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Abstract. Let {ωk} be a complete system of polynomial solutions of the
elliptic equation

∑
|α|62m aαDαu = 0, aα being real constants. We give nec-

essary and sufficient conditions for the completeness of the system {(ωk, ∂νωk,
. . . , ∂m−1

ν ωk)} in [Lp(∂Ω)]m, where Ω ⊂ Rn is a bounded domain such that
Rn \ Ω is connected and ∂Ω ∈ C1.
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1. Introduction

Many years ago Mauro Picone posed the following problem: let E be a partial
differential operator

Eu =
∑

|α|62m

aα(x)Dαu

defined in Rn and let B1, . . . , Bs be some partial differential operators defined
on the boundary Σ of a bounded domain Ω. Let us suppose that there exists a
solution of the problem{

Eu = 0 in Ω,

Bhu = fh on Σ(h = 1, . . . , s)
(1.1)

if and only if (f1, . . . , fs) satisfies a finite number of compatibility conditions
s∑

h=1

∫

Σ

fhψ
(k)
h dσ = 0, k = 1, . . . , µ,

that is to say that problem (1.1) is an index problem.
Let us denote by {ωk} a particular sequence of solutions of the equation

Eu = 0 in A, where A is a domain such that Ω ⊂ A.
The problem posed by Picone is to find under which conditions the system

{(B1ωk, . . . , Bsωk)} is complete in the space{
(v1, . . . , vs) ∈ [Lp(Σ)]s

∣∣∣
s∑

h=1

∫

Σ

vhψ
(k)
h dσ = 0, k = 1, . . . , µ

}
.
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The first theorem of such a kind was proved by Gaetano Fichera in [7]. He
considered the Dirichlet, the Neumann and the mixed problem for the Laplace
equation in any number of variables and proved the corresponding completeness
of the harmonic polynomials in Lp(Σ).

The history of the problem posed by Picone and the connections with more
classical approximation problems of Mergelyan and Runge type can be found
in [10]. That paper contains a complete list of references. See also [5] for an
update.

No general completeness theorems in the sense of Picone have so far been
known. There are several results available only for particular partial differen-
tial equations and for particular boundary value problems, except for elliptic
equations of second order and for some results in two independent variables.
The present paper and [4] seem to be the first ones to consider general classes
of partial differential operators of higher order in any number of variables.

We consider an elliptic equation of higher order with constant real coefficients

Eu = 0, (1.2)

where

Eu =
∑

|α|62m

aαDαu (aα ∈ R). (1.3)

The theory of partial differential equations with constant coefficients attracts
a great deal of attention (for general references, see [23]). Here we prove the
completeness theorems for the Dirichlet problem

{
Eu in Ω,

∂h
ν u = fh on Σ, h = 0, . . . , m− 1,

where Ω is a bounded domain of Rn such that Rn \ Ω is connected, Σ is its
boundary and ∂ν denotes the normal derivative. It is worthwhile to remark
that Σ is merely supposed to be a C1 boundary.

It is easy to see that there are polynomial solutions of the equation Eu = 0
if and only if a(0...0) = 0 in (1.3). But, generally speaking, this condition is not
sufficient for the completeness. The main result we prove is the following:

Let a(0...0) = 0 and let E be such that the G̊arding inequality holds (see (3.2)
below). Let us denote by {ωk} a complete system of polynomial solutions of
(1.2). The system

{(ωk, ∂νωk, . . . , ∂
m−1
ν ωk)} (1.4)

is complete in the space [Lp(Σ)]m (1 6 p < ∞) if and only if all the irreducible
factors (over C) of the characteristic polynomial vanish at ξ = 0.

The particular case of an elliptic operator with only highest order terms was
considered in [4].

Our proof is based, on the one hand, on the fundamental results obtained by
Malgrange in [16] and, on the other hand, on some formulas of potential theory
we give in Section 2.
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Another ingredient of the proof is the construction of a suitable fundamental
solution for operator (1.3). In the case of an elliptic operator with constant
coefficients and no lower order terms, such a fundamental solution is provided
by the one constructed by Fritz John in [13] (see [4]).

In the general case it is well known that Ehrenpreis [6] and Malgrange [16]
proved that there exists a fundamental solution for any partial differential ope-
rator with constant coefficients (see [17] for a short proof). Afterwarda, several
explicit representations have been obtained (see Chapter 3 of [23] and [11, 13,
14, 18, 24]).

Unfortunately none of these representations seems to be suitable for our pur-
poses. This is why we are going to construct a different fundamental solution,
which we shall call a principal fundamental solution in the sense of Fichera. The
idea, which simplifies the classical concept of a principal fundamental solution
given by Giraud, was introduced in [8] with the aim of developing a multi-
ple layer potential theory for elliptic differential equations of higher order with
variable coefficients in two variables. Later this construction was generalized to
strongly elliptic systems with variable coefficients in any number of variables
[20].

The construction of this fundamental solution is carried out in Section 3. We
could not apply directly the results of [8, 20], because we cannot impose the
conditions they require on the term a(0,...,0). On the other hand, the fact that
we have constant coefficients will permit us to adapt and simplify Fichera’s
construction.

2. Some Results of Potential Theory

We recall that the function h is said to be essentially homogeneous of degree
α if h(x) = h1(x) log x+h2(x) where h2(%x) = %αh(x), x 6= 0, % > 0 and h1(x) is
a homogeneous polynomial of degree α if α is a nonnegative integer, h1(x) ≡ 0
otherwise.

In [3] the following result was proved.

Theorem 1. Let Σ ∈ C1,λ. Let h ∈ C2(Rn \ {0}) be even and essentially
homogeneous of degree 2 − n. If ϕ ∈ L1(Σ) and x0 is a Lebesgue point for ϕ,
then

lim
x→x0

∫

Σ

ϕ(y) ∂xk
[h(x− y)] dσy = νk(x0) γ(x0) ϕ(x0)

+

∫

Σ

ϕ(y) ∂xk
[h(x− y)] dσy, (2.1)

where x is a point on the inner normal νx0 to Σ at x0, x′ is its symmetric
point with respect to x0 and the last integral has to be understood as a singular
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integral. The function γ is given by

γ(x0) =





πh1 − 1

2

∫

|ξ|=1

∆h2(ξ) log |ξ · νx0| dσξ if n = 2

1

2

∫

|ξ|=1

[(2− n)h(ξ)−∆h(ξ) log |ξ · νx0|] dσξ if n > 3.

Jump formulas like (2.1) are known, even for more general kernels (see [15,
pp. 293–300]). The interest of Theorem 1 is in the explicit expression for γ; in
fact, as it was remarked in [5], the function γ can be expressed by means of the
Fourier transform of the kernel h:

γ(x0) =
1

2
F (∆h)(νx0) = −2π2F (h)(νx0) (2.2)

where the Laplacian ∆ has to be understood in the sense of distributions and
F denotes the Fourier transform

F (h)(x) =

∫

Rn

h(y) e−2πix·ydy .

By means of this formula it is often easy to find explicit formulas. For exam-
ple, if we denote by s the fundamental solution of the biharmonic equation

s(x− y)

{
= [2cn(n− 2)(n− 4)]−1|x− y|4−n if n = 3, 5, 6, . . . ,

−(4c4)
−1 log |x| if n = 4

from (2.1) we have

lim
x→x0

∫

Σ

ϕ(y)
∂3

∂xh∂xk∂xj

s(x− y) dσy

= νh(x0)γkj(x0)ϕ(x0) +

∫

Σ

ϕ(y)
∂3

∂xh∂xk∂xj

s(x0 − y) dσy,

where

γkj(x0) = −2π2F

(
∂2s

∂xk∂xj

)
(νx0).

On the other hand, since ∆2s = δ, we have 16π4|x|4F (s)(x) = 1. This leads
to

γkj(x) =
xkxj

2|x|4
and we have

lim
x→x0

∫

Σ

ϕ(y)
∂3

∂xh∂xk∂xj

s(x− y) dσy

=
1

2
νh(x0)νk(x0)νj(x0)ϕ(x0) +

∫

Σ

ϕ(y)
∂3

∂xh∂xk∂xj

s(x0 − y) dσy.
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This formula was proved in [2, Lemma V] in a direct, but more complicated
way.

As another example, we can consider the double layer potential for the elas-
ticity system ∆u + k grad div u. If we denote by shj the Somigliana matrix

shj(x− y) = − 1

4π

[
δhj

|x− y| −
k

2(1 + k)

∂2

∂xj∂xh

|x− y|
]

,

then the elastic double layer potential is given by

uh(x) =

∫

Σ

ϕj(y)Ljy[s
h(x− y)] dσy,

where Lj is the operator

Lu = (k − 1)(div u)ν + 2
∂u

∂ν
+ ν ∧ rot u

and sh is the vector whose components are shj.
Formula (2.1) leads to

lim
x→x0

∫

Σ

ϕj(y)Ljy[s
h(x− y)] dσy

= −[kνi(x0)νj(x0) + δij] γhi(x0) ϕj(x0) +

∫

Σ

ϕj(y)Ljy[s
h(x0 − y)] dσy,

where
γhi(x0) = −2π2F (shi)(νx0).

But since shi is a fundamental solution of the elasticity system, we have
(−4π2)(|x|2δij + kxixj)F (shi)(x) = δjh and

−[kνi(x0)νj(x0) + δij] γhi(x0) = 2π2[kνi(x0)νj(x0) + δij] F (shi)(νx0) = −1

2
δjh.

We have thus reobtained in a simple way the very well known formula

lim
x→x0

∫

Σ

ϕj(y)Ljy[s
h(x− y)] dσy = − 1

2
ϕh(x0) +

∫

Σ

ϕj(y)Ljy[s
h(x0 − y)] dσy.

The following theorem was proved in [5].

Theorem 2. Let Σ ∈ C1. Let h ∈ C2(Rn \ {0}) be even and essentially
homogeneous of degree 2 − n. If ϕ ∈ L1(Σ) and x0 is a Lebesgue point for ϕ,
then

lim
x→x0

(∫

Σ

ϕ(y) ∂xk
[h(x− y)] dσy −

∫

Σ

ϕ(y) ∂xk
[h(x′ − y)] dσy

)

= 2 νk(x0) γ(x0) ϕ(x0),

where x is a point on the inner normal to Σ at x0, x′ is its symmetric point
with respect to x0 and γ(x0) is given by (2.2).
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If Σ is a Lyapunov boundary, this result follows immediately from Theorem 1.
This is not the case if we merely suppose Σ ∈ C1.

Let E be the operator

Eu =
∑

|α|=2m

aαDαu, (2.3)

where aα are real constants. We suppose that the operator is elliptic, i.e.,

Q(ξ) > 0

for any ξ ∈ Rn \ {0}, where

Q(ξ) =
∑

|α|=2m

aα ξα.

As it was shown by Fritz John [13, pp. 65–72] the functions

S0(x− y) =
1

4(2πi)n−1(2m− 1)!
(∆y)

(n−1)/2

∫

|ξ|=1

|(x− y) · ξ|2m−1

Q(ξ)
dσξ (2.4)

for n odd, and

S0(x− y) =
−1

(2πi)n(2m)!
(∆y)

n/2

∫

|ξ|=1

|(x− y) · ξ|2m log |(x− y) · ξ|
Q(ξ)

dσξ (2.5)

for n even, provide a fundamental solution for (2.3).
We have the following theorem (see [4])

Theorem 3. Let Σ ∈ C1. Let ϕ ∈ L1(Σ) and x0 ∈ Σ be a Lebesgue point for
ϕ. For any multi-index α with |α| = 2m− 1, we have

lim
x→x0




∫

Σ

ϕ(y) Dα
y [S0(x− y)] dσy −

∫

Σ

ϕ(y) Dα
y [S0(x

′ − y)] dσy




= − να(x0)

Q(ν(x0))
ϕ(x0), (2.6)

where x is a point on the inner normal to Σ at x0 and x′ is its symmetric point
with respect to x0.

Proof. First write α = α0 + α1 with |α0| = 1, |α1| = 2m− 2 and then
∫

Σ

ϕ(y) Dα
y [S0(x− y)− S0(x

′ − y)] dσy

= −Dα0
x

∫

Σ

ϕ(y) Dα1
y [S0(x− y)− S0(x

′ − y)] dσy. (2.7)
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Since S0(x) is essentially homogeneous of degree 2m− n, Dα1S0(x) is essen-
tially homogeneous of degree 2− n and Theorem 2 gives

lim
x→x0

Dα0
x

∫

Σ

ϕ(y) Dα1
y [S0(x− y)− S0(x

′ − y)] dσy = 2 να0(x0) γα1(x0) ϕ(x0),

where

γα1(x0) = −2 π2F (Dα1S0)(νx0).

On the other hand, ES0 = δ and (−4π2)mQ(x)F (S0)(x) = 1. This leads to

−2π2F (Dα1S0)(x) = −2π2(2πi)2m−2xα1F (S0)(x) =
1

2

xα1

Q(x)

and (2.6) follows from (2.7). ¤

3. The Principal Fundamental Solution in the Sense of Fichera

In this section we are going to consider a more general operator (1.3) which
we rewrite in the form

Eu =

0,m∑

|p|,|q|
(−1)|p|apqD

pDqu. (3.1)

As usual, we associate to (3.1) the bilinear form

B(u, v) =

0,m∑

|p|,|q|
apq

∫

Ω

DquDpv dx.

We suppose that E is such that the G̊arding inequality holds:

B(u, u) > C ‖u‖2
W m,2(Ω) ∀ u ∈ C̊∞(Ω). (3.2)

It is well known that condition (3.2) implies the ellipticity of the operator
E. It is a more restrictive condition because the ellipticity of E implies only a
more general G̊arding inequality

B(u, u) > C ‖u‖2
W m,2(Ω) − c‖u‖2

L2(Ω) ∀ u ∈ C̊∞(Ω) (3.3)

(C, c > 0).
Let us denote by S0 the fundamental solution of the operator

E(0)u =
∑

|α|=2m

aαDαu

given by (2.4) or (2.5). The function S0(x−y) can be considered as a parametrix
for the operator E. In particular, if

u(x) =

∫

Rn

ϕ(y) S0(x− y) dy
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with ϕ ∈ C̊∞(Rn), then we have

Eu(x) = ϕ(x) +

∫

Rn

ϕ(y) E(1)
x [S0(x− y)] dy,

where

E(1)u =
∑

|α|<2m

aαDαu.

Let S0(x, y) = S0(x − y) + g(x, y) be the Green function for the Dirichlet
problem {

E(0)u = f in T ,

Dpu = 0 on ∂T , |p| 6 m− 1.

The existence of such a Green function is well known. Fichera himself gave
a way for constructing it (see [9, Lecture 20]).

Let us consider the integral operator

Jϕ(x) =

∫

T

ϕ(y) Ex[S0(x, y)] dy. (3.4)

Since Ex[S0(x, y)] = E
(1)
x [S0(x, y)] (x 6= y), J is a compact operator from

L2(T ) into itself.

Lemma 1. Let us suppose that the G̊arding inequality (3.2) holds. The ho-
mogeneous equation

ϕ + Jϕ = 0 (3.5)

where J is given by (3.4), has no eigensolutions in L2(T ).

Proof. Let ϕ ∈ L2(T ) be a solution of (3.5). The potential

u(x) =

∫

T

ϕ(y) S0(x, y) dy

is a solution of the problem
{

E(0)u = ϕ in T ,

Dpu = 0 on ∂T , |p| 6 m− 1.
(3.6)

On the other hand, we have Eu = ϕ + Jϕ and u is also a solution of the
problem {

Eu = 0 in T

Dpu = 0 on ∂T , |p| 6 m− 1.

From (3.2) it follows that this problem has no eigensolutions. Then u = 0
and (3.6) shows that ϕ = 0. ¤
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We say that F (x, y) is a fundamental solution in the sense of Fichera if it is
a fundamental solution and, moreover,

Dp
xF (x, y) = 0, x ∈ ∂T, y ∈ T, 0 6 |p| 6 m− 1, (3.7)

where T is a ball containing Ω in its interior.

Theorem 4. Let E be operator (1.3) and suppose that the G̊arding inequality
(3.2) holds. Let T be an open ball containing Ω. There exists, in T , a principal
fundamental solution in the sense of Fichera for the operator E.

Proof. Let S0(x, y) be the Green function considered before. Since the Fred-
holm equation (3.5) has no eigensolutions, the equation

ϕ + Jϕ = f (3.8)

has one and only one solution ϕ ∈ L2(T ) given by

ϕ(x) = f(x) +

∫

T

f(y) R(x, y) dy, (3.9)

where R(x, y) is the resolvent kernel of the Fredholm equation (3.8). Define

F (x, y) = S0(x, y) +

∫

T

S0(x,w) R(w, y) dw. (3.10)

F (x, y) is the desired principal fundamental solution. Indeed, conditions (3.7)
are obvious. Moreover, if

u(x) =

∫

T

f(y) F (x, y) dy

we can write

u(x) =

∫

T

ϕ(y) S0(x, y) dy ,

where ϕ is given by (3.9), and then

Eu = ϕ + Jϕ = f. ¤

If we consider the adjoint operator E∗ instead of E, then we obtain the
principal fundamental solution F ∗(x, y) in the same way. By using standard
arguments one can prove that F ∗(x, y) = F (y, x).

These are the main properties of F and F ∗:

ExF (x, y) = 0, x ∈ T, y ∈ T, x 6= y;

Dp
xF (x, y) = 0, x ∈ ∂T, y ∈ T, 0 6 |p| 6 m− 1;

E∗
yF (x, y) = 0, x ∈ T, y ∈ T, x 6= y;

Dp
yF (x, y) = 0, x ∈ T, y ∈ ∂T, 0 6 |p| 6 m− 1;

Dp
xD

q
yF (x, y) = O(Dp

xD
q
yS0(x− y)), 0 6 |p|+ |q| < 2m.
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4. Completeness Theorems

From now on we are going to suppose that the coefficient a00 in (3.1) vanishes
and that Rn \ Ω is connected.

We prove here our main result, which concerns the completeness of system
(1.4). Here {ωk} denotes a complete system of polynomial solutions of the
equation Eω = 0. This means that any polynomial solution of this equation
can be written as a finite linear combination of ωk.

It is well known that a complete system of harmonic polynomials can be
obtained by ordering in one sequence the polynomials

|x|hYhs

(
x

|x|
)

, s = 1, . . . , pnh, h = 0, 1, . . . ,

where {Yhs} (s = 1, . . . , pnh, h = 0, 1, . . .) is a complete system of ultra-spherical
harmonics and pnh = (2h + n− 2)(h + n− 3)!/((n− 2)!h!).

It is possible to extend this classical procedure to the case of the poly-
harmonic operator ∆m. Indeed, a complete system of polyharmonic polynomials

{ω(m)
k } is given by

|x|h+2jYhs

(
x

|x|
)

, j = 0, . . . , m− 1, s = 1, . . . , pnh, h = 0, 1, . . . ,

(pnh = (2h + n− 2)(h + n− 3)!/((n− 2)!h!)) (see, e.g., [5]).
In the particular case of two independent variables, a system of polynomial

solutions of the equation Eu = 0 was constructed in [1] in the following way.
The operator E can be written as E = Ek1

1 . . . Ekm
m , where

Ei = a
(i)
0

∂2

∂x2
+ a

(i)
1

∂2

∂x∂y
+ a

(i)
2

∂2

∂y2

are elliptic operators, and

Qi(w) = a
(i)
0 w2 + a

(i)
1 w + a

(i)
2 .

Let λi ∈ C such that Qi(λi) = Qi(λi) = 0 with I mλi < 0 and λi 6= λj if
i 6= j. If p is a homogenous polynomial of degree k > 2m, we have that Lp = 0
if and only if p is a finite linear combination of the following polynomials





%h
1(λ1x + y)k−2h; %h

1(λ1x + y)k−2h, h = 0, 1, . . . , k1 − 1,

. . .

%h
m(λmx + y)k−2h; %h

m(λmx + y)k−2h, h = 0, 1, . . . , km − 1,

where %i = a
(i)
2 x2− a

(i)
1 xy + a

(i)
0 y2. These polynomials are complex. A complete

system of real polynomial solutions is given by




%h
1 Re(λ1x + y)k−2h; %h

1 I m(λ1x + y)k−2h, h = 0, 1, . . . , k1 − 1,

. . .

%h
m Re(λmx + y)k−2h; %h

m I m(λmx + y)k−2h, h = 0, 1, . . . , km − 1.
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For the construction of a system of polynomial solutions for more general
operators, we refer to [19, 21, 22].

Before proving our main result we need a completeness result for a particular
class of potentials. Let T be a ball containing Ω and denote by F (x, y) the
principal fundamental solution given by Theorem 4. Let Ω1 be a bounded
domain such that Ω ⊂ Ω1, Ω1 ⊂ T and Σ1 = ∂Ω1 ∈ C1. Denote by S (Ω1) the
class of potentials

u(x) =
∑

|α|6m−1

∫

Σ1

ϕα(y) Dα
y [F (x, y)] dσy (4.1)

with ϕα varying in C0(Σ1). If u ∈ S (Ω1), then u ∈ C∞(Ω1) ∩ Cm−1(Ω1) and
Eu = 0 in Ω1.

Theorem 5. Let E be operator (3.1) and suppose that the G̊arding inequality
(3.2) holds. Then the system

{(u, ∂νu, . . . , ∂m−1
ν u) | u ∈ S (Ω1)}

is complete in [Lp(Σ)]m (1 6 p < ∞).

Proof. We have to show that, if (β1, . . . , βm) ∈ [Lq(Σ)]m (q = p/(p−1) if p > 1,
q = ∞ if p = 1) is such that

m∑

h=1

∫

Σ

βh ∂h−1
ν u dσ = 0 ∀ u ∈ S (Ω1), (4.2)

then β1 = · · · = βm = 0.
Since u ∈ S (Ω1) is given by (4.1), from (4.2) we find

∑

|α|6m−1

m∑

h=1

∫

Σ

βh(x) ∂h−1
νx

( ∫

Σ1

ϕα(y) Dα
y [F (x, y)]dσy

)
dσx = 0,

i.e.,
∑

|α|6m−1

m∑

h=1

∫

Σ1

ϕα(y) Dα
y

( ∫

Σ

βh(x) ∂h−1
νx

[F (x, y)] dσx

)
dσy = 0.

The arbitrariness of ϕα leads to

DαΓ(y) = 0 ∀ y ∈ Σ1, |α| 6 m− 1,

where

Γ(y) =
m∑

h=1

∫

Σ

βh(x) ∂h−1
νx

[F (x, y)] dσx.

The function Γ is a solution of the following problem
{

E∗Γ = 0 in T \ Ω1,

DpΓ = 0 on ∂T ∪ ∂Ω1, |p| 6 m− 1,
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and then Γ(y) = 0 in T \Ω1. On the other hand, Γ is a solution of the equation
E∗Γ = 0 in T \ Ω. Then Γ is analytic in T \ Ω and since Γ vanishes in T \ Ω1,
we have Γ = 0 in T \ Ω.

This implies that Γ is a solution of the problem
{

E∗Γ = 0 in Ω,

DpΓ = 0 on ∂Ω, |p| 6 m− 1,

and then

Γ(x) = 0 ∀ x ∈ Rn \ Σ. (4.3)

Let now α be a multi-index with |α| = m; we have

DαΓ(x) = 0 ∀ x ∈ Rn \ Σ,

i.e.,
m∑

h=1

∫

Σ

βh(y) ∂h−1
νy

Dα
x [F (y, x)] dσy = 0 ∀ y ∈ Rn \ Σ.

This implies

lim
x→x0

m∑

h=1

∫

Σ

βh(y) ∂h−1
νy

Dα
x [F (y, x)− F (y, x′)] dσy = 0

for any x0 ∈ Σ, where x, x′ have the same meaning as in Theorem 3.
On the other hand, due to the weak singularities of the kernels, we have

lim
x→x0

m−1∑

h=1

∫

Σ

βh(y) ∂h−1
νy

Dα
x [F (y, x)− F (y, x′)] dσy = 0

and then

lim
x→x0

∫

Σ

βm(y) ∂m−1
νy

Dα
x [F (y, x)− F (y, x′)] dσy = 0.

In view of (2.6) and (3.10), we have also

lim
x→x0

∫

Σ

βm(y) ∂m−1
νy

Dα
x [F (y, x)− F (y, x′)] dσy

= lim
x→x0

∑

|β|=m−1

(m− 1)!

β!

∫

Σ

βm(y) νβ(y) Dα
xDβ

y [F (y, x)− F (y, x′)] dσy

= lim
x→x0

∑

|β|=m−1

(m− 1)!

β!

∫

Σ

βm(y) νβ(y) Dα
xDβ

y [S0(y, x)−S0(y, x′)] dσy

= (−1)m lim
x→x0

∑

|β|=m−1

(m− 1)!

β!

∫

Σ

βm(y) νβ(y) Dα+β
y [S0(x− y)− S0(x

′ − y)] dσy
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= (−1)m−1 να(x0)

Q(ν(x0))


 ∑

|β|=m−1

(m− 1)!

β!
(νβ(x0))

2


 βm(x0)

= (−1)m−1 να(x0)

Q(ν(x0))
βm(x0)

for almost every x0 ∈ Σ.
This leads to

να(x0) βm(x0) = 0

almost everywhere on Σ and for any multi-index α with |α| = m. Then we have
also

βm(x0) =
∑

|α|=m

m!

α!
(να(x0))

2βm(x0) = 0,

i.e., βm = 0 almost everywhere on Σ.
Now (4.3) implies

lim
x→x0

m−1∑

h=1

∫

Σ

βh(y) ∂h−1
νy

Dα
x [F (y, x)− F (y, x′)] dσy = 0

for any multi-index α with |α| = m + 1. An argument similar to the previous
one leads to βm−1 = 0 a.e. and the result follows by induction. ¤

The next Theorem is due to Malgrange [16]:

Theorem 6. Let Ω1 be a convex domain. Every solution of the equation
Eu = 0 is the limit, in C∞(Ω1), of polynomial solutions of the same equation
if and only if all the irreducible factors (over C) of the polynomial Q(ξ) vanish
at ξ = 0.

We briefly say that the polynomial Q satisfies the M-condition if all its irre-
ducible factors over C vanish at the origin.

Theorem 7. Let E be operator (3.1) and suppose that the G̊arding inequality
(3.2) holds. Let us denote by Q the characteristic polynomial

Q(ξ) =

0,m∑

|p|,|q|
(−1)|p|apqξ

p+q. (4.4)

Let {ωk} be a complete system of polynomial solutions of the equation Eu =
0. The system {(ωk, ∂νωk, . . . , ∂

m−1
ν ωk)} is complete in [Lp(Σ)]m if and only if

polynomial (4.4) satisfies the M-condition.

Proof. Sufficiency. Let us suppose that the M -condition is satisfied.
Fix a convex domain Ω1 with a C1 boundary such that Ω ⊂ Ω1. In view of

Theorem 5, given (f1, . . . , fm) ∈ [Lp(Σ)]m and ε > 0, there exists u ∈ S (Ω1)
such that

m∑

h=1

‖fh − ∂h−1
ν u‖Lp(Σ) < ε.
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Theorem 6 shows that we can find a sequence of polynomial solutions of the
equations Ep = 0 converging to u in C∞(Ω1). This implies that we can find a
polynomial solution ω of the equation Eω = 0 such that

m∑

h=1

‖∂h−1
ν u− ∂h−1

ν ω‖Lp(Σ) < ε.

We have shown that for any ε > 0 there exists a polynomial solution ω of the
equation Eω = 0 such that

m∑

h=1

‖fh − ∂h−1
ν ω‖Lp(Σ) < 2 ε

and the sufficiency is proved.
Necessity. Fix an open ball T such that T ⊂ Ω. Consider f ∈ U(T ), where

U(T ) = {f ∈ C∞(T ) | Ef = 0}.
Let K be a compact set contained in T . Let T̃ be a concentric ball such that

K ⊂ T̃ ⊂ T .
In view of Theorem 5, for any ε > 0 we can find v ∈ S (Ω) such that

m∑

h=1

‖∂h−1
ν f − ∂h−1

ν v‖Lp(∂ eT ) < ε.

Note that v ∈ C∞(Ω) ∩ Cm−1(Ω). By hypothesis, there exists a polynomial
solution ω such that

m∑

h=1

‖∂h−1
ν v − ∂h−1

ν ω‖Lp(Σ) < ε.

By standard arguments, for any multi-index α there exists a constant C
(which depends on E, α, K, Ω and p) such that

max
x∈K

|Dαv(x)−Dαω(x)| 6 C

m∑

h=1

‖∂h−1
ν v − ∂h−1

ν ω‖Lp(Σ) .

In the same way there exists C̃ such that

max
x∈K

|Dαf(x)−Dαv(x)| 6 C̃

m∑

h=1

‖∂h−1
ν f − ∂h−1

ν v‖Lp(∂ eT ) .

This shows that there exists a sequence {ω(n)} of polynomial solutions such
that, for any multi-index α, the sequence Dαω(n) uniformly converges to Dαf
on K.

Let µ ∈ E ′(T ) be a distribution with compact support such that

〈µ, ωk〉 = 0, k = 1, 2, . . . . (4.5)

Let U ⊂ T be a bounded domain containing the support of µ. From what
we have just said, given f ∈ U(T ), there exists a sequence {ω(n)} of polynomial
solutions of the equation Eω = 0 in Ω such that, for any multi-index α, Dαω(n)
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uniformly converges to Dαf on U . Moreover, for some constants C and s the
inequality

|〈µ, ϕ〉| 6 C
∑

|α|6s

sup
x∈U

|Dαϕ(x)|

is valid for any ϕ ∈ C∞(T ) (see, e.g., [12, p. 44]). Keeping in mind (4.5), we
find

〈µ, f〉 = lim
n→∞

〈µ, ω(n)〉 = 0.

This shows that the system {ωk} is complete in the class U(T ) in the usual
topology of E (T ) ≡ C∞(T ). By Malgrange’s result (Theorem 6) the M -
condition is satisfied and the proof is complete. ¤

Remark. If the operator E does not contain lower order terms and is elliptic,
the G̊arding inequality (3.2) and the M -condition are both satisfied. Therefore
the completeness results proved in [4] are contained in Theorem 7.

Remark. The M -condition and the G̊arding inequality (3.2) are independent
of each other. For example, the operator −∆u + u satisfies (3.2), but Q(ξ) =
|ξ|2 + 1 does not satisfy the M -condition.

In order to construct an example of an elliptic operator which satisfies the
M -condition but not inequality (3.2), consider u0 ∈ C̊∞(Ω), Ω ⊂ R2 and choose
λ such that

λ >




∫

Ω

(
∂u0

∂x

)2

dxdy



−1 ∫

Ω

[(
∂2u0

∂x2

)2

+

(
∂2u0

∂y2

)2
]

dxdy. (4.6)

The elliptic operator

Eu =
∂4u

∂x4
+

∂4u

∂y4
+ λ

∂2u

∂x2
(4.7)

satisfies (3.3), but it does not satisfy (3.2). Indeed, the inequality

∫

Ω

[(
∂2u

∂x2

)2

+

(
∂2u

∂y2

)2
]

dxdy − λ

∫

Ω

(
∂u

∂x

)2

dxdy > C‖u‖2
W 2,2(Ω)

cannot hold for any u ∈ C̊∞(Ω) because of (4.6).
The characteristic polynomial of (4.7) is

Q(x, y) = x4 + y4 + λx2;

it satisfies the M -condition because it is irreducible over C.
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Boston, Mass., 1979.
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ladze, Three-dimensional problems of the mathematical theory of elasticity and ther-
moelasticity. (Translated from the Russian) North-Holland Series in Applied Mathematics
and Mechanics, 25. North-Holland Publishing Co., Amsterdam–New York, 1979; Russian
Original: Nauka, Moscow, 1976.

16. B. Malgrange, Existence et approximation des solutions des équations aux dérivées
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to John Horváth. J. Math. Anal. Appl. 297(2004), No. 2, 404–418.

(Received 30.07.2006)

Author’s address:

Dipartimento di Matematica
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