^m and denote it by $\sigma^m_{i_1, i_2, \dots, i_k}$. One has $\dim(\sigma^m_{i_1, i_2, \dots, i_k}) = m - k$.

Let us fix σ^n and define a simplicial complex $K_1(\sigma^n)$ as follows. Consider all pairs $f = (\sigma^m, 0 \leq i_1 < i_2 < \cdots < i_k \leq m)$ such that $\sigma^m_{i_1, i_2, \dots, i_k} = \sigma^n$; for such a pair consider a copy of the standard *m*-simplex and denote it by Δ_f^m ; let $K_1(\sigma^n) = \bigcup_{m,f} \Delta_f^m$ (a disjoint union). Each simplex Δ_f^m , $f = (\sigma^m, 0 \leq i_1 < i_2 < \cdots < i_k \leq m)$, contains a standard *n*-simplex Δ^n as the face $[\Delta_f^m]_{i_1, i_2, \dots, i_k}$. Let us identify all them in $K_1(\sigma^n)$ as one Δ^n . The resulting factor space $K_2(\sigma^n)$ is still a simplicial complex. Obviously, $K_2(\sigma^n)$ is a cone with the first vertex of the simplex Δ^n at the top. Hence there is a standard contraction of $K_2(\sigma^n)$ to the first vertex of Δ^n .

If for a pair $f = (\sigma^m, 0 \leq i_1 < i_2 < \cdots < i_k \leq m)$, $(j_1 < j_2 < \cdots < j_p)$ is a subset of $(i_1 < i_2 < \cdots < i_k)$ we define a new pair f_{j_1,j_2,\ldots,j_p} , the (j_1, j_2, \ldots, j_p) th face of the pair f, as the pair $[\sigma^m_{j_1,j_2,\ldots,j_p}, 0 \leq \lambda_1 < \lambda_2 < \cdots < \lambda_{k-p} \leq m-p]$, where $\sigma^m_{j_1,j_2,\ldots,j_p}$ is the (j_1, j_2, \ldots, j_p) -th face of σ^m and the numbers $\lambda_1 < \lambda_2 < \cdots < \lambda_{k-p}$ correspond in an obvious way to the elements of $(i_1, i_2, \ldots, i_k) \setminus (j_1, j_2, \ldots, j_p)$. In the complex $K_2(\sigma^n)$ the pairs f and f_{j_1,j_2,\ldots,j_p} are independently given as simplexes. Let us jet identify the pair f_{j_1,j_2,\ldots,j_p} with the (j_1, j_2, \cdots, j_p) -th face of the pair f. So we get a factor space of $K_2(\sigma^n)$, the space $K(\sigma^n)$. Of course, still $\Delta^n \subset K(\sigma^n)$ and $K(\sigma^n)$ is still contractible to 0, the first vertex of Δ^n .

 $K(\sigma)$ is not any longer a simplicial complex because two different faces of a simplex Δ_f^m can be identified in $K(\sigma)$. But $K(\sigma)$ is obviously a simplicial set without degeneracy operators.

Below $K(\sigma)$ denotes a simplicial set or its realization.

Definition 1. If σ^n is a face of σ^p , $\sigma^n < \sigma^p$, then one defines a map

$$\epsilon_{\sigma^n \sigma^p} : K(\sigma^p) \to K(\sigma^n)$$

as the one induced by the obvious inclusion

$$K_2(\sigma^p) \subset K_2(\sigma^n).$$

Definition 2. For each $\Delta_f^m = (\sigma^m, \ 0 \leq i_1 < i_2 < \cdots < i_k \leq m)$ consider the map

$$\sigma^m: \Delta^m_f \to X$$

These maps define a map $K_2(\sigma^n) \to X$. Obviously, this map factors as

$$K_2(\sigma^n) \to K(\sigma^n) \to X.$$

Let the second map be denoted by ϵ_{σ^n} ,

$$\epsilon_{\sigma^n}: K(\sigma^n) \to X.$$

LOCAL SYSTEM

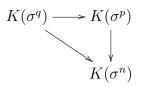
So, on the singular complex $\operatorname{Sing}(X)$, we have constructed a local system of simplicial sets $\{K(\sigma), \epsilon_{\sigma\sigma}, \epsilon_{\sigma}\}$.

Lemma 1. The system $\{K(\sigma), \epsilon_{\sigma\sigma}, \epsilon_{\sigma}\}$ is a local system of simplicial sets on Sing(X), *i.e.*,

(a) $K(\sigma), \sigma \in \text{Sing } X$, is a simplicial set without degeneracy operators;

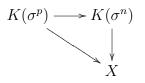
(b) if $\sigma^n < \sigma^p$, then the map $\epsilon_{\sigma^n \sigma^p}$ is a map of simplicial sets.

(c) if $\sigma^n < \sigma^p < \sigma^q$, then the diagram



is commutative;

(d) if $\sigma^n < \sigma^p$, then the diagram



is commutative.

Proof. The commutativity of the above diagrams is obvious from the definitions of the maps involved. \Box

The local system $\{K(\sigma), \epsilon_{\sigma\sigma}, \epsilon_{\sigma}\}$ is a covariant functor on the category of topological spaces: if $f: X \to Y$ is a map, then for a simplex $\sigma^n \in \text{Sing}(X)$ we define in an obvious way the map

$$K(f): K(\sigma^n) \to K(f(\sigma^n))$$

and the diagrams

$$\begin{array}{ccc} K(\sigma^p) & \longrightarrow & K(\sigma^n) \\ & & & \downarrow \\ & & & \downarrow \\ K(f(\sigma^p)) & \longrightarrow & K(f(\sigma^n)) \, , \end{array}$$

 $\sigma^n < \sigma^p$, and

$$\begin{array}{c} K(\sigma^n) \longrightarrow K(f(\sigma^n)) \\ \downarrow \qquad \qquad \downarrow \\ X \longrightarrow Y \end{array}$$

are commutative.

Let X be a polyhedron, X = |L|, where L is a simplicial complex. Consider L as an ordered simplicial complex. Then L is a subcomplex of $\operatorname{Sing}(X)$ and $L \subset \operatorname{Sing}(X)$ is a homology isomorphism. For $\sigma \in L$ consider $\operatorname{st}(\sigma) \subset L$. Then $\{\operatorname{st}(\sigma), \epsilon_{\sigma\sigma}, \epsilon_{\sigma}\}$ is a local system of simplicial contractible complexes on L.

N. BERIKASHVILI

Obviously, one has the map $\operatorname{st}(\sigma) \to K(\sigma)$, i.e., there is a map of local systems on L

$$\{\operatorname{st}(\sigma), \epsilon_{\sigma\sigma}, \epsilon_{\sigma}\} \to \{K(\sigma), \epsilon_{\sigma\sigma}, \epsilon_{\sigma}\}.$$

3. A BIGRADED CHAIN MODEL FOR A SERRE FIBRATION

Let $F \to E \xrightarrow{\pi} B$ be a Serre fibration and consider the local system of acyclic spaces

$$K(\sigma), \quad \sigma \in \operatorname{Sing}(B),$$

on the singular complex of B, which is discussed in Section 2. For each $\sigma \in \text{Sing}(B)$ the map

$$\epsilon_{\sigma}: K(\sigma) \to B$$

induces a fibration

$$F \to E(\sigma) \xrightarrow{\pi} K(\sigma).$$

In this way we have a local system of spaces

$$E(\sigma), \quad \sigma \in \operatorname{Sing}(B),$$

on the singular complex of B. If G is a coefficient group, then

$$C_q(E(\sigma), G), \quad \sigma \in \operatorname{Sing}(B),$$

form a local system of abelian groups on B and we obtain a bigraded abelian group

$$U_{*,*} = C_*(B, C_*(E(\sigma), G))$$

that carries two differentials

$$d': C_p(B, C_q(E(\sigma), G)) \to C_{p-1}(B, C_q(E(\sigma), G))$$

(the differential of B) and

$$d'': C_p(B, C_q(E(\sigma), G)) \to C_p(B, C_{q-1}(E(\sigma), G))$$

(the differential of $E(\sigma)$). Thus we have a bigraded complex

$$U_{*,*} = \{C_*(B, C_*(E(\sigma), G)), d', d''\}.$$
(3.1)

Lemma 2. If the base B of a Serre fibration $F \to E \xrightarrow{\pi} B$ is contractible, then $F \to E$ is a homology isomorphism.

Proof. The first proof (using the Whitehead theorem) is trivial: from an exact sequence of homotopy groups of a fibration it follows that $\pi_*(F) \to \pi_*(E)$ is an isomorphism; from the Whitehead theorem it follows that $F \to E$ is a homology isomorphism.

The second proof is an elementary one and consists in constructing (inductively on q) a chain map

$$f: C_q(E) \to C_q(\pi^{-1}(*))$$

and a chain homotopy

$$D_q: C_q(E) \to C_{q+1}(E))$$

with

$$f|\pi^{-1}(0)) = id: C_*(\pi^{-1}(*)) \to C_*(\pi^{-1}(*))$$

and

$$\partial D + D\partial = id - f.$$

By Lemma 2 the first spectral sequence of the bigraded complex (3.1) can be written as follows

$$E_{pq}^2 = H_p(B, H_q(F)) \Longrightarrow_p H_{p+q}(U_{**})$$
(3.2)

(where $H_q(F)$ is a local system on B).

The map $\epsilon_{\sigma}: K(\sigma) \to B$ induces a chain map

$$C_*(E(\sigma), G) \to C_*(E, G).$$

Hence there is a map

$$f_0: C_0(B, C_*(E(\sigma), G) \to C_*(E, G))$$

with $f_0 d'' = \partial f_0$. It is easy to check that the composition

$$C_1(B, C_*(E(\sigma), G) \to C_0(B, C_*(E(\sigma), G) \to C_*(E, G))$$

is a zero homomorphism. Hence if one defines

$$f_p = 0: C_p(B, C_*(E(\sigma), G) \to C_*(E, G), \quad p > 0,$$

then one has a chain map

$$f: U = C_*(B, C_*(E(\sigma), G) \to C_*(E, G)).$$

Theorem 1. The chain map

$$f: C_*(B, C_*(E(\sigma), G)) \to C_*(E, G))$$

is a homology isomorphism.

The proof will be given in Section 6.

Theorem 1 has (by 3.2) the following corollary.

Theorem 2 (Serre). If $F \to E \xrightarrow{\pi} B$ is a Serre fibration, then there is a spectral sequence

$$E_{pq}^2 = H_p(B, H_q(F, G)) \Longrightarrow_p H_{p+q}(E, G).$$

4. The Multiplicative Structure in the Bigraded Model

Let

$$C_*(B, C_*(E(\sigma)))$$

be the bigraded chain model of a Serre fibration $F \to E \xrightarrow{\pi} B$. Then

$$\{C^*(B, C^*(E(\sigma), G)), \delta', \delta''\}$$

is a model of cochain complex of E and one has a cochain map

$$C^*(E,G) \to C^*(B,C^*(E(\sigma),G))$$

$$(4.1)$$

which is defined using a standard map

$$C^q(E,G) \to C^0(B, C^q(E(\sigma),G)).$$

Let $G = \Lambda$ be a commutative ring. Then the bicomplex

$$C^*(B, C^*(E(\sigma), \Lambda))$$

carries a multiplicative structure defined as follows: if $x^{p,q} \in C^p(B, C^q(E(\sigma), \Lambda))$, $y^{r,s} \in C^r(B, C^s(E(\sigma), \Lambda))$, then let

$$x^{p,q}y^{r,s} = (-1)^{qr}x^{p,q} \smile y^{r,s},$$

where on the right is a \smile -product in the singular complex of B of the p-cochain $x^{p,q}$ and r-cochain $y^{r,s}$, and the coefficients, q-cochains and s-cochains are paired by the \smile -product in the space $E(\sigma^{p+r})$. The product is subject of the standard relation

$$d(xy) = dxy + (-1)^{p+q} x dy.$$

One sees that map (4.1) is multiplicative. So we have

Theorem 3. Map (4.1) induces an isomorphism

$$H^*(E,\Lambda) \to H^*(C^*(B,C^*(E(\sigma),\Lambda)))$$

of cohomology algebras.

5. Steenrod's \smile_i -Product in a Serre Fibration

Consider a graded algebra (A, δ) (where A is a Z_2 -module) with Steenrod's \smile_i -products, i.e., one has

$$\delta(a^p \smile_i b^q) = \delta a^p \smile_i b^q + a^p \smile_i \delta b^q + a^p \smile_{i-1} b^q + b^q \smile_{i-1} a^p, \tag{5.1}$$

and \sim_0 is associative. If (B, δ) is another such algebra, then the tensor product

 $A \otimes B$

carries \smile_i -products defined as

$$\sum_{j=0}^{i} \smile_{j} \otimes \smile_{i-j} T^{j}, \tag{5.2}$$

where $T(a^p \otimes b^r) = (b^p \otimes a^r)$. It is easy to check that Steenrod's coboundary formula (5.1) holds. Formula (5.2) can be rewritten in the detailed form

$$(a^{p} \otimes b^{r}) \smile_{i} (a^{q} \otimes b^{s}) = (a^{p} \smile_{0} a^{q}) \otimes (b^{r} \smile_{i} b^{s}) + (a^{p} \smile_{1} a^{q}) \otimes (b^{s} \smile_{i-1} b^{r}) + (a^{p} \smile_{2} a^{q}) \otimes (b^{r} \smile_{i-2} b^{s}) + (a^{p} \smile_{3} a^{q}) \otimes (b^{s} \smile_{i-3} b^{q}) + \cdots$$

$$(5.3)$$

Let

$$C^*(B, C^*(E(\sigma), G))$$

be the bigraded cochain model of a Serre fibration $F \to E \xrightarrow{\pi} B$.

Let $G = Z_2$. Then by (5.3) the bicomplex

$$C^*(B, C^*(E(\sigma), Z_2))$$

carries Steenrod's \smile_i -products defined as follows: if $x^{p,q} \in C^p(B, C^q(E(\sigma), Z_2))$, $y^{r,s} \in C^r(B, C^s(E(\sigma), Z_2))$, then let $x^{p,q} \smile_i y^{r,s}$ be defined by $x^{p,q} \smile_i y^{r,s} = x^{p,q} \smile_0^i y^{r,s} + x^{p,q} \smile_1^{i-1} y^{r,s} + x^{p,q} \smile_2^{i-2} y^{r,s} + x^{p,q} \smile_3^{i-3} y^{r,s} + \cdots$,

where on the right the expression

$$x^{p,q} \smile_l^k y^{r,s}$$

means a \smile_l -product in the singular complex of B of the p-cochain $x^{p,q}$ and the r-cochain $y^{r,s}$ and the coefficients, q-cochains and s-cochains are paired by the \smile_k -product in the space $E(\sigma^{p+r-i})$; on the other hand, the expression

$$x^{p,q} = k_l y^{r,s}$$

means a \smile_l -product in the singular complex of B of the p-cochain $x^{p,q}$ and the r-cochain $y^{r,s}$ and the coefficients, s-cochains and q-cochains are paired by the \smile_k -product in the space $E(\sigma^{p+r-i})$.

The Steenrod coboundary formula (5.1) obviously holds.

Proposition 1. The cochain map

$$C^*(E, Z_2) \to C^*(B, C^*(E(\sigma), Z_2))$$
 (5.4)

preserves \smile_i -product.

Proof. The map

$$C^q(E, Z_2) \to C^0(B, C^q(E(\sigma), Z_2))$$

obviously preserves \smile_i -product.

Theorem 4. Map 4.1 induces an isomorphism of cohomology algebras

 $H^*(E, Z_2) \to H^*(C^*(B, C^*(E(\sigma), Z_2)))$

as modules over the Steenrod algebra.

6. The Proof of Theorem 1

6.1. The bigraded model of a covering. Let E be a space and $U = \{U_{\alpha}\}$ be its open covering, i.e., U_{α} is an open set of E and $\cup U_{\alpha} = E$. The well-known tool in the singular homology theory is

Proposition 2 (see [5]). If $S_U(E)$ is the union of subcomplexes $\operatorname{Sing}(U_{\alpha})$, then $S_U(E) \subset \operatorname{Sing}(E)$ is a homology isomorphism.

Let N(U) be the nerve of the covering U. In the spirit of [6], consider, in the product

 $N(U) \times S_U(E),$

the subcomplex V(U) of all pairs $(\sigma, \tau), \tau \in \text{Sing } |\sigma|$, where $|\sigma| = U_{\alpha_0} \cap U_{\alpha_1} \cap U_{\alpha_0} \cap \cdots \cap U_{\alpha_n}$.

Denote $V_{\tau} = \{\sigma | (\sigma, \tau) \in V\} \subset N(U) \text{ and } V_{\sigma} = \{\tau | (\sigma, \tau) \in V\} \subset S_U(E).$ Obviously, V_{τ} is a simplex and hence it is acyclic.

If G is an abelian group, then the chain complex C(V,G) is bigraded

$$V_{**} = C_{**}(V, G). \tag{6.1}$$

The system $\{V_{\sigma}\}$ is a local system of spaces on N(U). So we can consider the above bicomplex as

$$C_*(N(U), C_*(V_{\sigma}, G)).$$
 (6.2)

As in Section 3 we have a chain map

$$C_*(S_U(E), G) \longleftarrow C_*(N(U), C_*(V_{\sigma}, G)).$$

Lemma 3. The above map is a homology isomorphism

Proof. The second spectral sequence of bicomplex (6.2) is the same as that of bicomplex (6.1). Being first term of the spectral sequence

$$E_{p,q}^1 = C_p(S_U(E), H_q(V_\varsigma, G))$$

and being V_{τ} acyclic, one has

$$E_{p,q}^{1} = 0, \quad p > 0,$$

 $E_{p,q}^{1} = C_{q}(S_{U}(E), G), \quad p = 0.$

It follows that the first term of the spectral sequence is equal to the chain complex $C_*(S_U(E), G)$.

The first spectral sequence of the bigraded complex 6.2 is

$$E_{pq}^2 = H_p(N(U), H_q(|\sigma|, G)) \Longrightarrow_p H_{p+q}[C_*(N(U), C_*(V_\sigma, G)].$$

Hence, by Lemma 3 and Proposition 2, we get

$$E_{pq}^{2} = H_{p}(N(U), H_{q}(|\sigma|, G)) \Longrightarrow H_{p+q}(E, G).$$

Remark 1. This is a version for the singular homology theory of Leray spectral sequence of a covering.

6.2. The bigraded model of a fibration with the base a simplicial complex. If the base of a fibration $F \to E \xrightarrow{\pi} B$ is a polyhedron, B = |L|, then consider the open covering of B, $U = {\tilde{st}(a)}$, where $\tilde{st}(a)$ is the union of all open simplexes of L having a as a vertex. The well-known fact is

Proposition 3. N(U) is isomorphic to L.

Consider the open covering of E: $\pi^{-1}U = \{\pi^{-1}[\widetilde{st}(a)]\}$. Obviously,

$$N(\pi^{-1}(U)) = N(U).$$

Hence Lemma 3 and Proposition 2 give a homology isomorphism

$$C_*(E,G) \leftarrow C_*(L,C_*(\pi^{-1}[\widetilde{st}(\sigma)],G)).$$
(6.3)

The map

$$\widetilde{st}(\sigma) \to \operatorname{st}(\sigma)]$$

induces an isomorphism

$$H_q(\pi^{-1}[\widetilde{st}(\sigma)], G) \to H_q(\pi^{-1}[\operatorname{st}(\sigma)], G).$$

Hence one has a homology isomorphism

$$C_*(L, C_*(\pi^{-1}[\widetilde{st}(\sigma)], G)) \to C_*(L, C_*(\pi^{-1}[st(\sigma)], G)),$$

i e., by (6.3) we have

Proposition 4. For $F \to E \xrightarrow{\pi} |L|$ one has the bigraded complex

$$C_*(L, C_*(\pi^{-1}[\operatorname{st}(\sigma), G)))$$

and a homology isomorphism

$$C_*(E,G) \leftarrow C_*(L,C_*(\pi^{-1}[\operatorname{st}(\sigma),G))).$$

On the other hand, the map

$$C_*(L, C_*(\pi^{-1}[\operatorname{st}(\sigma)], G)) \to C_*(|L|, C_*(E(\sigma), G))$$

is a homology isomorphism.

6.3. **Proof of Theorem 1.** If *B* is a space, then there are a simplicial complex L and $f : |L| \to B$, inducing an isomorphism of homotopy groups. Let for a Serre fibration $F \to E \xrightarrow{\pi} B$, $F \to E' \xrightarrow{\pi} |L|$ be the induced fibration. Then $C_*(E', G) \to C_*(E, G)$ is a homology isomorphism.

Proof of Theorem 1. One has a diagram

$$C_*(E,G) \xleftarrow{} C_*(E',G) \xleftarrow{} C_*(L,C_*(\pi^{-1}[\operatorname{st}(\sigma)],G)) \xleftarrow{} C_*(B,C_*(E[K(\sigma)],G))) \xleftarrow{} C_*(|L|,C_*(E(K(\sigma)],G))) .$$

It is easy to check that the diagram is commutative. The above reasoning shows that the maps of the diagram except s are homology isomorphisms. Hence s, too, is a homology isomorphism.

References

- N. A. BERIKASHVILI, Differentials of a spectral sequence. (Russian) Trudy Tbiliss. Mat. Inst. Razmadze (Proc. A. Razmadze Math. Inst.) 51(1976), 5–106.
- N. A. BERIKASHVILI, On a bigraded model of the chain complex of a fibration. Soobshch. Akad. Nauk Gruzin. SSR 136(1989), No. 3, 549–552 (1990).
- 3. A. DRESS, Zur Spectralsequenz von Faserungen. Invent. Math. 3(1967), 172–178.
- 4. E. FADELL and W. HUREWICZ, On the structure of higher differential operators in spectral sequences. Ann. of Math. (2) 68(1958), 314–347.
- 5. E. H. SPANIER, Algebraic topology. McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1966.
- E. C. ZEEMAN, Dihomology. I. Relations between homology theories; II. The spectral theories of a map; III. A generalization of the Poincaré duality for manifolds. *Proc. London Math. Soc.* (3) 12(1962), 609–638; 12(1962), 639–689; 13(1963) 155–183.

Author's address:

A. Razmadze Mathematical Institute 1, M. Aleksidze St., Tbilisi 0193 Georgia E-mail: berika@rmi.acnet.ge *URL*: http://www.rmi.acnet.ge/~berika