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COPRIMENESS AMONG ELEMENT ORDERS OF FINITE
GROUPS
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Abstract. In this paper we classify the finite groups satisfying the following
property P3: every three distinct orders of elements are setwise relatively
prime.
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1. Introduction. Let G be a finite group and Ch(G) be one of the following
sets:

cd(G)={χ(1)|χ∈ Irr(G)}, i.e. the set of irreducible character degrees of G;
con(G)= {gG|g ∈ G}, i.e., the set of conjugacy classes of G; and
πe(G)= {o(g)|g ∈ G}, i.e., the set of element orders of G.

We say that G has the following property Pn: if Ch(G) = cd(G) or πe(G) then
every set of n distinct elements of Ch(G) is setwise coprime; if Ch(G) = con(G)
then their sizes are setwise coprime for any n distinct elements of Ch(G).

In [1], the author studied the structure of the solvable group G with Pn when
Ch(G) = cd(G), where a quadratic bound that depends only on n for |cd(G)|
was obtained. It was conjectured in [2] that if any prime integer p divides at
most m elements in cd(G), then |cd(G)| ≤ 3m. In [3], the authors studied the
structure of the group G with Pn when Ch(G) = con(G). In particular, they
classified the finite groups when n = 5, extending the result in [4].

In this paper, we study the structure G with Pn in the case of Ch(G) = πe(G).
We classify the finite groups that satisfy property P3, extending the results in
[5] and [6]. We also obtain a bound that depends only on n for |π(G)|, the
number of distinct prime divisors of the order of G.

2. Preliminaries. In the following we always assume that property Pn takes
place in the case Ch(G) = πe(G). First, we present some preliminary results
we need.

Lemma 2.1. Let G be a finite group that satisfies property Pn. Then property
Pn is inherited by subgroups and quotient groups of G.

Proof. The proof is straightforward. ¤
Lemma 2.2. Let r be a prime and n a positive integer such that q+1

d
and q−1

d
are products of at most two primes, where q = rn and d = (r − 1, 2).

(a) If r > 2 and q ≡ 3 or 5 (mod 8), then n = 1 or an odd prime.
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(b) If r = 2, then n = 1, 2 or an odd prime.

Proof. (a) Suppose that r > 2. If q ≡ 3 (mod 8), then 4 6 |q − 1. If n = 2m,
then q − 1 = (rm + 1)(rm − 1) and so that 4|q − 1, a contradiction; if n = km
is odd with k, m > 1, then qn − 1 = (q − 1)(qm−1 + qm−2 · · ·+ q + 1)(qm(k−1) +
qm(k−2) + · · · + qm + 1), a contradiction. Using a similar argument, we also
conclude that if q ≡ 5 (mod 8), then n = 1 or an odd prime.

(b) Suppose that r = 2. If n = 4m, then 2n− 1 = (22m +1)(2m +1)(2m− 1),
a contradiction; if n = 4m + 2, then 2n − 1 = (22m+1 − 1)(2 + 1)(22m − 22m−1 +
22m−2 − · · · + 22 − 2 + 1), a contradiction; if n = km is odd with k, m > 1,
then 2n + 1 = (2 + 1)(2k−1− 2k−2 + 2k−3− · · ·+ 22− 2 + 1)(2k(m−1)− 2k(m−2) +
2k(m−3) − · · ·+ 22k − 2k + 1), a contradiction. ¤

Recall that the prime graph Γ(G) of G is defined as follows: its vertex set
is π(G), and two distinct vertices p, q in π(G) are connected with an edge if
pq ∈ πe(G). Denote by t(G) the number of connected components of Γ(G) and
by πi = πi(G), i = 1, 2, . . . , t(G) the connected components of Γ(G). If G is of
even order, we always assume that 2 ∈ π1.

A group G is 2-Frobenius if there exists a normal series 1/N /K/G such that
G/N and K are Frobenius groups with kernels K/N and N respectively. For
any 2-Frobenius G, we have t(G) = 2 and π1 = π(N)∪ π(G/K), π2 = π(K/N).
In particular, G is solvable.

In relation to the number of connected components of Γ(G) we have the
following Lemma due to Gruenberg and Kegel (see Theorem A [7]).

Lemma 2.3. Let G be a finite group with disconnected prime graph, then G
has one of the following structures:

(a) Frobenius or 2-Frobenius;
(b) simple;
(c) an extension of a π1-group by a simple group;
(d) simple by π1; or
(e) π1 by simple by π1.

From this Lemma we can deduce that if G is neither Frobenius nor 2-Frobe-
nius, then G has a normal series 1 / N / M / G such that N is a nilpotent
π1-group, M/N is a simple group and G/M is a solvable π1-group.

Lemma 2.4. Let G be a finite group, N a normal subgroup of G, and G/N a
Frobenius group with kernel F and cyclic complement C. If (|F |, |N |) = 1 and
F is not contained in NCG(N)/N , then p|C| ∈ πe(G) for some prime divisor p
of |N |.
Proof. This follows from [8]. ¤

Lemma 2.5. Let G be a simple group that satisfies property P3. Then G has
one of the following structures:

(a) L2(q), q = 2f or q = rf ≡ 3, 5 (mod 8), where q+1
d

and q−1
d

are products
of at most two primes, d = (2, q − 1);

(b) L2(9), L2(7) or L3(4); or
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(c) Sz(q), where q = 22n+1, n ≥ 1,q − 1, q − √2q + 1 and q +
√

2q + 1 are
products of at most two primes.

Proof. Let P ∈ Syl2(G). If P is non-abelian, then 4 ∈ πe(G) and hence π1 =
{2}. It follows that G is a C22-group and therefore is isomorphic to L2(q), L3(4)
or Sz(22n+1)(n ≥ 1) by [9]. If G ∼= L2(q), then q ≡ 1 or 7 (mod 8). Observing
that (q + 1)/2, (q − 1)/2 ∈ πe(L2(q)), we conclude that if q ≡ 1 (mod 8), then
(q− 1)/2 = 4 and q = 9, so G ∼= L2(9); if q ≡ 7 (mod8), then (q + 1)/2 = 4 and
q = 7, so G ∼= L2(7).

If P is abelian, we conclude from [10, Ch. XI, Theorem 13.7] that G ∼= L2(q),
q = 2f or q ≡ 3 or 5 (mod 8), J1, or R(q). Since |π1(J1)| ≥ 3 (see [11]) and
|π1(R(q))| ≥ 3 (see [10, Ch. XI, Theorem 13.4]), we have G ∼= L2(q).

Considering the cyclic subgroups in L2(q) and Sz(q), we can obtain other
properties of G. ¤

Lemma 2.6. Suppose that G is a finite group with property Pn. If there
exists an element x ∈ G whose order is a product of m distinct primes, then
2m−1 + 1 ≤ n.

Proof. Let x1 ∈ 〈x〉 be of order a prime p1. Then there are 2m−1 elements x1yi

of distinct orders where yi ∈ 〈xp1〉. For those 2m−1 elements, their orders have
the common divisor p1. This implies that 2m−1 + 1 ≤ n. ¤

3. Main results. Now, we are ready to formulate our results.

Theorem 3.1. Let G be a finite solvable group that satisfies P3 and Gp ∈
Sylp(G). Then one of the following statements holds.

(a) G is a p-group with exp(G) ≤ p2.
(b) G = GpGq with exp(Gp) = p and exp(Gq) = q.
(c) G is a Frobenius group with kernel N and complement H, where N = Gp

with exp(N) ≤ p2 or N = Gp × Gq with exp(Gp) = p and exp(Gq) = q; while
H is isomorphic to Q8 or a subgroup of Zrs, r, s primes.

(d) G is 2-Frobenius, that is G has a normal series 1 / N / K / G such that
G/N and K are Frobenius groups with kernels K/N and N respectively, where
K/N is isomorphic to a subgroup of Zrs, r, s primes and G/K is of order p;
while N is a q-group with exp(N) = q or a p-group with exp(Gp) ≤ p2.

Proof. If t(G) = 1, then |π(G)| ≤ 2. We conclude that G is the group in (a) or
(b). If t(G) ≥ 2, since G is solvable, we conclude from Lemma 2.3 that t(G) = 2
and G is Frobenius or 2-Frobenius.

Suppose first that G is a Frobenius group with kernel N and complement H.
We have π1 = π(H) and π2 = π(N) and thus |πi| ≤ 2 for i = 1, 2. Since N is
nilpotent, we conclude that N = Gp with exp(N) ≤ p2 or N = Gp × Gq with
exp(P ) = p and exp(Q) = q. If π(H) = {r}, then H is isomorphic to Q8 or a
subgroup of Zr2 ; if |π(H)| = 2, then H is a product of two Sylow subgroups of
prime orders of G. The statement (c) holds.

Suppose now that G is 2-Frobenius. Then G has a normal series 1 / N /
K / G such that G/N and K are Frobenius groups with kernels K/N and N
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respectively. It follows that π1 = π(G/K)∪π(N) and K/N is a cyclic π2-group
with |πi| ≤ 2 for i = 1, 2. If π(G/K) = {p, q}, then p or q belongs to π(N).
We may assume without loss of generality that q ∈ π(N). If p = 2 and the
Sylow 2-subgroups of G/K are generalized quaternion groups, we conclude that
2, 4 and 2q ∈ πe(G), a contradiction. It follows that G/K is a cyclic group
of order pq. Since N is nilpotent, by induction we may assume that N is an
elementary abelian q-group. We conclude from Lemma 2.4 that pq2 ∈ πe(G), a
contradiction. So G/K is a p-group and |π(N)| = 1. We have that if π(N) =
{q} and q 6= p, then N is a q-group with exp(N) = q; if π(N) = {p}, then
exp(Gp) ≤ p2. It is clear that K/N is isomorphic to a subgroup of Zrs with
r, s ∈ π(G) . The statement (d) holds. ¤

Theorem 3.2. Let G be a finite non-solvable group that satisfies P3. Then
one of the following statements holds.

(a) G/O2(G) ∼= L2(q), where q = 2f ≥ 4 and q + 1, q − 1 are products of at
most two primes.

(b) G ∼= L2(q), where q > 5 and q ≡ 3 or 5 (mod 8), q+1
2

and q−1
2

are products
of at most two primes.

(c) G ∼= L2(7), L2(9), or L3(4).
(d) G ∼= Sz(q), where q = 22n+1, n ≥ 1, q − 1, q −√2q + 1 and q +

√
2q + 1

are products of at most two primes.

Proof. Since G is unsolvable, we conclude that |π(G)| ≥ 3 and t(G) ≥ 2. By
Lemma 2.3, G has a normal series 1 / N / M / G such that N is a nilpotent
π1-group, M/N is one of the simple groups listed in Lemma 2.5 and G/M is a
solvable π1-group.

Claim 1. G = M .
Suppose first that M/N ∼= L2(7), L2(9) or L3(4). We conclude from [11] that

G = M .
Suppose now that q = rf ≡ 3 or 5 (mod 8) or q = 2f . Let t ∈ π(G/M). Since

G/M ≤ Out(M/N), we have t||Out(M/N)|. Observe that |Out(M/N)| = fd,
where d = (q − 1, 2), it follows that if t 6 |f then t = d = 2 and q ≡ 3 or
5 (mod 8). This forces G/N ∼= PGL(2, q), which implies that G/N has at least
three elements of distinct even orders, a contradiction. Thus t|f .

If q ≡ 3 (mod 8), then q+1
2

= 2t1 and t1 is an odd prime. We conclude from
Lemma 2.2 that f = t is an odd prime, which implies that t = t1 and so that
q+1
2

= 1
2
(rt + 1) = 2t, a contradiction. If q ≡ 5 (mod 8), a similar argument

yields a contradiction. If q = 2f , we also conclude from Lemma 2.2 that f = t is
an odd prime (note that L2(4) ∼= L2(5), the case of q = 5 has been considered).
Observe that |G/M | = |Out(M/N)| = f , we claim that f 6 ||M/N |. If this
is false, then f |2f + 1 or f |2f − 1. It follows that f, 2f, 2f + 1 ∈ πe(G/N) or
f, 2f, 2f −1 ∈ πe(G/N), a contradiction. Let x ∈ G/N −M/N such that x is of
order f . We conclude that x acts fixed-point freely on the subgroups of orders
2f + 1 and 2f − 1 of M/N and therefore f |(2f + 1) + 1 and f |(2f − 1) + 1. This
forces f |2, a contradiction.
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Suppose then that M/N ∼= Sz(22n+1). We have |Out(M/N)| = 2n + 1.
If G > M , since |G/M |||Out(M/N)| and π(G/M) = π1(G) = {2}, we have
2|2n + 1, a contradiction.

Claim 2. N is a normal p-subgroup of G and CG(N) ≤ N . In particular,
N = Op(G).

Since N is a nilpotent π1-group, by Lemma 2.1 we can assume that N is a
p-group. If CG(N) 6≤ N , then G = CG(N)N . We conclude that G has elements
of distinct orders p, pl and pm respectively, where l, m ∈ π(G), a contradiction.

Claim 3. If G/N ∼= L2(q), q = 2f ≥ 4, then N is a 2-group. Otherwise
N=1.

Suppose first that G/N ∼= L2(q), q = 2f ≥ 4. Since N is a p-group, we
may assume from Lemma 2.1 that N is a minimal normal subgroup of G. Let
P ∈ Sly2(G/N), and Q = NG/N(P ) and W/N ∼= Q. If N is not a 2-group, then
Q is a Frobenius group of order (2f − 1)2f . From Claim 2, we conclude that Q
acts faithfully on N . It follows from Lemma 2.4 that (2f − 1)p ∈ πe(W ). Also,
we have 2p ∈ πe(W ) since P is elementary abelian, a contradiction. Therefore
N is a 2-group.

Suppose now that G/N ∼= L2(q), where q = rf > 5 and q ≡ 3 or 5 (mod 8).
Arguing as in the preceding paragraph, we conclude that N = 1.

Suppose then that G/N ∼= L2(9), L2(7) or L3(4) . In order to prove N = 1, let
G be a minimal counterexample. We may assume that N is a minimal normal
subgroup of G. We conclude from the above argument that π1(G) = {2} and
so N is an elementary abelian 2-group. By claim 2, all 2′-subgroups of G act
fixed-point freely on N . If G/N = L2(9), since G/N has Frobenius subgroups
of order 36, we conclude from Lemma 2.4 that 8 ∈ πe(W ), a contradiction. If
G/N ∼= L2(7) or L3(4), a similar argument yields a contradiction.

Suppose finally that G/N = Sz(q), where q = 22n+1, n ≥ 1. If N > 1, we
may assume that N is an elementary abelian 2-group. Since G/N has Frobenius
subgroups of order 4(q − √2q + 1) with cyclic complements of order four, we
conclude from Lemma 2.4 that 8 ∈ πe(G), a contradiction. ¤

Theorem 3.3. If G is a finite group that satisfies Pn, then |π(G)| ≤
C(log n)4 log log n, where C is a constant. In particular, |πe(G)| ≤ C(n −
1)(log n)4 log log n + 1.

Proof. Since G satisfies Pn, we conclude that |πe(G)| ≤ (n − 1)|π(G)| + 1. By
Lemma 2.6 we have that the number of different prime divisors of the order of
an element of G is bounded by a logarithmic function of n. The result follows
from Theorem A of [12]. ¤
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