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SOME PROPERTIES OF THE INVERSION COUNTING
FUNCTION

NEVILLE ROBBINS

Abstract. Let h, k be integers such that 0 < h < k and (h, k) = 1. If
1 ≤ i ≤ k − 1, let ri be the least positive residue (mod k) of hi. Let the
permutation

σh,k =
(

1 2 3 · · · k − 1
r1 r2 r3 · · · rk−1

)

For 1 ≤ i < j ≤ k − 1, if ri > rj , this is called an inversion of σh,k. Let
I(h, k) denote the total number of inversions of σh,k. In this note, we prove
several identities concerning I(h, k).
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1. Introduction. Let h, k be integers such that 0 < h < k and (h, k) = 1.
Consider the permutation

σh,k =

(
1 2 3 · · · k − 1

r1 r2 r3 · · · rk−1

)

where ri is the least positive residue (mod k) of hi for 1 ≤ i ≤ k − 1. In
particular, if p is an odd prime and if 0 < h < p, then the Legendre symbol
(h

p
) = 1 if and only if σh,p is the product of an even number of transpositions.

(See [2], p. 280.) Let Ii(h, k) denote the number of elements in the sequence
{r1, r2, r3, . . . , ri−1} that exceed ri. Let

I(h, k) =
k−1∑
i=1

Ii(h, k) .

Note that I(h, k) counts the number of so-called inversions in σh,k. (The term
inversion is due to C. Meyer [3].) In [4], several identities concerning I(h, k)
were presented. In this note, we develop further properties of I(h, k).

2. Preliminaries. Let s(h, k) denote the usual Dedekind sum.

I(h, k) = −3ks(k, h) +
1

4
(k − 1)(k − 2). (1)

hI(h, k) + kI(k, h) =
1

4
(h− 1)(k − 1)(h + k − 1). (2)

If h′ ≡ ±h (mod k), then s(h′, k) = ±s(h, k). (3)

If h′ ≡ h (mod k), then I(h′, k) = I(h, k). (4)
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Remarks. (1), (2) are (48), (50) respectively in [4]. (See p. 37, 39.) (2) is
attributed by Meyer to H. Salie. (See [3], p. 163.) (3) is Theorem 3.6, part (a)
on p. 62 of [1]. (4) follows from (1) and (3). An additional identity ((49) in [4])
states that

(−1)I(h,k) =

(
h

k

)
.

This last identity, sometimes called Zolotarev’s Theorem, yields an alternate
proof of the quadratic reciprocity law for the Jacobi symbol.

3. The Main Results.

Theorem 1. Let h, k be integers such that 0 < h < k and (h, k) = 1. Then

(a) I(k − h, k) + I(h, k) =
(k − 1)(k − 2)

2
,

(b) I(k − h, k)− I(h, k) = 6ks(h, k).

Proof. Since (3) implies s(k − h, k) = s(−h, k) = −s(h, k), it follows from (1)
that

I(k − h, k) = 3ks(h, k) +
1

4
(k − 1)(k − 2). (5)

The conclusion now follows from (1) and (7). ¤
Theorem 2. If k is odd, then

k−1∑

h=1

I(h, k) =
1

4
(k − 1)2(k − 2). (6)

Proof.

k−1∑

h=1

I(h, k) =

k−1
2∑

h=1

I(h, k) +
k−1∑

h= k+1
2

I(h, k)

but
k−1∑

h= k+1
2

I(h, k) =

k−1
2∑

h=1

I(k − h, k)

so that, using Theorem 1(a), we get:

k−1∑

h=1

I(h, k) =

k−1
2∑

h=1

(I(h, k) + I(k − h, k))

=

k−1
2∑

h=1

1

2
(k − 1)(k − 2) =

1

4
(k − 1)2(k − 2). ¤

Theorem 3. If 0 < h < k, (h, k) = 1 and k ≡ 0 (mod 3), then I(h, k) ≡
h− 1 (mod 3).
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Proof. By hypothesis, we must have h 6≡ 0 (mod 3). Therefore, by (2) and the
hypothesis, we have

hI(h, k) ≡ −(h− 1)2 (mod 3)

hence

I(h, k) ≡ −h + 2− h−1 (mod 3)

from which the conclusion follows. ¤

Theorem 4. If 0 < h < k, (h, k) = 1, and k 6≡ 0 (mod 3), then I(h, k) ≡ 0
(mod 3).

Proof (Induction on k). Note that I(1, 2) = 0 ≡ 0 (mod 3). First assume that
(a) h 6≡ 0 (mod 3).

Now (2) implies

hI(h, k) + kI(k, h) ≡ 0 (mod 3) .

Let k = qh + r, where 0 < r < h, then I(k, h) = I(r, h), so that

hI(h, k) + kI(r, h) ≡ 0 (mod 3) .

By the induction hypothesis, we have I(r, h) ≡ 0 (mod 3). Therefore I(h, k) ≡
0 (mod 3). Now assume that

(b) h ≡ 0 (mod 3), so that k − h 6≡ 0 (mod 3).
Since, by hypothesis, k 6≡ 0 (mod 3) it follows that 3|(k − 1)(k − 2). Therefore
(2) implies

I(h, k) + I(k − h, k) ≡ 0 (mod 3) . (7)

Our result from part (a) implies I(k − h, k) ≡ 0 (mod 3) so that (9) implies
I(h, k) ≡ 0 (mod 3). ¤

Theorem 5.

(a) I(m,mn± 1) =
m(m− 1)n(n± 1)

4
.

(b) If m is odd, then I(m,mn± 2) =
n(m− 1)(2mn±m± 3)

8
.

Proof. These results are obtained via (2) and (4). ¤
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