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NEW ESTIMATES OF THE SINGULAR SERIES
CORRESPONDING TO POSITIVE QUATERNARY

QUADRATIC FORMS

GURAM GOGISHVILI

Abstract. Let m ∈ N, f be a positive definite, integral, primitive, quater-
nary quadratic form of the determinant d and let ρ(f, m) be the correspond-
ing singular series.

When studying the best estimates for ρ(f,m) with respect to d and m we
proved in [4] that

ρ(f, m) = O(d−
1
3 m ln ln b(dm)),

where b(k) is the product of distinct prime factors of 16k if k 6= 1 and b(k) = 3
if k = 1.

The present paper proves a more precise estimate

ρ(f,m) = O(d−
1
3

0 d
− 1

2
1 m ln b(d1) ln ln b(m)),

where d = d0d1, d =
∏

p|25d

ph(p), d0 =
∏

p|25d
p|2m

ph(p), d1 =
∏

p|24d
p-m, p>2

ph(p), h(p) > 0

if p > 2; h(2) > −4.
The last estimate for ρ(f, m) as a general result for quaternary quadratic

forms of the above-mentioned type is unimprovable in a certain sense.
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1. Introduction

Let

f =
4∑

α,β=1

aαβxαxβ (1)

be any positive definite, integral, primitive, quaternary quadratic form of the
determinant d = d(f), so the gcd(a11, a22, a33, a44, 2a12, . . . , 2a34) = 1.

We consider the main term of formulas for the number of representations
r(f,m) of m ∈ N by f . The main term expressed by the so-called singular
series ρ(f, m) can be represented as an infinite product over all primes p

ρ(f, m) =
π2m

d
1
2

∏
p>2

χ(p). (2)

The formulas for the χ(p) (even under more general assumptions) are obtained
by Malyshev [6]. These formulas are simplified in some cases and represented
in the convenient form in [1].
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The estimates of ρ(f, m) with respect to d and m are important for the
investigation of the asymptotic behavior of r(f, m), determination of one-class
genera of the forms (1), the existence of the so-called Gauss type formulas for
r(f,m) (r(f, m) = ρ(f,m)) and in other applications.

In the paper [6] some estimates of χ(p), p > 2, are given. They yield

ρ(f, m) = O(d
1
2 m1+ε) (3)

for any ε > 0.
Studying the representation of numbers by sums of squares, Rankin [7] es-

timated the corresponding ρ(f,m). Some analogous results for a quaternary
form of special type are obtained by Kiming [5]. In [2] we essentially improved
the existing results and obtained

ρ(f,m) = O(d−
1
3
+ε1m1+ε2) (4)

for any ε1 > 0, ε2 > 0 and calculated the constant in the “O-term”. This
constant depends only on ε1 and ε2.

The papers [3] and [4] give more precise estimates

ρ(f,m) = O(d−
1
3 m ln ln d ln ln m) (5)

and

ρ(f, m) = O(d−
1
3 m ln ln b(dm)), (6)

where b(k) is the product of distinct prime factors of the number 16k if k 6= 1,
and b(k) = 3 if k = 1.

The paper [4] gives an estimate for n-ary (n > 5) quadratic forms too

ρ(f,m) = O(d−
n−2

2(n−1) m
n
2
−1).

The present paper sharpens the result (6) and proves

ρ(f,m) = O(d
− 1

3
0 d

− 1
2

1 m ln b(d1) ln ln b(m)), (7)

where d0d1 = d, d0 =
∏

p|25d
p|2m

ph(p), d1 =
∏

p|24d
p-m, p>2

ph(p), h(p) > 0 if p > 2 and

h(2) > −4.
The estimate (7) as a general result for quaternary quadratic forms of the

above-mentioned type is unimprovable in a certain sense since the estimate

O(d
− 1

3
0 d

− 1
2

1 m) is not valid for any forms of such kind. An example of such
extreme forms is constructed in [3].

2. Notation and Some Preliminary Results

It is known (cf., for example, [6]) that for any prime p > 2 and quadratic
form (1) there exist integers eα and quadratic forms φα, α = 1, s, such that

f ≡
s∑

α=1

peαφα( mod pes+3),
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where −1 6 e1 < e2 < · · · < es (if p = 2, then any nα-ary φα may be diagonal

or of the type φα =
nα/2∑
β=1

(2a′αβx2
αβ +2a′′αβxαβyαβ +2a′′′αβy2

αβ) and only then e1 may

be −1. If p 6= 2, then φα is diagonal and p - det(φα), α = 1, s).
Let p be any prime factor of d (more exactly, p be a factor of 24d, since d may

be the number of type 2−4d∗ with d∗ being an odd integer), d = ph(p)dp, p - dp,
m = pwmp, p - mp, w = w(p) > 0. According to the formulas for χ(p) (cf., [6]
or [1]) we obtain the estimates of χ(p), p | 24d, p > 2. In all possible cases, for
the representable m and the forms (1) we have

χ(p) = 2 if w = 0, n1 = 1;

χ(p) 6 1 +
1

p
if w = 0, n1 > 1;

so

χ(p) 6 2 if w = 0. (8)

An estimate for w > 0 is obtained in [2].

χ(p) 6 p
h(p)

6 (1 + p−2)(1 + p−1) if w > 0. (9)

From the formulas for χ(2) (cf., [2]) we obtain

χ(2) 6 2e1 +
∑

e1<t6w+2

2t−2−Pl(t)
n=1 nα(t−eα−1)/2+ν(t)

+

{
2w−B(w+2)/2+2.5−ν(w+3) if 2 - B(w + 3),

0 if 2 | B(w + 3),

where ν = ν(t) = 1 if 2 |
l(t)∑
α=1

nα; ν(t) = 1
2

if 2 -
∑l(t)

α=1 nα,

B(t) =

l(t)∑
α=1

nα(t− eα), l(t) =





0 if t 6 e1,

k if ek < t 6 ek+1,

s if t > es.

In a similar way as it was done in [2], from the last estimate we obtain

χ(2) 6 4 · 2h(2)
6 if w > 0, (10)

where d = 2h(2)d2, h(2) and d2 are integers, h(2) > −4, 2 - d2.

3. Estimates of χ(p), p - 24d, p > 2

Let m = pwmp, p - mp and

δ =

(
d

p

)
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be the Jacobi symbol. The paper gives the formulas for the corresponding χ(p)
in the above-mentioned case.

χ(p) = (1− δp−2)
∑

06t6w

δtpt.

It follows from the last formula that

χ(p) 6 1 + p−2 if p - 25dm, (11)

χ(p) < (1− p−2)
∑
t>0

p−t = (1− p−2)(1− p−1)−1

= 1 + p−1 if p - 25d, p | m. (12)

4. Estimate of ρ(f, m)

Now using (10), (8), (9), (11) and (12) we obtain
∏
p>2

χ(p) = χ2

∏

p|24d
p-2m

χ(p)
∏

p|24d
p|m, p>2

χ(p)
∏

p-25dm

χ(p)
∏

p-25d
p|m

χ(p)

6 4 · 2h(2)
6

∏

p|24d
p-2m

2
∏

p|24d
p|m, p>2

p
h(p)

6 (1 + p−2)(1 + p−1)
∏

p-25dm

(1 + p−2)
∏

p-25d
p|m

(1 + p−1)

6 4 · d
1
6
0 2σ(d1)

∏
p>2

(1 + p−2)
∏

p|m
(1 + p−1), (13)

where σ(d1) is the number of prime divisors of d1.
It is obvious that 2σ(d1) < b(d1), so σ(d1) = O(ln b(d1)).
Let m > 1 and p1, . . . , pσ(m) be the first σ(m) prime numbers, then using the

well-known estimates (cf., for example, [8]) we obtain
∏

p|m
(1 + p−1) 6

∏
26p6pσ(m)

(1 + p−1) = O(ln pσ(m))

= O(ln(σ(m) ln σ(m))) = O(ln σ(m)) = O(ln ln b(m)). (14)

This result together with the estimate

∏
p>2

(1 + p−2) 6
∞∑

a=1

a−2 =
π2

6
, (15)

lead us to the final result for the product
∏
p>2

χ(p) = O(d
1
6
0 ln b(d1) ln ln b(m)). (16)

Clearly, (2) and (16) give the desired result (7).
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