
Georgian Mathematical Journal
Volume 13 (2006), Number 4, 675–686

SUMS OF SQUARES AND SUMS OF TRIANGULAR
NUMBERS

SHAUN COOPER AND MICHAEL HIRSCHHORN

Dedicated to the memory of G. Lomadze

Abstract. Motivated by two results of Ramanujan, we give a family of 15
results and 4 related ones. Several have interesting interpretations in terms
of the number of representations of an integer by a quadratic form λ1x

2
1 +

· · ·+ λmx2
m, where λ1 + · · ·+ λm = 2, 4 or 8. We also give a new and simple

combinatorial proof of the modular equation of order seven.
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1. Introduction

Let ψ(q) =
∞∑

n=0

qn(n+1)/2, where it is assumed that |q| < 1. In Chapter 20 of

his Second Notebook [8], S. Ramanujan gave the results

ψ(q3)ψ(q5)− ψ(−q3)ψ(−q5) = 2q3ψ(q2)ψ(q30),

ψ(q)ψ(q15) + ψ(−q)ψ(−q15) = 2ψ(q6)ψ(q10).

The goal of this paper is to present 13 similar and 4 related formulas. Some of
the formulas turn out to be modular equations of orders three and seven, and
some have interesting combinatorial interpretations.

This work is organized as follows. The results are stated in Section 2. Section
3 is a discussion, and we give interpretations of some of the results in terms of
the number of representations of an integer by a quadratic form. Proofs of the
results are given in Section 4.

2. Statement of Results

Let τ be a complex number with positive imaginary part and define q =
exp(2πiτ). Let

η(τ) = q1/24

∞∏
n=1

(1− qn), ϕ(q) =
∞∑

n=−∞
qn2

, and ψ(q) =
∞∑

n=0

qn(n+1)/2.

Let λ = (λ1, . . . , λm) be a partition of a positive integer k. That is, λ1, . . . , λm

are integers which satisfy λ1 ≥ · · · ≥ λm ≥ 1 and λ1 + · · · + λm = k. Let us
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define

ϕλ(q) = ϕ(qλ1) · · ·ϕ(qλm),

ψλ(q) = qk/8ψ(qλ1) · · ·ψ(qλm).

The following results were obtained by investigating the function ψλ(q) +
ψλ(−q) for each partition of 8. Not every partition of 8 yields a result. Theorem
(2.4) is a restatement of Ramanujan’s results given in the introduction.

Theorem 2.1.

ψ(1,1,1,1,1,1,1,1)(q) + ψ(1,1,1,1,1,1,1,1)(−q) = 16ψ(1,1,1,1,1,1,1,1)(q
2),

ψ(2,2,1,1,1,1)(q) + ψ(2,2,1,1,1,1)(−q) = 8ψ(2,2,1,1,1,1)(q
2),

ψ(3,3,1,1)(q) + ψ(3,3,1,1)(−q) = 4ψ(3,3,1,1)(q
2),

ψ(4,2,1,1)(q) + ψ(4,2,1,1)(−q) = 4ψ(4,2,1,1)(q
2),

ψ(7,1)(q) + ψ(7,1)(−q) = 2ψ(7,1)(q
2).

Theorem 2.2.

ψ(2,2,2,1,1)(q) + ψ(2,2,2,1,1)(−q) = 4ψ(4,1,1,1,1)(q
2),

ψ(4,1,1,1,1)(q) + ψ(4,1,1,1,1)(−q) = 8ψ(2,2,2,1,1)(q
2).

Theorem 2.3.

ψ(4,3,1)(q) + ψ(4,3,1)(−q) = 2ψ(6,1,1)(q
2),

ψ(6,1,1)(q) + ψ(6,1,1)(−q) = 4ψ(4,3,1)(q
2).

Theorem 2.4.

ψ(5,3)(q) + ψ(5,3)(−q) = 2ψ(15,1)(q
2),

ψ(15,1)(q) + ψ(15,1)(−q) = 2ψ(5,3)(q
2).

Theorem 2.5.

ψ(3,3,2)(q) + ψ(3,3,2)(−q) = 4ψ(12,3,1)(q
2),

ψ(12,3,1)(q) + ψ(12,3,1)(−q) = 2ψ(3,3,2)(q
2).

In order to state the next theorem, it is convenient to make another definition.
Let λ = (λ1, . . . , λm) and µ = (µ1, . . . , µ`) be partitions of any two positive
integers. Let

ψλ|µ(q) =
ψλ(q)

ψµ(q)
.

Theorem 2.6.

ψ(3,2,2,1)(q) + ψ(3,2,2,1)(−q) = 2ψ(6,1,1,1,1)|(2)(q
2),

ψ(6,1,1,1,1)|(2)(q) + ψ(6,1,1,1,1)|(2)(−q) = 8ψ(3,2,2,1)(q
2).

The last theorem involves the function ϕλ(q). It is included because it leads
to combinatorial properties which are similar to the ones that can be obtained
from Theorem 2.1.
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Theorem 2.7.

ϕ(1,1,1,1)(q)− ϕ(1,1,1,1)(q
2) = 8ψ(1,1,1,1)(q

2) + 16ψ(1,1,1,1)(q
4),

ϕ(3,1)(q)− ϕ(3,1)(q
4) = 2ψ(3,1)(q

2) + 4ψ(3,1)(q
8),

ϕ(1,1)(q)− ϕ(1,1)(q
2) = 4ψ(1,1)(q

4),

ϕ(1)(q)− ϕ(1)(q
4) = 2ψ(1)(q

8).

3. Discussion

Many of the results in Theorems 2.1–2.7 have special significance. Some
are equivalent to modular equations, and others have interesting combinatorial
consequences. These are discussed in this section.

Let λ = (λ1, . . . , λm) be a partition of k. Let us define coefficients rλ(n) and
tλ(n) by

ϕλ(q) =
∞∑

n=0

rλ(n)qn, q−k/8ψλ(q) =
∞∑

n=0

tλ(n)qn.

When λ = (1, . . . , 1) is the partition consisting of k ones, we will write rk(n)
and tk(n) for rλ(n) and tλ(n), respectively.

If k is a multiple of 8, let us define coefficients sλ(n) by

ψλ(q) =
∞∑

n=0

sλ(n)qn.

We will use the convention that rλ(x), sλ(x), tλ(x), rk(x) and tk(x) are all
defined to be zero if x is not a non-negative integer.

Observe that rλ(n) is the number of solutions of the equation

λ1x
2
1 + · · ·+ λmx2

m = n

in integers x1, . . . , xm. Similarly, tλ(n) is the number of solutions of the equation

λ1
x1(x1 + 1)

2
+ · · ·+ λm

xm(xm + 1)

2
= n

in non-negative integers x1, . . . , xm. Finally, in the case that k is a multiple of
8, sλ(n) is the number of solutions of the equation

λ1x
2
1 + · · ·+ λmx2

m = 8n

in positive odd integers x1, . . . , xm, and

sλ

(
n +

k

8

)
= tλ(n).

We will also need the following facts, which are consequences of the Jacobi
triple product identity.

ϕ(q) =
η(2τ)5

η(τ)2η(4τ)2
, ϕ(−q) =

η(τ)2

η(2τ)
,

q1/8ψ(q) =
η(2τ)2

η(τ)
, q1/8ψ(−q) =

η(τ)η(4τ)

η(2τ)
.

(3.1)
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3.1. Discussion of Theorem 2.1 for λ = (1, 1, 1, 1, 1, 1, 1, 1). If we write
each function in terms of η(τ), η(2τ) and η(4τ), we see that Theorem 1 for
the partition λ = (1, 1, 1, 1, 1, 1, 1, 1) is equivalent to each of the following four
forms:

qψ(q)8 − qψ(−q)8 = 16q2ψ(q2)8, (3.2)

ϕ(−q2)8 − ϕ(−q)8 = 16qψ(−q)8, (3.3)

ϕ(q)4 − ϕ(−q)4 = 16qψ(q2)4, (3.4)
∞∏

n=1

(1 + q2n−1)8 −
∞∏

n=1

(1− q2n−1)8 = 16q
∞∏

n=1

(1 + q2n)8. (3.5)

Equations (3.4) and (3.5) are classical, and were given in these forms by Ra-
manujan [1, p. 40] and Jacobi [6, p. 147], respectively. A simple proof of (3.4)
using series manipulations was given in [7, p. 128].

Equation (3.3) implies that

sλ(n) =
1

16

(
rλ(n)− (−1)n/2rλ(n/2)

)
. (3.6)

Thus the study of the sequence sλ(n) is reduced to the study of the sequence
rλ(n). From (3.3) we can also deduce

ϕ(−q)8 = 16
∞∑

j=0

−q(2j)ψ(−q(2j))8.

Therefore

rλ(n) = 16
(
sλ(n) + (−1)n/2sλ(n/2) + (−1)n/4sλ(n/4) + · · · ) . (3.7)

Conversely, rλ(n) has been expressed as a finitely many terms of the form
sλ(n/2k), k ≥ 0, and so the study of the sequence rλ(n) has been reduced
to the study of the sequence sλ(n).

Equations (3.6) and (3.7) may be recast in more familiar terms as follows.

Proposition 3.1. Let n be a positive integer, and write n = 2αk, where k is
odd and α is a non-negative integer. Then

t8(n− 1) =
1

16

(
r8(n)− (−1)n/2r8(n/2)

)
,

r8(n) =





16t8(n− 1), if α = 0,

16
α∑

j=1

t8(2
jk − 1)− 16t8(k − 1), if α ≥ 1.

Example 3.2. We have

ϕ(q)8 = 1 + 16q + 112q2 + 448q3 + 1136q4 + 2016q5 + 3136q6 + 5504q7

+ 9328q8 + 12112q9 + 14112q10 + 21312q11 + 31808q12 + · · · ,

ψ(q)8 = 1 + 8q + 28q2 + 64q3 + 126q4 + 224q5 + 344q6 + 512q7
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+ 757q8 + 1008q9 + 1332q10 + 1792q11 + 2198q12 + · · · .

Taking n = 12 in Proposition 3.1, we obtain

t8(11) =
1

16
(r8(12)− r8(6)) =

1

16
(31808− 3136) = 1792,

r8(12) = 16 (t8(11) + t8(5)− t8(2)) = 16(1792 + 224− 28) = 31808.

If n is odd, then Proposition 3.1 implies

r8(n) = 16t8(n− 1).

It would be interesting to have a direct combinatorial proof of this result.

3.2. Discussion of Theorem 2.1 for λ = (3, 3, 1, 1). If we follow the pro-
cedure in the previous section, we see that Theorem 1 for the partition λ =
(3, 3, 1, 1) is equivalent to each of the following four forms:

qψ(q)2ψ(q3)2 − qψ(−q)2ψ(−q3)2 = 4q2ψ(q2)2ψ(q6)2, (3.8)

ϕ(−q2)2ϕ(−q6)2 − ϕ(−q)2ϕ(−q3)2 = 4qψ(−q)2ψ(−q3)2, (3.9)

ϕ(q)ϕ(q3)− ϕ(−q)ϕ(−q3) = 4qψ(q2)ψ(q6), (3.10)
∞∏

n=1

(1 + q2n−1)2(1 + q6n−3)2

−
∞∏

n=1

(1− q2n−1)2(1− q6n−3)2 = 4q
∞∏

n=1

(1 + q2n)2(1 + q6n)2. (3.11)

These are all equivalent to the modular equation of order three:

(αβ)1/4 + {(1− α)(1− β)}1/4 = 1,

where β has degree three over α. See [1, p. 230–232], where both the modu-
lar equation and (3.10) are given. A simple proof of (3.10) which uses series
manipulations was given in [2, p. 110]. Equation (3.11) was given in [4, p. 299].

Equation (3.9) implies that

sλ(n) =
1

4

(
rλ(n)− (−1)n/2rλ(n/2)

)
. (3.12)

Also from (3.9), we can deduce

ϕ(−q)2ϕ(−q3)2 = 4
∞∑

j=0

−q(2j)ψ(−q(2j))2ψ(−q3(2j))2.

Therefore

rλ(n) = 4
(
sλ(n) + (−1)n/2sλ(n/2) + (−1)n/4sλ(n/4) + · · · ) . (3.13)

Thus, equation (3.12) reduces the study of sλ(n) to the study of rλ(n), and
equation (3.13) shows the opposite is also true, namely, that the study of rλ(n)
can be reduced to the study of sλ(n).

Equations (3.12) and (3.13) may be re-expressed as follows.
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Proposition 3.3. Let n be a positive integer, and write n = 2αk, where k is
odd and α is a non-negative integer. Then

tλ(n− 1) =
1

4

(
rλ(n)− (−1)n/2rλ(n/2)

)
,

rλ(n) =





4tλ(n− 1), if α = 0,

4
α∑

j=1

tλ(2
jk − 1)− 4tλ(k − 1), if α ≥ 1.

If n is odd, then Proposition 3.3 implies

rλ(n) = 4tλ(n− 1).

Once again, it would be interesting to have a direct combinatorial proof of this
result.

3.3. Discussion of Theorem 2.1 for λ = (7, 1). If we follow the procedure
in the previous sections, we see that Theorem 1 for the partition λ = (7, 1) is
equivalent to each of the following four forms:

qψ(q)ψ(q7)− qψ(−q)ψ(−q7) = 2q2ψ(q2)ψ(q14), (3.14)

ϕ(−q2)ϕ(−q14)− ϕ(−q)ϕ(−q7) = 2qψ(−q)ψ(−q7), (3.15)√
ϕ(q)ϕ(q7)−

√
ϕ(−q)ϕ(−q7) = 2q

√
ψ(q2)ψ(q14), (3.16)

∞∏
n=1

(1 + q2n−1)(1 + q14n−7)

−
∞∏

n=1

(1− q2n−1)(1− q14n−7) = 2q
∞∏

n=1

(1 + q2n)(1 + q14n). (3.17)

These are all equivalent to the modular equation of order seven:

(αβ)1/8 + {(1− α)(1− β)}1/8 = 1,

where β has degree seven over α. See [1, pp. 304, 314] where (3.15) and the
modular equation are given. Equation (3.17) and an interesting combinatorial
interpretation were given in [4, pp. 299, 482]. A simple proof of (3.17) using se-
ries manipulations has been given in [5]. We will give a bijective proof of (3.14),
and hence a new proof of the modular equation of order seven, in Proposition
3.5 below.

Equation (3.15) implies that

sλ(n) =
1

2

(
rλ(n)− (−1)n/2rλ(n/2)

)
. (3.18)

Also from (3.15) we deduce [1, p. 304]

ϕ(−q)ϕ(−q7) = 2
∞∑

j=0

−q(2j)ψ(−q(2j))ψ(−q7(2j)).
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Therefore

rλ(n) = 2
(
sλ(n) + (−1)n/2sλ(n/2) + (−1)n/4sλ(n/4) + · · · ) . (3.19)

Equations (3.18) and (3.19) may be re-expressed as follows.

Proposition 3.4. Let n be a positive integer, and write n = 2αk, where k is
odd and α is a non-negative integer. Then

tλ(n− 1) =
1

2

(
rλ(n)− (−1)n/2rλ(n/2)

)
,

rλ(n) =





2tλ(n− 1), if α = 0,

2
α∑

j=1

tλ(2
jk − 1)− 2tλ(k − 1), if α ≥ 1.

If n is odd, then Proposition 3.4 implies

rλ(n) = 2tλ(n− 1).

We will next give a direct combinatorial proof of the following result, which
we then show is equivalent to (3.14).

Proposition 3.5. Let n be a positive integer, and let f(n) denote the number
of solutions of the equation x2 + 7y2 = 8n in odd integers. Then f(n) = f(2n).

Proof. We will refer to the equations x2 + 7y2 = 8n and u2 + 7v2 = 16n as Eq.
(1) and Eq. (2), respectively.

Define a function g : (2Z+ 1)2 → (2Z+ 1)2 by

g(x, y) =

{
((x− 7y)/2, (x + y)/2) if x− y ≡ 0 (mod 4),

((x + 7y)/2, (y − x)/2) if x− y ≡ 2 (mod 4).

Let (x, y) be a solution of Eq. (1) in odd integers, and put (u, v) = g(x, y).
Then

u2 + 7v2 =

(
x∓ 7y

2

)2

+ 7

(
y ± x

2

)2

= 2(x2 + 7y2) = 16n,

and so (u, v) is a solution of Eq. (2) in odd integers. Furthermore, by checking
the two cases separately, we find that u− v ≡ x− y (mod 4).

We will show that every solution of Eq. 2 arises this way. The inverse function
g−1 : (2Z+ 1)2 → Z2 is given by

g−1(u, v) =

{
((u + 7v)/4, (v − u)/4) if u− v ≡ 0 (mod 4),
((u− 7v)/4, (u + v)/4) if u− v ≡ 2 (mod 4).

Let (u, v) be a solution of Eq. (2) in odd integers, and let (x, y) = g−1(u, v). It
is straightforward to check that that (x, y) is a solution of Eq. (1) in integers.
It remains to show that x and y are both odd. If we consider u and v modulo
8 and write

u ≡ j (mod 8), v ≡ k (mod 8), where j, k ∈ {1, 3, 5, 7},



682 S. COOPER AND M. HIRSCHHORN

then the condition u2 + 7v2 ≡ 0 (mod 16) implies that

(j, k) ∈ {(1, 3), (3, 1), (1, 5), (5, 1), (3, 7), (7, 3), (5, 7), (7, 5)} .

It follows that for the case u ≡ v (mod 4), we have (j, k) ∈ {(1, 5), (5, 1),
(3, 7), (7, 3)}, and therefore x = (u + 7v)/4 ≡ 1 (mod 2) and y = (v −
u)/4 ≡ 1 (mod 2). Similarly, for the case u ≡ v + 2 (mod 4), we have (j, k) ∈
{(1, 3), (3, 1), (5, 7), (7, 5)} , and therefore x = (u − 7v)/4 ≡ 1 (mod 2) and
y = (u+ v)/4 ≡ 1 (mod 2). Thus (x, y) is a solution of Eq. (1) in odd integers,
as claimed. ¤

Proposition 3.5 may be shown to be equivalent to (3.14) as follows. First, we
have

∞∑
n=1

f(n)qn =
∞∑

n=1

∑

x,y odd
x2+7y2=8n

q(x2+7y2)/8

=
∞∑

j=−∞
q(2j+1)2/8

∞∑

k=−∞
q7(2k+1)2/8 = 4qψ(q)ψ(q7).

This together with Proposition 3.5 implies

qψ(q)ψ(q7)− qψ(−q)ψ(−q7) =
1

2

∞∑
n=1

f(2n)q2n =
1

2

∞∑
n=1

f(n)q2n

= 2q2ψ(q2)ψ(q14).

Therefore we have obtained (3.14) from Proposition 3.5. The procedure can be
reversed, to yield Proposition 3.5 from (3.14).

3.4. Discussion of Theorem 2.7 for λ = (1, 1, 1, 1). Theorem 2.7 in this
instance is equivalent to

ϕ(q)4 − ϕ(q2)4 = 8qψ(q2)4 + 16q2ψ(q4)4. (3.20)

If we compare the coefficients of q2n+1 on both sides, we obtain

t4(n) =
1

8
r4(2n + 1). (3.21)

Next, if we replace q by q(2j) in (3.20) and sum over all non-negative integers j,
we obtain

ϕ(q)4 = 1 + 8qψ(q2)4 + 24
∞∑

j=1

q(2j)ψ
(
q(2j+1)

)4

.

Compare the coefficients of qn to obtain

r4(n) = 8t4

(
n− 1

2

)
+ 24

∞∑
j=1

t4

(
n− 2j

2j+1

)
.
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Only one of the numbers (n − 2j)/2j+1, where j ≥ 0, is an integer, hence we
deduce, for any non-negative integers α and k, that

r4(2
α(2k + 1)) =

{
8t4(k) if α = 0,

24t4(k) if α ≥ 1.
(3.22)

Equation (3.21) shows that t4(n) can be obtained from a subsequence of r4(n),
and (3.22) shows that conversely, r4(n) can be obtained from a subsequence of
t4(n).

3.5. Discussion of Theorem 2.7 for λ = (3, 1). Theorem 2.7 in this instance
is equivalent to

ϕ(q)ϕ(q3)− ϕ(q4)ϕ(q12) = 2qψ(q2)ψ(q6) + 4q4ψ(q8)ψ(q24). (3.23)

If we compare the coefficients of q2n+1 on both sides, we obtain

tλ(n) =
1

2
rλ(2n + 1). (3.24)

Next, if we replace q by q(22j) in (3.23) and sum over all non-negative integers
j, we obtain

ϕ(q)ϕ(q3) = 1 + 2qψ(q2)ψ(q6) + 6
∞∑

j=1

q(22j+1)ψ
(
q(22j+1)

)
ψ

(
q(3×22j+1)

)
.

Compare the coefficients of qn to obtain

rλ(n) = 2tλ

(
n− 1

2

)
+ 6

∞∑
j=1

tλ

(
n− 22j

22j+1

)
.

At most one of the numbers (n − 22j)/22j+1, where j ≥ 0, can be an integer,
hence we deduce, for any non-negative integers α and k, that

rλ(2
α(2k + 1)) =





2tλ(k) if α = 0,

6tλ(k) if α 6= 0 is even,

0 if α is odd.

(3.25)

Equation (3.24) shows that tλ(n) can be obtained from a subsequence of rλ(n),
and (3.25) shows that conversely, rλ(n) can be obtained from a subsequence of
tλ(n).

3.6. Discussion of Theorem 2.7 for λ = (1, 1). Theorem 2.7 in this instance
is equivalent to

ϕ(q)2 − ϕ(q2)2 = 4qψ(q4)2. (3.26)

If we compare the coefficients of q4n+1 on both sides, we obtain

t2(n) =
1

4
r2(4n + 1). (3.27)
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Next, if we replace q by q(2j) in (3.23) and sum over all non-negative integers j,
we obtain

ϕ(q)2 = 1 + 4
∞∑

j=0

q(2j)ψ
(
q(2j+2)

)2

.

Compare the coefficients of qn to obtain

r2(n) = 4
∞∑

j=0

tλ

(
n− 2j

2j+2

)
.

The number (n − 2j)/2j+2, where j ≥ 0, will be an integer if and only if
n = 2j(4k + 1) for some non-negative integer k. Hence we deduce that

r2(n) =





4t2(k) if n = 2j(4k + 1) for some non-negative

integers j and k,

0 otherwise.

(3.28)

Equation (3.27) shows that t2(n) can be obtained from a subsequence of r2(n),
and (3.28) shows that conversely, r2(n) can be obtained from a subsequence of
t2(n).

3.7. Discussion of Theorem 2.7 for λ = (1). The analysis of Theorem 2.7
in this instance is trivial. We obtain the results:

(1) The positive integer n is a triangular number if 8n + 1 is a square.
(2) The positive integer n is a square if n = 22j(8k + 1) for non-negative

integers j and k, and k is a triangular number.

4. Proofs

In this section we will give the proofs of Theorems 2.1–2.7. We will require
the following lemma.

Lemma 4.1.

ϕ(q)ψ(q2) = ψ(q)2,

ψ(q)2 + ψ(−q)2 = 2ϕ(q4)ψ(q2),

ψ(q)2 − ψ(−q)2 = 4qψ(q2)ψ(q8),

ψ(q)4 − ψ(−q)4 = 8qψ(q2)2ψ(q4)2,

ψ(q)ψ(q3)− ψ(−q)ψ(−q3) = 2qϕ(q2)ψ(q12),

ψ(q)ψ(q3) + ψ(−q)ψ(−q3) = 2ϕ(q6)ψ(q4).

Proof. The first part follows from the eta-quotients in (3.1). Next, we have

ψ(q)2 = ϕ(q)ψ(q2) =
(
ϕ(q4) + 2qψ(q8)

)
ψ(q2).

The second and third parts follow from this by replacing q by −q and adding or
subtracting. The fourth part follows by multiplying the second and third parts
and simplifying the result using the first part. The last two parts follow from
[3, (xxxiii)]. ¤
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4.1. Proof of Theorem 2.1. References to proofs for λ = (1, 1, 1, 1, 1, 1, 1, 1),
(3, 3, 1, 1), and (7, 1) were given in the previous section. We will give the proofs
for the remaining two cases λ = (2, 2, 1, 1, 1, 1) and (4, 2, 1, 1).

For λ = (2, 2, 1, 1, 1, 1), we have, using the fourth part of Lemma 4.1,

ψλ(q) + ψλ(−q)

= qψ(q2)2(ψ(q)4 − ψ(−q)4) = 8q2ψ(q4)2ψ(q2)4 = 8ψλ(q
2).

For λ = (4, 2, 1, 1), we have, using the third part of Lemma 4.1,

ψλ(q) + ψλ(−q)

= qψ(q4)ψ(q2)(ψ(q)2 − ψ(−q)2) = 4q2ψ(q8)ψ(q4)ψ(q2)2 = 4ψλ(q
2).

4.2. Proof of Theorem 2.2 and 2.3. The proofs are similar to the proofs
just given for the partitions (2, 2, 1, 1, 1, 1) and (4, 2, 1, 1). We omit the details.

4.3. Proof of Theorem 2.4. These results were stated by Ramanujan and
proved in [1, pp. 377–378].

4.4. Proof of Theorem 2.5. By the third part of Lemma 4.1 with q3 in place
of q, we obtain

ψ(3,3,2)(q) + ψ(3,3,2)(−q)

= qψ(q2)
(
ψ(q3)2 − ψ(−q3)2

)
= 4q2ψ(q2)ψ(q6)ψ(q24) = 4ψ(12,3,1)(q

2).

Next, using the first and last parts of Lemma 4.1, we find

ψ(12,3,1)(q) + ψ(12,3,1)(−q) = q2ψ(q12)
(
ψ(q)ψ(q3) + ψ(−q)ψ(−q3)

)

= 2q2ψ(q12)ϕ(q6)ψ(q4)

= 2q2ψ(q6)2ψ(q4)

= 2ψ(3,3,2)(q
2).

4.5. Proof of Theorem 2.6. The proof is similar to the proofs already given,
so we omit the details.

4.6. Proof of Theorem 2.7. We will prove the results in the reverse order.
Proof for λ = (1): Add parts (i) and (ii) of Entry 25 in [1, p. 40].
Proof for λ = (1, 1): Add parts (v) and (vi) of Entry 25 in [1, p. 40].
Proof for λ = (3, 1): We have

ϕ(q)ϕ(q3)

=
∞∑

m,n=−∞
qm2+3n2

=
∞∑

m,n=−∞
q((m+3n)2+3(m−n)2)/4

=
∑

u≡v (mod 4)

q(u2+3v2)/4
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=
∞∑

k,l=−∞
q4k2+12l2 + 2q

∞∑

k,l=−∞
q4k2+2k+12l2+6l + q4

∞∑

k,l=−∞
q4k2+4k+12l2+12l

= ϕ(q4)ϕ(q12) + 2qψ(q2)ψ(q6) + 4q4ψ(q8)ψ(q24).

Proof for λ = (1, 1, 1, 1): From the result for λ = (1, 1) we have

ϕ(q)4 =
(
ϕ(q2)2 + 4qψ(q4)2

)2
= ϕ(q2)4 + 8qϕ(q2)2ψ(q4)2 + 16q2ψ(q4)4.

Now use the first part of Lemma 4.1 on the middle term to complete the proof.
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