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Abstract. We construct a sequence of quadratic weighted energy forms in
an open domain of the plane, that M -converges to an energy form with a
singular fractal term. The weights belong to the Muckenoupt class A2 and
have pointwise singularities. The result implies the spectral convergence of
a sequence of second-order weighted elliptic operators in divergence form in
the plane to a singular elliptic operator with a second order fractal term.
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Introduction

The motivation for this paper comes from the theory of so-called highly con-
ductive thin layers, revisited from the point of view of fractals.

Homogenization problems involving highly conductive thin layers have been
studied since the 70s of the 20th century, in connection with various applica-
tions, see, e.g ., [3], [8], [1].

Transmission problems with infinitely conductive fractal layers have been
recently studied by Lancia [15] and Lancia–Vivaldi [18]. In this paper, we
perform the asymptotic homogenization analysis of such fractal problems.

In the homogenization approach, a (lower dimensional) infinitely conductive
thin layer is approximated by a (full dimensional) thin layer of vanishing thick-
ness, ε, and increasingly high conductivity, a. This approach provides better
physical grounds to the model.

In the case of a fractal layer, however, the asymptotic thin-layer approach
meets with a basic difficulty in the very definition of what a thin set surrounding
the given fractal, K, should be. The natural definition of thin layer, that applies
to flat or smooth layer, that is, the set of points whose (Euclidean) distance to
the layer is, say, less than a small ε, may not be an appropriate notion for a thin
neighborhood of the fractal K. The reason is that, contrary to the flat case,
the parameter ε cannot be interpreted as a small ratio between transversal and
tangential dimensions, the latter being infinite (in the Euclidean sense) for a
fractal layer, at every small scale.

We overcome this difficulty by adding a third asymptotic parameter, in addi-
tion to ε and a. The new parameter is the index n of the iteration process of the
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fractal construction in terms of a given family of (Euclidean) contractive simi-
larities. For every given non-negative integer n and every (small) ε, we define –
conveniently – a neighborhood Σn

ε of the pre-fractal set Kn obtained at the n-th
iteration in the construction of K. Inside the set Σn

ε , we define – conveniently –
the conductivity coefficient, a. We consider the simultaneous limit of the three
parameters, n → ∞, ε → 0, a → ∞. A nontrivial outcome of the process is
assured only by enforcing a correct balance among the parameters.

The crucial point in this construction is the choice of the geometry of Σn
ε ,

as well as of the coefficient a within Σn
ε . We incorporate both geometry and

conductivity of Σn
ε into a suitable weight function, wn

ε , which occurs as a singular
“Riemannian” metric in the approximating energy functionals. The weights
display pointwise singularities, which, in the limit, give rise to the fractal energy
contribution.

We confine ourselves here to an example – K being the Koch curve in a plane
domain – as an illustration of the general variational setting outlined before.
We do not describe the boundary value transmission problems underlying our
variational setting. However, we establish some convergence and regularity
properties of variational solutions.

As a Euclidean representative domain we consider a polygon Ω of the plane
and as a thin layer we take a Koch curve K inside Ω, whose end-points meet
the boundary of Ω. We construct the family of weights wn

ε and we consider
the related energy functionals F n

ε in Ω. The weights wn
ε belong to the class of

Muckenhoupt A2.
Our main result is the proof of the M-convergence of the functionals to a limit

energy functional, which contains a singular term supported on the fractal K.
We point out that the M -convergence of the functionals implies the spectral
convergence of the self-adjoint operators associated with the forms. Therefore
our result assures the spectral convergence of the boundary transmission prob-
lems mentioned before. In this paper we do not develop these spectral aspects.
For the spectral properties of M -convergence we refer to [20].

In Section 1 we set our notation and state the main result, Theorem 1.1. The
proof is divided into two parts developed in Section 2 and Section 3. In the last
section, Section 4, we describe some properties of the minimizers.

1. Main Result

Let Ω be the polygonal domain with vertices A = (0, 0), B = (1, 0), C =
(1/2,

√
3/2) and D = (1/2,−√3/2). We consider the following 4 contractive

similarities {ψ1, ψ2, ψ3, ψ4} in R2:

ψ1(z) =
z

3
, ψ2(z) =

z

3
ei π

3 +
1

3
,

ψ3(z) =
z

3
e−i π

3 +
1

2
+ i

√
3

2
, ψ4(z) =

z + 2

3
,

where z = (x, y) ∈ R2.
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For each integer n > 0, we consider arbitrary n-tuples of the indices i|n =
(i1, i2, . . . , in) ∈ {1, 2, 3, 4}n. We then define ψi|n = ψi1 ◦ ψi2 ◦ · · · ◦ ψin and for

every set G(⊆ R2) we set Gi|n = ψi|n(G). Occasionally, the set of indexes i|n
will be referred to as the n-address of the set Gi|n.

Let V0 = {A,B}. For every integer n > 0, let

V n =
⋃

i|n
V

i|n
0 ,

where V
i|n
0 = (V0)

i|n in the preceding notation. We put

V ∞ =
+∞⋃
n=1

V n

and

K = V
∞

,

the closure being in R2. The set K is the Koch curve in R2, with end-points
A,B.

Now let K0 be the interval with end-points A and B. For every 0 < ε ≤ ε0 ≤
c1/2, where c1 = tan(π/12), we define the “ε-neighborhood” of K0, denoted by
Σε, to be the polygon whose vertices are the points A,P1, P2, B, P3, P4, where

P1 =

(
ε

c1

,
ε

2

)
, P2 =

(
1− ε

c1

,
ε

2

)
, P3 =

(
1− ε

c1

,−ε

2

)
, P4 =

(
ε

c1

,−ε

2

)
.

We then subdivide Σε into the rectangle Rε and two triangles Tj,ε, j = 1, 2.
Here, Rε is the rectangle with vertices P1, P2, P3, P4; T1,ε is the triangle with
vertices A,P1, P4 and T2,ε is the triangle with vertices P2, B, P3.

For every integer n, let Kn be the polygonal curve

Kn =
⋃

i|n
K

i|n
0 ,

where K
i|n
0 = (K0)

i|n. For every n and ε as above, we define the “ε-neighbor-
hood”, Σn

ε , of Kn to be the (open) set

Σn
ε =

⋃

i|n
Σi|n

ε ,

where Σ
i|n
ε = (Σε)

i|n. Note that Σn
ε is a topological neighborhood of Kn \ V n.

In the domain Ω, taken together with the embedded layer Σn
ε for given n and

ε, we now define a weight, wn
ε , as follows. Let P – for some i|n – belong to

the boundary ∂(Σ
i|n
ε ) of Σ

i|n
ε and let P⊥ be the orthogonal projection of P on

K
i|n
0 . If (ξ, η) belongs to the segment with end-points P and P⊥, we set, in our

current notation,

wn
ε (ξ, η) =





2+c21
4|P−P⊥| c0 if (ξ, η) ∈

◦
T i|n

j,ε , j = 1, 2,
1

2|P−P⊥| c0 if (ξ, η) ∈ Ri|n
ε ,

(1.1)
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Figure 1. Geometry of the layer

where c0 is a fixed positive constant, |P − P⊥| is the (Euclidean) distance

between P and P⊥ in R2, T i|n
j,ε = (Tj,ε)

i|n, Ri|n
ε = (Rε)

i|n. Moreover, we set

wn
ε (ξ, η) = 1 if (ξ, η) 6∈ Σn

ε . (1.2)
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Associated with the weight wn
ε , are the Sobolev spaces

H1(Ω; wn
ε ) =

{
u ∈ L2(Ω) :

∫

Ω

|∇u|2wn
ε dξdη < +∞

}
(1.3)

and H1
0 (Ω; wn

ε ), the latter being the completion of C∞
0 (Ω) in the norm

‖u‖H1(Ω;wn
ε ) =

{ ∫

Ω

|u|2dξdη +

∫

Ω

|∇u|2wn
ε dξdη} 1

2

}
,

and the “weighted” energy functionals in L2(Ω)

F n
ε ([u]) =

{∫
Ω

an
ε (ξ, η)|∇u|2dξdη if u ∈ H1

0 (Ω, wn
ε ),

+∞ if u ∈ L2(Ω) \H1
0 (Ω, wn

ε ),
(1.4)

where the unbounded conductivity coefficient is

an
ε (ξ, η) =

{
ρn wn

ε (ξ, η) if (ξ, η) ∈ Σn
ε ,

1 if (ξ, η) 6∈ Σn
ε

(1.5)

with some given positive constant ρn.
We recall that the set K has Hausdorff dimension d = ln 4/ ln 3 and that it

supports the (invariant) Hausdorff measure Hd. Moreover, an energy form E[u]
is also defined on K, which is the limit of an increasing sequence of quadratic
forms constructed by finite difference schemes, namely,





E[u] = lim
n→+∞

E(n)[u],

E(n)[u] = 4n
∑
i|n

(u(ψi|n(A))− u(ψi|n(B)))2.
(1.6)

The form E[u] is a regular Dirichlet form on L2(K,Hd), with a domain D[E]
dense in L2(K,Hd). The functions u ∈ D[E] turn out to be continuous functions
on K, which are indeed Hölder continuous with exponent δ = d/2. The subspace
of D[E] of all functions u ∈ D[E] that vanish at the end-points A and B of K
will be denoted by D0[E]. In the following, we consider the form E always on
its domain D0[E]. For definitions and more details on these properties, we refer
to [6], [14] and [15]. In order to state our main result, we also need to recall the
notion of M-convergence of functionals, introduced in [22], see also [20].

Definition 1.1. A sequence of functionals F n : H → (∞, +∞] is said to
M -converge to a functional F : H → (∞, +∞] in a Hilbert space H, if

(a) For every u ∈ H there exists un converging strongly in H such that

limF n[un] ≤ F [u], as n → +∞. (1.7)

(b) For every vn converging weakly to u in H

limF n[vn] ≥ F [u], as n → +∞. (1.8)

The result is the following
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Theorem 1.1. Let n → ∞, let ε = ε(n) be an arbitrary sequence such that
ε(n) → 0 as n → ∞ and let ρn = (3d−1)n for every n. Then the sequence of
functionals F n

ε(n), defined in (1.4), M-converges to the following functional F as
n →∞:

F [u] =

{∫
Ω
|∇u|2dξdη + c0E[u] if u ∈ D0[F ],

+∞ if u ∈ L2(Ω) \D0[F ],
(1.9)

where

D0[F ] = {v ∈ H1
0 (Ω) : v|K ∈ D0[E)]} (1.10)

and v|K denotes the trace of v on K .

The idea of the proof is to use the self similarity of the Koch curve. We
introduce an “interpolation operator” Gε and a “mean value” operator Mε on
a reference domain D and then we perform local changes of variable to bring
all calculations on the set D.

Remark 1.1. M -convergence of the functionals implies, in particular, strong
convergence of the resolvent operators, semigroups and spectral families, associ-
ated with the forms (see Theorem 2.4, Corollaries 2.6 and 2.7 of [20]). However,
in this paper, we will not deal with these consequences of Theorem 1.1.

We split the proof of Theorem 1.1 in two parts and each part in a few steps.

2. Proof of (a): the “lim sup” Condition

We start by constructing our reference domain D, which is a subset of Ω, and
a larger layer Σ2ε, which contains Σε and is in turn contained in D, see Figure 1.

The set D is the polygonal domain with vertices A,B,E = (1/2, 1/2
√

3), and
F = (1/2,−1/2

√
3). For every 0 < ε ≤ ε0 ≤ c1/2, as in Section 1, we define the

set Σ2ε to be the polygonal domain with vertices A,Q1, Q2, B, Q3, Q4, where

Q1 =

(
ε

c1

, ε

)
, Q2 =

(
1− ε

c1

, ε

)
, Q3 =

(
1− ε

c1

,−ε

)
, Q4 =

(
ε

c1

,−ε

)
.

Clearly, K0 ⊂ Σε ⊂ Σ2ε ⊂ D ⊂ Ω.
We now consider the space Cδ(D)∩H1(D), where H1(D) is the usual Sobolev

space on D and Cδ(D) is the space of Hölder continuous functions on D, with
Hölder exponent δ > 0. In the following, we fix the exponent δ to be δ = d/2 =
ln 4/ ln 9.

We define the operator Gε : Cδ(D) ∩ H1(D) → Cδ(D) ∩ H1(D), by setting,
for a given function g on D, gε = Gε(g), where the function gε(x, y) is defined
for (x, y) ∈ D as follows.

For every x ∈ (0, 1), we define P± = P±(x) = (x, ŷ±(x)) ∈ ∂Σε to be the
intersections of ∂Σε with the vertical line through the point (x, 0) ∈ K0, and
Q± = Q±(x) = (x, ỹ±(x)) ∈ ∂Σ2ε to be the intersections of ∂Σ2ε with the
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vertical line through the point (x, 0) ∈ K0. Then, we put

gε(x, y) =





g(x, y) if (x, y) ∈ D \ Σ2ε,

g(x, 0) if (x, y) ∈ Σε,

g(x, 0) ey±−y
ey±−by± + g(Q±) y−by±

ey±−by± if (x, y) ∈ Σ2ε \ Σε.

(2.1)

Thus, gε is equal to g in D \ Σ2ε and, on each segment S obtained as the
intersection of Σ2ε with the vertical line through the point (x, 0) ∈ K0, gε is the
piecewise-affine function, which is (constant) and equal to g(x, 0) on S∩Σε and
equal to g on S ∩ ∂Σ2ε.

Before proceeding with the proof, we construct a nested sequence of regular
triangulations Tn of the polygonal region Ω. For our purposes, it is crucial that
the vertices of Kn are, at the same time, the nodes of the triangulation Tn, at
each nth-level of iteration. We define the initial triangulation T1. We start by
constructing the equilateral triangle with vertices (1/3, 0), (2/3, 0), (1/2,

√
3/6)

and we proceed by constructing other five equal triangles such that the union
of six equilateral triangles gives the regular hexagon centered in (1/2,

√
3/6).

The triangle ABC is the union of 9 equal (equilateral) triangles. By proceeding
in a symmetric way in the triangle ABD, we complete the triangulation of Ω.
We then construct a nested family by T1, T2, T3, . . . of triangulations of Ω, by
subdividing any triangle of Tn into nine congruent sub-triangles, as has been
done previously (see Figure 2).

Let Nn be the set of the vertices of the triangles of Tn and let Sn be the space
of functions which are continuous on Ω and affine on each triangle of Tn. We
call the points in Nn nodes and the functions in Sn finite element functions of
level n. We have Nn ⊂ Nn+1, and Sn ⊂ Sn+1.

For a given continuous function u, for each n we denote by Inu the function
of Sn which is the affine interpolate of u at the nodes of Nn. We have

Inu ∈ Sn, (Inu)(P ) = u(P ), P ∈ Nn. (2.2)

We now proceed with the proof of condition (a) in Definition 1.1. We con-
sider a given function u as in condition (a) and we observe that, without loss
of generality, we can assume that u ∈ D0[F ], otherwise the inequality (1.7)
becomes trivial. The proof will take place in three steps.

Step 1. In this first step, we assume, in addition, that u ∈ D0[F ] ∩ Cδ(Ω),
δ = d/2. Let ε = ε(n) be the sequence occurring in the statement of the
Theorem, such that ε(n) → 0 as n →∞. From now on, we simply denote ε(n)
by ε. Moreover, in order to further simplify the notation, whenever ε = ε(n)
we write F n in place of F n

ε (n), as well as an in place of an
ε(n) and other similar

abbreviations. Below, by c we denote possibly different positive constants, all
independent of n.

In the notation of Section 1, for every n-tuples of indices i|n we put Di|n =
ψi|n(D) and

Dn =
⋃

i|n
Di|n .
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A B

C

D

Figure 2. Triangulation T2 (in the triangle ABC). Triangula-
tion T1 (in the triangle ABD)

For every n and ε as above, we define

un(ξ, η) =

{
uIn(ξ, η) if (ξ, η) ∈ Ω \ Dn

Gε(uIn ◦ ψi|n) ◦ ψ−1
i|n (ξ, η) if (ξ, η) ∈ Di|n (2.3)

where Gε is the operator defined before.

Proposition 2.1. In the assumptions of Theorem 1.1, for every u ∈ Cδ(Ω)∩
D0[F ], δ = d/2, we have

lim
n→+∞

F n[un] ≤ F [u], (2.4)

where un is defined in (2.3).

Proof. We start by noticing that two contracted copies K
i|n
0 and K

j|n
0 of Kn,

with different n-addresses i|n and j|n, may intersect each other only at one of
the vertices of the polygonal curve Kn. A similar remark holds for two distinct
copies of Σε and of Σ2ε. Analogously, two distinct copies of the domain D may
share only vertices or a whole side, but they never overlap in their interiors (see
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Figure 3. Iteration procedure

also Figure 3). As a consequence of the preceding intersection properties and
of our choice of the nodes of the triangulation Tn, the functions un defined in
(2.3) belong to H1(Ω) ∩ Cδ(Ω).

For each n, we split the integral F n[un] in three terms, according to the
definitions of an (see (1.5)) and of un.

F n[un] =

∫

Ω\Dn

|∇uIn |2dξdη +
4n

3n

∫

Σn
ε

|∇un|2wndξdη +

∫

Σn
2ε\Σn

ε

|∇un|2dξdη

By standard properties of the interpolate functions uIn , since the 2-dimensional
Lebesgue measure of Dn tends to zero as n → +∞, we get

lim
n→+∞

∫

Ω\Dn

|∇uIn|2dξdη =

∫

Ω

|∇u|2dξdη. (2.5)

Then, in order to achieve the proof of Proposition 2.1, we must only prove that

lim
n→+∞

∫

Σn
2ε\Σn

ε

|∇un|2dξdη = 0. (2.6)
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and

lim
n→+∞

4n

3n

∫

Σn
ε

|∇un|2wndξdη ≤ c0E[u]. (2.7)

Indeed, at the end of this Step 1, we shall prove, in addition, that un ∈
H1(Ω; wn) for every n.

We have ∫

Σn
2ε\Σn

ε

=
⋃

i|n

∫

Σ
i|n
2ε \Σ

i|n
ε

.

For a fixed n-address i|n, the set Σ
i|n
2ε \ Σ

i|n
ε can be seen as the union of two

rectangles and four triangles, and we split the corresponding integral according
to this decomposition. More precisely, we write

∫

Σ
i|n
2ε \Σ

i|n
ε

|∇un|2dξdη ≡ R1 + R2 +
∑6

j=3
Xj, (2.8)

where

R1 =

∫

ψi|n(R+
ε )

|∇un|2dξdη, R2 =

∫

ψi|n(R−ε )

|∇un|2dξdη,

Xj =

∫

ψi|n(Tj,ε)

|∇un|2dξdη, j = 3, 4, 5, 6,

where R+
ε is the rectangle of vertices P1, P2, Q2, Q1, R−

ε is the rectangle of
vertices Q4, P4, P3, Q3, Tj,ε is the triangle of vertices A,Pj, Qj if j = 3, 6, or the
triangle Pj, Qj, B if j = 4, 5.

We prove that

Ri ≤ c c2
H 4−n ε , i = 1, 2 , (2.9)

where cH is the Hölder constant of u in Ω, We do the proof for R1, the proof
for R2 being analogous. By the “change of coordinates” (ξ, η) = ψi|n(x, y), we
get

g(x, y) : = (uIn ◦ ψi|n)(x, y) = u(ψi|n(A))(1− x− y√
3
)

+ u(ψi|n(B))(x− y√
3
) + u(ψi|n(C))

2√
3
y (2.10)

for all (x, y) ∈ R+
ε . As on R+

ε , we have ŷ+(x) = ε/2, ỹ+(x) = ε, P+ =
(x, ε/2), Q+ = (x, ε), by applying (2.1) to the function g, we obtain

gε(x, y) = −2y

ε

ε√
3

{
u(ψi|n(A))− 2u(ψi|n(C)) + u(ψi|n(B))

}

+ 2
{
u(ψi|n(A))(1− x) + u(ψi|n(B))x

}−
{

u(ψi|n(A))

(
1− x− ε√

3

)
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+ u(ψi|n(B))

(
x− ε√

3

)
+ u(ψi|n(C))

2ε√
3

}
.

Since u ∈ Cδ(Ω),

R1 =

∫

R+
ε

|∇x,y g|2dxdy ≤ c c2
H

(
1− 2ε

c1

)
ε ,

and the proof of (2.9) is completed. Now we prove that

Xj ≤ c c2
H 4−n ε , j = 3, 4, 5, 6 . (2.11)

We only consider X3, since the proof for the other terms Xj, j = 4, 5, 6, is
analogous. As in T3,ε, ŷ+(x) = c1x/2, ỹ+(x) = c1x, P+ = (x, c1x/2), Q+ =
(x, c1x), we have

gε(x, y) = −
{

u(ψi|n(A))

(
1− x− c1x√

3

)
+ u(ψi|n(B))

(
x− c1x√

3

)

− u(ψi|n(C))
2c1x√

3

}
− 2y

c1x
√

3

{
u(ψi|n(A))− u(ψi|n(C)) + u(ψi|n(B))

− u(ψi|n(C))
}
c1x + 2

{
u(ψi|n(A))(1− x) + u(ψi|n(B))x

}
.

Again, since u ∈ Cδ(Ω), we find

X3 =

ε
c1∫

0

1

x
dx

c1x∫

c1x
2

|∇gε|2dy ≤ c c2
H 4−n ε.

Thus (2.11) has been proved. By taking estimates (2.9) and (2.11) into account
we get from (2.8)∫

Σn
2ε\Σn

ε

|∇un|2dxdy =
∑

i|n

∫

Σ
i|n
2ε \Σ

i|n
ε

|∇un|2dxdy ≤ c c2
H

∑

i|n
4−nε ≤ c c2

H ε.

and this proves (2.6).
In order to conclude the proof of Proposition 2.1, we have only to show that

(2.7) holds. As in our previous calculation, we split the integral on Σn
ε as the

sum of the 4n integrals on the sets Σ
i|n
ε . We decompose each Σ

i|n
ε as the union

of one rectangle and two triangles and we evaluate the corresponding integrals
by making use, as before, of the coordinates change provided by the map ψi|n.
Thus we write

4n

3n

∫

Σ
i|n
ε

|∇un|2wndξdη ≡ R0 +
2∑

j=1

Xj,

where

R0 =
4n

3n

∫

ψi|n(Rε)

|∇un|2wndξdη, Xj =
4n

3n

∫

ψi|n(Tj,ε)

|∇un|2wndξdη , j = 1, 2 .
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Here, Rε is the rectangle of vertices P1, P2, P3, P4; T1,ε is the triangle of vertices
A,P1, P4 and T2,ε the triangle with vertices B, P2, P3. We note that for (ξ, η) ∈
Σ

i|n
ε , (ξ, η) = ψi|n(x, y) and wn(ξ, η) = 3n`−1

ε (x)c0, where

`ε(x) =





ε, ε
c1

< x < 1− ε
c1

,
2(c1−c1x)

(2+c21)
, 1− ε

c1
< x < 1,

2c1x
(2+c21)

, 0 < x < ε
c1

.

Therefore, by taking (2.3) and (2.10) into account, we compute

R0 = 4n (u(ψi|n(A))− u(ψi|n(B)))2 c0

(
1− 2ε

c1

)

and

X1 = 4n (u(ψi|n(A))− u(ψi|n(B)))2 c0 ε
2 + c2

1

2c1

.

As X2 is analogous, we conclude that

4n

3n

∫

Σ
(n)
ε

|∇un|2wndξdη

=
∑

i|n
4n(u(ψi|n(A))− u(ψi|n(B)))2 c0

(
1− 2ε

c1

+ 2ε
2 + c2

1

2c1

)

= c0E[u] (1 + εc1), (2.12)

where, in the last identity, we have taken the definition of E[u] into account (see
(1.6)). This complete the proof of estimate (2.7), hence also that of Step 1. ¤

As observed at the beginning of the proof, the functions un belong to H1(Ω)
for all n. Now, as a consequence of estimate (2.12), we see that un ∈ H1(Ω; wn)
for every n.

Step 2. With this step, we remove the additional assumption in Step 1,
namely, that u ∈ D0[F ] belongs to Cδ(Ω). Our proof relies on trace, extension
and density results for functions in Sobolev and Besov spaces on so-called d-sets.
For these results we refer to Jonsson [10], Jonsson and Wallin [12], Triebel [24]
and, in relation to the present setting, also to [15], [18].

The main point of this part of the proof consists in proving the following
approximation property

Proposition 2.2. For any function u ∈ D0[F ], there exists a sequence of
functions ûm ∈ H1

0 (Ω) ∩ Cδ(Ω), with δ = d/2, which converge strongly to u ∈
H1

0 (Ω) and are such that
ûm|K = u|K .

Proof. Let u ∈ D0[F ]. Then, the trace u|K of u on K – which is defined quasi-
everywhere (q.e.) in the capacity sense – belongs to the space Lipd,2,∞(K)
introduced by Jonsson, see [10] and [17]. Therefore u|K admits an extension ǔ

to R2 such that ǔ ∈ B2,∞
1+d/2(R

2), where B2,∞
1+d/2(R

2) is the fractional Besov space
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defined by Jonsson and Wallin, see [12]. By applying the imbedding properties
of Besov spaces (see [12]), we then find that ǔ ∈ H1+d/2−ε(R2)∩Cδ(R2), where
δ = d/2 and where H1+d/2−ε(R2) is the usual fractional Sobolev space on R2.
We now modify ǔ in order to obtain a function û such that

û ∈ Cδ(Ω) ∩H1
0 (Ω). (2.13)

Let us consider u∗ = ϕǔ, where ϕ is a suitable (smooth) cut-off-function, for
instance, ϕ = 1 on Ω ∩ {−√3/6 ≤ y ≤ √

3/6} and ϕ = 0 on Ω ∩ ({y ≥√
3

3
} ∪ {y ≤ −√3/3}). The function u∗ belongs to H1+d/2−ε(Ω) ∩ Cδ(Ω) and

‖u∗‖H1
0 (Ω)∩Cδ(Ω) ≤ c‖u‖D0(K). Moreover, u∗ ≡ 0 on Ω ∩ ({y ≥ √

3/3} ∪ {y ≤
−√3/3}).

We now consider in Ω the four (right) triangles T7, T8, T9, T10, where T7 has
vertices A,G, H ; T8 has vertices B, G, L; T9 and T10 are symmetric triangles
with respect to the x-axis. Here G = (1/2,

√
3/3); H = (3/8, 3

√
3/8); L =

(5/8, 3
√

3/8).
Let us focus our attention on the triangle T7. By making a suitable, regular

change of coordinates, with origin in A, and by calling (s, t) the new coordinates,
we can suppose that T7 admits the representation{

0 ≤ s ≤ 3
4
,

0 ≤ t ≤ s 1
3
√

3
.

In this representation, we define the function g7 in T7 by interpolating the value

Figure 4

0 and the value u∗(s, s/(3
√

3)) on each “vertical” segment of T7, that is, we put

g7(s, t) =
t3
√

3

s
u∗

(
s,

s

3
√

3

)
.

Let us note that

g7|AH
= 0 = g7|GH

= u∗(G) = ǔ(G)ϕ(G).

The function g7 inherits the Hölder continuity of u∗ (with the same exponent

δ), moreover, g7 belongs to H1(
◦
T7), in fact,

∫

T7

g2
t dsdt =

27

3
√

3

3
4∫

0

1

s2
su∗2

(
s,

s

3
√

3

)
ds ≤ c
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(note that |u∗(s, s/(3√3))| ≤ cH · sδ) and

∫

T7

g2
sdsdt ≤ c

3
4∫

0

{
u∗2

(
s,

s

3
√

3

)
1

s
+ s

(
u∗2s +

1

27
u∗2t

)}
ds ≤ c .

Note that ∇ u∗ belongs to Hd/2−ε(R2), hence the trace of ∇ u∗ on AG belongs
to L2(AG). Similar arguments hold for the other triangles.

We now define the function û by putting

û =





gj in Tj, j = 7, 8, 9, 10,

u∗ in Ω \
10⋃

j=7

Tj.
(2.14)

Let us note that, in particular, û − u ∈ H1
0 (Ωk) for k = 1, 2, with Ω = Ω1 ∪

Ω2∪ ◦
K. As Cδ(Ω

k
) ∩ H1

0 (Ωk) is dense in H1
0 (Ωk), there exists a sequence of

functions ûk
m ∈ Cδ(Ω

k
)∩H1

0 (Ωk) that converges strongly to u− û in H1(Ωk) as
m → +∞. We then define

ûm =

{
u, K,

ûk
m + û, Ωk, k = 1, 2,

(2.15)

and the thesis follows easily from (2.13), (2.14), (2.15). The proof of Proposition
2.2 is now complete. ¤

Step 3. We complete the proof of part (a) of the Theorem by making use of
the “diagonal” formula of Corollary 1.16 of [1].

Proposition 2.3. For any function u ∈ D0[F ], there exists a sequence of
functions un ∈ H1

0 (Ω; wn) such that

un → u L2(Ω) and F [u] ≤ lim
n→+∞

F n[un] (2.16)

Proof. By (2.15), we have
E[u] = E[ûm] . (2.17)

As in Step 1 (see Proposition 2.1), for any (fixed) m, we can start with ûm,
then we consider the “interpolate” (ûm)In and, by the same procedure followed
in that Proposition (see (2.3)), we define the function ûm,n. Then we get

lim
n→+∞

F n[ûm,n] ≤ F [ûm]. (2.18)

From (2.17), by using the fact that the functions ûm converge to u, we find

F [u] = lim
m→+∞

{ ∫

Ω

|∇ûm|2dxdy + c0E[ûm]
}

= lim
m→+∞

F [ûm)] ≥ lim
m→+∞

{
lim

n→+∞
F n([ûm,n])

}

and
lim

m→+∞
(

lim
n→+∞

‖ûm,n − u‖H1(Ω)

)
= 0.
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We now proceed by applying the diagonal formula of Corollary 1.16 in [1].
This shows that there exists a strictly increasing mapping n → m(n), with
lim

n→+∞
m(n) = +∞, such that, by denoting ūn = um(n),n, we have

lim
n→+∞

F n[ūn] ≤ F [u]. ¤

The proof of part (a) of the Theorem is now complete.

3. Proof of (b): the “lim inf” Condition

In this part of the proof of Theorem 1.1, we make use of the operator Mε :
C1(Σε) → C1(K0) defined for all 0 < ε ≤ c1/2 as follows. If h ∈ C1(Σε), we
define the function hε = Mε(h) by putting, for every x̄ ≡ (x̄, 0) ∈ K0,

hε(x̄) =
1

2|ŷ+(x̄)|
∫

Σε∩{x=x̄}

h(x̄, y)dy , (3.1)

where, in the same notation as used in definition (2.1) of the function gε, P+ =
(x̄, ŷ+(x̄)) ∈ ∂Σε is the “upper” intersection of ∂Σε with the vertical line through
the point (x̄, 0) ∈ K0. Clearly, hε ∈ C1(K0).

Now, let vn be a sequence as in (b) of Definition 1.1. In order to prove
inequality (1.8), it is not restrictive to assume that limF n[vn] < ∞. Since the
functionals F n are equicoercive on H1(Ω), it is also not restrictive – by possibly
extracting a subsequence of vn, still denoted by vn below – to assume further
that

vn → u in L2(Ω) strongly (3.2)

as n →∞ (in this context see also Lemma 2.3 in [20]). Moreover, again up to
extraction of a subsequence, we can also suppose that

{‖vn‖2
H1

0 (Ω)
≤ c∗,

lim
n→+∞

F n[vn] = c∗
(3.3)

for all n, with a constant c∗ independent of n. The proof of condition (b) of
Definition 1.1 will take place in two steps.

Step 1. We now assume, in addition, that vn ∈ C1
0(Ω) for every n.

Proposition 3.1. Let vn belong to C1
0(Ω). Then

F [u] ≤ limF n[vn] (3.4)

as n →∞.

Proof. If (ξ, η) ∈ Kn then (ξ, η) = ψi|n(x, 0) for some n-address i|n. We set for

(ξ, η) ∈ K
i|n
0

ṽn(ξ, η) = Mε(vn ◦ ψi|n) ◦ ψ−1
i|n (ξ, η), (3.5)
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where Mε is the operator defined above. If ∇τ ṽn is the tangential derivative on
the polygonal curve Kn, we have

E(n)[ṽn] =
∑

i|n
4n(ṽn(ψi|n(A))− ṽn(ψi|n(B)))2 ≤ 4n

3n

∑

i|n

∫

K0
i|n

|∇τ ṽn|2ds , (3.6)

where E(n) is the form defined in (1.6). By putting h(x, y) = (vn ◦ ψi|n)(x, y)
and by making use of change of the coordinates provided by the map ψi|n, we
now show that

4n

3n

∫

K
i|n
0

|∇τ ṽn|2ds = 4n

∫

K0

|∇xhε(x)|2dx ≤ 4n

3n

1

c0

∫

Σ
i|n
ε

|∇(ξ,η)vn|2wndξdη . (3.7)

In fact,

∫

K0

|∇xhε(x)|2dx =

ε
c1∫

0

(
1

c1x

c1x
2∫

− c1x
2

h(x, y)dy

)2

x

dx

+

1− ε
c1∫

ε
c1

(
1

ε

ε
2∫

− ε
2

h(x, y)dy

)2

x

dx +

1∫

1− ε
c1

(
1

c1(1− x)

c1−c1x
2∫

c1x−c1
2

h(x, y)dy

)2

x

dx

≡ I1 + I2 + I3 .

We start by evaluating I2. For x ∈ [ε/c1, 1− ε/c1], ŷ+(x) = ε/2. Then

4nI2 ≤ 4n

1− ε
c1∫

ε
c1

1

ε

ε
2∫

− ε
2

h2
x(x, y)dy dx =

4n

ε

∫

Rε

h2
x(x, y)dxdy

≤ 4n

3nc0

∫

ψi|n(Rε)

|∇(ξ.η)vn|2wndξdη ,

since, on ψi|n(Rε), we have wn(ξ, η) ≡ 3nc0/ε. Now we evaluate I1 (I3 can be
dealt with similarly). If x ∈ (0, ε/c1), then ŷ(x) = c1x/2. Therefore we obtain

4nI1 ≤ 4n

ε
c1∫

0

1 +
c21
2

c1x
dx

c1x
2∫

− c1x
2

{
h2

x(x, y) + h2
y(x, y)

}
dy

≤ 4n

3nc0

∫

ψi|n(T1,ε)

|∇(ξ,η)vn|2wndξdη

thus completing the proof of (3.7).
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We now use the harmonic extension of ṽn |V n obtained by decimation (see
[14]). Here we follow [18] closely. We define the function

Hn+1ṽn : V n+1 → R
as the unique minimizer on V n+1 of the following problem

min
v:V n+1→R

v=ṽn on V n

E(n+1)[v] = E(n)[ṽn] . (3.8)

For m > n, the function

Hmṽn : V n → R
is defined as

Hmṽn = Hm(Hm−1(Hm−2 . . . (Hn+1ṽn)) .

We have

Hmṽn|V n = ṽn|V n (3.9)

and

E(m)[Hmṽn] = E(n)[ṽn] ≤ c∗

c0

, (3.10)

where the last inequality follows from (3.6), (3.7) and (3.3).
For every n ∈ N, we define the function Hṽn on V ∞ as follows. For P ∈ V ∞,

we choose m > n such that P ∈ V m and we set

Hṽn(P ) := Hmṽn(P ) . (3.11)

The right-hand side is independent of the choice of m. By taking (3.10) into
account, for all m > n we obtain E[Hṽn] = E(n)[ṽn] ≤ c∗/c0, where E is the
form (1.6). The function Hvn has a continuous extension on K, still denoted
by Hvn, and we find

E[Hṽn] = E(n)[ṽn] ≤ c∗

c0

. (3.12)

Moreover, Hṽn ∈ D0(E). By (3.12), {Hṽn}n is a bounded sequence in the
Hilbert space D0[E]. Therefore, there exists a subsequence, still denoted by
Hṽn, which converges weakly to a function u∗ in D0[E] and we obtain

E[u∗] ≤ lim E[Hṽn] = lim E(n)[ṽn] ≤ c∗

c0

. (3.13)

We now prove that

u∗ = u|K in L2(K, µ). (3.14)

By (3.3), there exists a subsequence of vn weakly converging in H1
0 (Ω) and hence

strongly converging in L2(Ω). By (3.2), the whole sequence vn weakly converges
to u in H1

0 (Ω) and ∫

Ω

|∇u|2 dx dy ≤ lim

∫

Ω\Σn
ε

|∇vn|2 dx dy . (3.15)

On the other hand, as vn is weakly convergent to u in H1
0 (Ω), so it strongly

converges to u in Hs(Ω) for every 1 − d/2 < s < 1 and, by the trace results
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already mentioned ( see [12]), vn|K converges to u|K strongly in B2,2
s−1+d/2(K),

and hence also strongly in L2(K,Hd).

In order to prove (3.14), we introduce an auxiliary function ˆ̂v and we prove that

ˆ̂v|K = u|K and ˆ̂v|K = u∗.

The polygonal curve Kn divides the domain Ω into two adjacent subdomains Ω1
n

and Ω2
n and in each subdomain we define v̂k

n as the (unique) solution in H1(Ωk
n)

of the problem 



∆v̂k
n = ∆vn in Ωk

n,

v̂k
n = 0 on ∂Ωk

n \Kn,

v̂k
n = ṽn on Kn

and

ˆ̂vn =

{
v̂k

n in Ωk
n,

ṽn in Kn.

For the definition of the Sobolev spaces H1(Kn), H1/2(Kn) used below, we refer,

e.g., to [23]. We have ˆ̂vn − vn ∈ H1
0 (Ω) and

‖ˆ̂vn‖2
H1(Ω) =

2∑

k=1

‖v̂k
n‖2

H1(Ωk
n) ≤ c

{ 2∑

k=1

‖vn‖2
H1(Ωk

n) + ‖ṽn‖2

H
1
2 (Kn)

}
≤ c.

Note that ṽn ∈ H1(Kn), hence ṽn(A) = ṽn(B) = 0. Moreover,

‖ṽn‖2

H
1
2 (Kn)

≤ c‖ṽn‖2
H1(Kn) ≤ c∗c ,

see (3.7), and

‖vn‖2

H
1
2 (Kn)

≤ c‖vn‖2
H1(Ω) ≤ c∗c

see (3.3). Therefore, ˆ̂vn converges weakly in H1
0 (Ω) to a function ˆ̂v. We prove

that ˆ̂v = u. Indeed,

‖vn − ˆ̂vn‖2
L2(Ω) =

2∑

k=1

‖vn − v̂k
n‖2

L2(Ωk
n)

≤
2∑

k=1

‖vn − v̂k
n‖2

H
1
2 (Ωk

n)
≤ 2c‖vn − ṽn‖2

L2(Kn). (3.16)

The last inequality has taken into account that the following Poisson problem
{

∆g = 0 in H
1
2 (Ωk

n),

g = h in L2(∂Ωk
n)

has a unique solution in the Sobolev space H1/2(Ωk
n), k = 1, 2, see [9]. Now we

prove that

‖vn − ṽn‖L2(Kn) → 0 as n → +∞. (3.17)
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In fact, by performing the same change of the coordinates as before, we find

‖vn − ṽn‖2
L2(Kn) =

∑

i|n
3−n

{ ε
c1∫

0

[
1

c1x

c1x
2∫

− c1x
2

(h(x, y)− h(x, 0))dy

]2

dx

+

1− ε
c1∫

ε
c1

[
1

ε

ε
2∫

− ε
2

(h(x, y)− h(x, 0))dy

]2

dx

+

1∫

1− ε
c1

[
1

c1(1− x)

c1−c1x
2∫

c1x−c1
2

(h(x, y)− h(x, 0))dy

]2

dx

}

≤
∑

i|n
3−n

{ ε
c1∫

0

dx

c1x
· (c1x)2

2

c1x
2∫

− c1x
2

h2
t (x, t)dt +

1− ε
c1∫

ε
c1

dxε

2

ε
2∫

− ε
2

h2
t (x, t)dt

+

1∫

1− ε
c1

(c1x)2

2

dx

c1(1− x)

c1−c1x
2∫

c1x−c1
2

h2
t (x, t)dt

}

≤ ε2

2

4n

3n

1

c0

∫

Σn
ε

wn(ξ, η)|∇(ξ,η)vn|2dξdη .

By (3.3), since ε = ε(n) → 0, the last term converges to zero as n → +∞. The
proof of (3.17) is now complete. From (3.16), (3.17), since vn converges to u
weakly in H1

0 (Ω), we obtain that

ˆ̂vn |K converges to u |K in B2,2
s−1+d/2(K) (s < 1) ,

hence

ˆ̂v |K= u |K . (3.18)

By the embedding of D(E) into Cδ(K) (see Proposition 2.1 of [18]) and by
the Ascoli–Arzelà theorem, we obtain that Hṽn converges to u∗ in the uniform
norm, therefore in L2(K;Hd).

Let us show that

lim
h→∞

‖Hṽn − ˆ̂vn|K‖L2(K,Hd) = 0 . (3.19)

Note that both sequences Hṽn and ˆ̂vn|K are uniformly bounded with the L2-

norm. As Hṽn and ˆ̂vn|K are continuous functions on K, we can evaluate the
integral giving the L2-norm in (3.19) as the limit of the corresponding Darboux
sums. Therefore for every η > 0 there exists m = m(η), independent on n, such
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that

‖Hṽn − ˆ̂vn|K‖2
L2(K,Hd) ≤ η +

4m∑
j=1

|Hṽn(Rj)− ˆ̂vn(Rj)|2Hd(K̃j) , (3.20)

where the family K̃j is a decomposition of K and Rj ∈ K̃j. In particular,

we can choose Rj ∈ V n, K̃j = K ∩ B(Rj, 3
−n) and µ(K̃j) ∼= 3−md. By (3.9)

and (3.11), the sum in (3.20) vanishes for every n ≥ m and this proves (3.19).
Therefore (3.14) follows from (3.18). By taking (3.14) into account we see that
(3.13) gives

c0E[u] ≤ lim c0E
(n)[ṽn] ≤ c∗

c0

. (3.21)

Together with (3.6) and (3.7), this inequality leads to

c0E[u] ≤ lim
n→+∞

∫

Σn
ε

an|∇vn|2dxdy. (3.22)

Finally, from (3.22) and (3.15), we get

F [u] =

∫

Ω

|∇u|2dxdy + c0E[u] ≤ lim
n→+∞

∫

Ω\Σn
ε

|∇vn|2dxdy

+ lim
n→+∞

∫

Σn
ε

an|∇vn|2dxdy ≤ lim
n→+∞

F n[vn]

and this concludes the proof of Proposition 3.1. ¤

Step 2. We now remove the assumption that vn ∈ C1
0(Ω). Thus we actually

prove the following

Proposition 3.2. In the preceding assumptions, for every sequence vn that
converges strongly to a function u in L2(Ω) as n →∞, we have

F [u] ≤ limF n[vn] (3.23)

as n →∞.

Proof. We can assume that condition (3.3) holds and we set

c∗ = lim
n→+∞

F n[vn] .

By the density of C1
0(Ω) in the space H1

0 (Ω; wn), we find that for every n there
exists a function v∗n ∈ C1

0(Ω), such that

v∗n → v weakly in H1
0 (Ω),

lim F n[v∗n] ≤ c∗,

lim F n[v∗n − vn] = 0.
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By proceeding as in Step 1 with respect to the functions v∗n, we obtain

F [u] ≤ lim F n[v∗n] ≤ lim{F n[v∗n − vn] + F n[vn]}
≤ lim F n[v∗n − vn] + lim F n[vn] ≤ lim F n([vn]. ¤

Remark 3.1. As a by-product of the Proposition 3.1 and Proposition 3.2, we
also obtain the following inequality

c0E[u] ≤ lim

∫

Σn
ε

an|∇vn|2dxdy (3.24)

for every sequence vn weakly convergent to u in H1
0 (Ω).

4. Some Properties of Variational Solutions

The weights w = wn
ε , defined in (1.1), (1.2) belong to the Muckenhoupt class

A2 for any fixed n and ε. Degenerate elliptic equations with weights in this
class were thoroughly investigated by Fabes, Kenig and Serapioni in [5] as an
extension of the classical theory of De Giorgi, Nash and Moser. They considered
weak solutions of equations of the form

Lu = div (w∇u) = f (4.1)

and studied both the local and the global properties of these solutions. The
main objective of their theory is to establish the Harnack principle for local
weak solutions, which is known to imply that these solutions are Hölder con-
tinuous. Instrumental to this study are certain weighted Sobolev and Poincaré
inequalities. Even if the scope of their theory is well beyond the special class of
weights occurring in this paper, their results provide us with some useful ana-
lytic tools to apply to the special weighted operators considered in this paper.

As in Section 1, we fix n ∈ N and 0 < ε ≤ ε0 ≤ c1/2 and we consider the
spaces H1(Ω; wn

ε ), H1
0 (Ω; wn

ε ) (see (1.3)) and the quadratic functionals F n
ε [u]

defined in (1.4). By F n
ε (u, v) we now denote the bilinear forms with domain

H1
0 (Ω; wn

ε ), obtained from the functionals F n
ε by polarization. In the following,

as in Theorem 1.1 and its proof, for every n we choose ε = ε(n), with ε(n) → 0
as n → ∞, and in the notation we suppress the subscript ε = ε(n) by writing
simply H1

0 (Ω; wn), F n[u], F n(u, v) and similar expressions.
By the Poincaré inequality in Theorem 1.3 of [5] we get

Proposition 4.1. For every n, the space H1
0 (Ω, wn) is a Hilbert space under

the norm

‖u‖H1
0 (Ω;wn) = (F n[u])

1
2 . (4.2)

Moreover, the bilinear form F n(u, v), with domain H1
0 (Ω; wn), is a regular,

strongly local Dirichlet form in L2(Ω).

By the Lax–Milgram theorem we obtain
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Corollary 4.1. Given f ∈ L2(Ω), for every n, there exists a unique solution
un ∈ H1

0 (Ω; wn) of the problem

F n(un, v) =

∫

Ω

fv dx dy for every v ∈ H1
0 (Ω; wn). (4.3)

Moreover,
‖un‖H1

0 (Ω;wn) ≤ c‖f‖L2(Ω) (4.4)

with a constant c independent of n.

The solution un of (4.3) satisfies the variational principle

F n[un]− 2

∫

Ω

fundxdy = min
v∈H1

0 (Ω;wn)

{
F n([v]− 2

∫

Ω

fvdxdy

}
. (4.5)

As already mentioned, the solutions un are Hölder continuous in Ω by the results
in [5]. Together with Theorem 8.15 in [7] and by analogous results for weighted
operators in [2] and [4], these results provide us with the following regularity
property of our weak solutions un.

Proposition 4.2. The solutions un of problems (4.3) are continuous and
uniformly bounded in Ω, that is

max
x∈Ω

|un(x)| ≤ c (4.6)

with a constant c independent of n.

We now consider the quadratic functional F [u] occurring in the statement of
Theorem 1.1

F [u] =

∫

Ω

|∇u|2 dx dy + c0E[u] (4.7)

as defined on the domain

D0[F ] =
{
u ∈ H1

0 (Ω) : u |K∈ D0[E]
}

(4.8)

where it assumes finite values. Then, again by polarization, we associate with
the functional F [u] the bilinear form F (u, v) with domain D0[F ].

Proposition 4.3. The bilinear form F (·, ·) with domain D0[F ] is a regular
and strongly local Dirichlet form in L2(Ω). The domain D0[F ] is a Hilbert space
with respect to the scalar product associated with the norm

‖u‖D0[F ] = F [u]
1
2 . (4.9)

In [11], Jonsson proves Proposition 4.3 when K is the Sierpinski gasket. His
proof can be adapted easily to the present case.

Corollary 4.2. For every f ∈ L2(Ω), there exists a unique function u ∈
D0[F ] such that

F (u, v) =

∫

Ω

fv dx dy for every v ∈ D0([F ]). (4.10)
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Moreover,
‖u‖D0[F ] ≤ c‖f‖L2(Ω). (4.11)

Again, the solution u in (4.10) obeys the variational principle

F [u]− 2

∫
fu dx dy = min

v∈D0[F ]

{
F [v]− 2

∫

Ω

fvdxdy

}
. (4.12)

Below, we may denote occasionally both the function u and its trace u |K on K
by the same symbol leaving interpretation according to the context.
The Koch curve K divides the domain Ω into two adjacent subdomains, Ω1 and
Ω2. The solution u satisfies, formally, the conditions




−∆uk = f in Ωk, k = 1, 2, j)

c0∆Ku = [∂u
∂ν

] in K, u = 0 on ∂K = {A,B}, jj)

u = 0 on ∂Ω, [u] = 0 across K. jjj)

(4.13)

Here by uk we denote the restriction of u to Ωk and we use the notation
[∂u/∂ν] = ∂u1/∂ν1 + ∂u2/∂ν2 for the jump of the normal derivative of u across
K, where ∂uk/∂νk denotes a normal derivative of uk with respect to the outward
normal νk to Ωk, k = 1, 2.

Proposition 4.4. Let u be the solution of problem (4.10). Then u ∈ C0(Ω)

and uk ∈ H2
loc(Ω

k), k = 1, 2. Moreover, the normal derivative ∂uk

∂νk
belongs to the

dual (B2,2
β,0(K))′ of the space B2,2

β,0(K), β = d/2.

For the definition of the Besov spaces B2,2
β (K), B2,2

β,0(K) and more details on
this result we refer to Lancia, [15], [16], where it is also proved that D0[K] is a
subspace of B2,2

β,0(K) (Proposition 6.1 in [15]). As a consequence of Proposition
4.4, we then get that the transmission condition ((4.13)jj)) holds in the dual
space (D0(E))′ of D0(E). Moreover, by the regularity property of the functions
in D0[E], mentioned in Section 1, we also have u|K ∈ Cδ(K), where δ = d/2.

We conclude this section by giving some convergence properties of the solu-
tions un as n →∞.

Theorem 4.1. Let un, n ∈ N, and u be the solutions of problems (4.3) and
(4.10). Then, we have

(i) un → u strongly in H1
0 (Ω),

(ii) un|K → u|K strongly in B2,2
d
2

(K)

as n →∞.

Proof. We first observe that from Theorem 1.1 we get the convergence of the
minimum values of the variational problems solved by un and u, respectively,
that is

F n[un] → F [u]. (4.14)

Moreover,
un converges weakly to u in H1

0 (Ω) . (4.15)



192 U. MOSCO AND M. A. VIVALDI

Since these properties are standard consequences of the M -convergence (and
coerciveness) of functionals, we omit the proof and refer to [22].

We now prove that un converges strongly to u as n → ∞, as stated in (i).
From (4.14) (4.15) and the weak convergence of un to u in H1

0 (Ω) we get

lim ‖un − u‖2
H1

0 (Ω) = E[u]− lim
1

c0

∫

Σn
ε

an|∇un|2dxdy. (4.16)

We now apply Remark 3.1 to the weakly converging sequence un. From (4.16)
and (3.24) we easily get that un is strongly convergent to u in H1

0 (Ω). Finally,
we observe that, by the continuity properties of the trace operators on K, the
strong convergence (i) of the functions un implies the strong convergence of
their traces on K, namely, un|K → u|K in B2,2

d/2(K). ¤

Remark 4.1. We point out that the convergence in (i) is a stronger property
than the usual one we expect in the variational homogenization theory, where
perturbed solutions, in general, only converge weakly in H1(Ω). The additional
information that leads to the strong convergence in our present setting is the
estimate obtained in the proof of Theorem 1.1, stated in Remark 3.1.
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