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Abstract. In case a non-linear differential equation is reduced to a fixed-
point problem, one has to apply a fixed-point theorem to a suitably chosen
subset of the underlying function space. Generally speaking, in view of the
non-linearity of the differential equation the restrictions for the data of the
problem will be the more extensive the greater the chosen subset of the
function space. The problem is to find an optimal subset leading to a domain
of existence for the desired solution being as large as possible. The present
paper will discuss this question for a Goursat problem.
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1. Optimization of Fixed-Point Methods

Consider an operator U = u0 +AFu defined in a Banach space, where A is
linear and bounded, while F is non-linear and only locally bounded. The latter
assumption implies that fixed-point theorems can be applied only to bounded
subsets of the Banach space, not to the whole space. The larger this subset
the larger the bound for ‖Fu‖. This, however, leads to a stronger restriction of
‖A‖. To optimize the fixed-point method means to find such subsets for which
the restriction of ‖A‖ is as small as possible.

The simplest subsets for the application of fixed-point theorems are balls
(centred at u0). Optimal balls for the application of the contraction-mapping
principle are constructed in the paper [1] which is contained in the collection
[2] of papers. The paper [3] determines an optimal ball for the application of
the Schauder fixed-point theorem. More general sets are polycylinders (because
they depend on several parameters). S. Graubner’s Thesis [4], his paper [5] in
[2] and his paper [6] in [7] deal with the application of the contraction-mapping
principle to optimal polycylinders.

In case the operator A means integration over a one-dimensional interval, the
norm ‖A‖ is proportional to the length of this interval. Then optimization of
the fixed-point method means to find the largest possible existence interval. So
far this special case has been considered only under the assumption that the
assumed estimates of Fu do not depend on the length of the existence interval.
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The present paper optimizes the domain of existence for a Goursat problem
in the x, y-plane in the case where the estimates of F are correlated with those
of A.

The optimization of fixed-point methods is a new branch in mathematical
analysis. Its main goal is to find as weak as possible conditions for solving an
operator equation by a fixed-point method. In the present paper this will be
done for a Goursat problem.

2. Statement of the Problem

Consider the Goursat problem

∂2u

∂x∂y
= F (x, y, u), (1)

u(x, 0) = ϕ(x), (2)

u(0, y) = ψ(y), (3)

where the right-hand side F (x, y, u) is given for |x| ≥ 0, |y| ≥ 0 and for arbitrary
values of u. Suppose the initial functions ϕ and ψ satisfy the compatibility
condition

ϕ(0) = ψ(0).

Solutions of the Goursat problem are fixed points of the operator

U(x, y) = ϕ(x) + ψ(y)− ψ(0) +

x∫

0

y∫

0

F
(
ξ, η, u(ξ, η)

)
dξdη (4)

and vice versa.

3. Application of the Schauder Fixed-Point Theorem

To solve the Goursat problem (1)–(3), we look for fixed points u(x, y) of the
operator (4) belonging to C(M%1,%2), where M%1,%2 is the closed rectangle

M%1,%2 =
{

(x, y) : 0 ≤ x ≤ %1, 0 ≤ y ≤ %2

}
.

To estimate the operator, we assume

|F (x, y, u)| ≤ α(%1, %2)K(R)

provided (x, y) ∈ M%1,%2 and |u| ≤ R. Clearly, the functions α(%1, %2) and K(R)
are monotonically increasing in their variables. Suppose, additionally, that the
initial functions ϕ and ψ are bounded:

|ϕ| ≤ C1 and |ψ(y)− ψ(0)| ≤ C2.

Then the operator maps the ball

BR =
{

u ∈ C(M%1,%2) : ‖u‖ ≤ R
}

into itself in case the relation

C + α(%1, %2)%1%2K(R) ≤ R (5)
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is satisfied, where C = C1 + C2.
Provided that this condition (5) is satisfied, the images U of all u ∈ BR

belong to BR too, that is, the images are uniformly bounded. Note, further,
that U(x, y)− U(x∗, y∗) can be written in the form

(
ϕ(x)− ϕ(x∗)

)
+

(
ψ(x)− ψ(x∗)

)
+

x∫

0

( y∫

y∗

Fdη

)
dξ +

y∗∫

0

( x∫

x∗

Fdξ

)
dη.

The third and the fourth term can be estimated by

α(%1, %2)K(R)|y − y∗|%1 and α(%1, %2)K(R)|x− x∗|%2, resp.,

where (x∗, y∗) is an arbitrary point of M%1,%2 . Thus the images of all u ∈ BR

are everywhere equi-continuous. Consequently, the image of BR turns out to be
relatively compact in view of the Arzelà–Ascoli Theorem. Moreover, the uniform
continuity of F (x, y, u) implies the continuity of the operator (4): If δ > 0 is
sufficiently small and ‖ũ− û‖ < δ, then one has |F (x, y, ũ) − F (x, y, û)| < ε

and thus ‖Ũ − Û‖ ≤ ε · %1%2 for the corresponding images.
To sum up, the Schauder fixed-point theorem (see [8]) shows the existence of

at least one solution of the Goursat Problem in M%1,%2 in case condition (5) is
satisfied.

4. An Optimal Ball in the Banach Space

Since (5) can be rewritten as

α(%1, %2)%1%2 ≤ R− C

K(R)
, (6)

the proposed monotonicity of α(%1, %2) implies that the area of M%1,%2 can be
maximal only if the right-hand side of (6) is maximal. The right-hand side
of (6) is called the associated limit function of the optimization problem. The
existence of an optimal domain of existence depends on the behaviour of the
associated limit function.

Provided that K(R) is continuously differentiable, the associated limit func-
tion can be maximal only if R satisfies the relation

1

R− C
=

d

dR
ln K(R). (7)

Note that (7) can be written as

K(R) = (R− C)K ′(R).

Thus the auxiliary function

ψ(R) = K(R)− (R− C)K ′(R)

is zero at each maximum point of the associated limit function. Since

ψ′(R) = −(R− C)K ′′(R),

ψ is monotonically decreasing if K ′′ > 0, and so ψ can have at most one zero.
Therefore we have
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Lemma 1. The associated limit function cannot have more than one maxi-
mum point if K ′′ > 0.

On the other hand, since 1/R− C is monotonically decreasing, the equation
(7) has at least one solution R∗ > C in case condition

lim
R→∞

d

dR
ln K(R) > 0

is satisfied. At such an R∗ the second derivative of the associated limit function
equals

−R− C

K2
K ′′,

and so the associated limit function must be maximal if K ′′ > 0. Taking into
account Lemma 1, the following statement has been proved:

Lemma 2. In case conditions

K ′′ > 0 and lim
R→∞

d

dR
ln K(R) > 0

are satisfied, there exists a uniquely determined R∗ > C for which the associated
limit function is maximal.

Next we are going to compare different types of bounds K(R):
a) K(R) is said to be of weak growth if

K(R) = k1 + k2R
σ with 0 < σ < 1

is satisfied (k1 ≥ 0, k2 > 0). Then the associated limit function is monotonically
increasing and tends to ∞ as R →∞.

b) K(R) has linear growth if

K(R) = k1 + k2R,

where k1 ≥ 0 and k2 > 0. Here the associated limit function is again monoton-
ically increasing, but it is bounded by 1/k2.

c) K(R) has polynomial growth if

K(R) = k1 + k2R
σ, k1 ≥ 0, k2 > 0 and σ > 1.

In this case equation (7) can be rewritten in the form

(σ − 1)k2R
σ − σk2CRσ−1 = k1. (8)

Note that the associated limit functions tends to zero as R → C +0 and also as
R → ∞. Therefore the associated limit function must have at least one maxi-
mum in (C,∞). On the other hand, the left-hand side of (8) is monotonically
increasing in R, and so (8) cannot have more than one solution. This implies
that there exists a uniquely determined R∗ > C such that the associated limit
function is maximal at R∗.

d) Finally, K(R) has exponential growth if

K(R) = k1 exp(k2σ), k1 > 0, k2 > 0 and σ > 0.
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Here equation (7) reads as

R = C +
1

k2σ
R1−σ. (9)

If σ > 1, then the right-hand side of (9) is decreasing in R and tends to C
as R → ∞. Since its left-hand side is increasing, equation (9) must have a
uniquely determined solution R > C. If σ = 1, then we get the unique solution

R = C +
1

k2σ
.

It remains to discuss the case σ < 1. Here we write (7) in the form

R− C =
1

k2σ
R1−σ. (10)

Both sides of (10) tend to ∞ as R → ∞, the right-hand side, however, more
weakly than the left-hand one. Thus there must be at least one intersection
point R > C of the corresponding curves. While the derivative of the left-hand
side of (10) equals 1 everywhere, the right-hand side has the derivative

1

k2

· 1− σ

σ
· 1

Rσ
. (11)

In view of (9) this equals

(1− σ)

(
1− C

R

)
< 1

at the intersection point of the left-hand and the right-hand side of (10). Fur-
ther, the derivative of (11) is given by

− 1

k2

· (1− σ) · 1

R1+σ
,

and thus the derivative of the right-hand side of (10) is always less than 1, at
least at the points R which are larger than the above introduced intersection
point. Since the left-hand side has derivative 1, another intersection point
cannot exist. Consequently, in the case 0 < σ < 1 too the existence of a unique
maximum of the associated limit function has been proved.

By the way, the above statement concerning the exponential growth with
σ ≥ 1 can also be obtained from Lemma 2 because K ′′ > 0 and

d

dR
ln K(R) = +k2σRσ−1 →

{
+∞ as R → +∞ if σ > 1,

k2 > 0 as R → +∞ if σ = 1.

To sum up, the following theorem has been proved:

Theorem. For equations with exponential or polynomial growth there exists
a uniquely determined optimal radius R∗ for which the associated limit function
is maximal. If the growth is weak, the associated limit function is unbounded
and takes each positive value. If the growth is linear, K(R) = k1 + k2R, then
the associated limit function takes each value between 0 and 1/k2.
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5. The Largest Existence Domain

Let L∗ be the largest value of the associated limit function. If the associated
limit function does not possess a maximal value (as this is the case for weak
and linear growth of the right-hand side of the differential equation (1)), then
L∗ may be any value of the associated limit function. To maximize the area
%1%2 of M%1,%2 under the side condition

α(%1, %2)%1%2 = L∗, (12)

consider the Lagrange function %1%2 + λ
(
α(%1, %2)%1%2 − L∗

)
. Equating its

derivatives to zero, the following lemma has been proved:

Lemma 3. If the area of M%1,%2 is maximal, then %1 and %2 satisfy the relation

∂α

∂%1

%1 − ∂α

∂%2

%2 = 0.

6. Examples

For α(%1, %2) = %1 + %2 Lemma 3 leads to the relation

%1 = %2,

that is, the optimal rectangle is a square, and relation (12) yields

%1 =

(
L∗
2

) 1
3

.

If α(%1, %2) = %1, then Lemma 3 implies %1 = 0. Hence the smaller %1, the larger
the area of M%1,%2 is. Indeed, here equation (12) gives

%1%2 =
L∗
%1

.

Finally, one obtains
2%2

1 = %2

if α(%1, %2) = %2
1 + %2. By virtue of (12) one has

%1 =

(
L∗
6

) 1
5

.

Supposing L∗ = 6, an optimal area turns out to equal 2. In case the optimization
is carried out only among squares, the relation (12) leads to

%4
1 + %3

1 = L∗.

Again, for L∗ = 6 an approximate value is value %1 = 1.3641 and thus the area
of an optimal square is equal to 1.8608. Of course, this value is smaller than
the value 2 for the area of an optimal rectangle.

For α(%1, %2) = %1%2 the equation (12) becomes %2
1%

2
2 = L∗, whereas Lemma 3

does not lead to any relation between %1 and %2. Consequently, all rectangles
M%1,%2 with %1%2 =

√
L∗ are optimal. In other words, in this case the optimum

is not unique.
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If the associated limit function does not have a maximal value, one has to
take a value near its supremum in order to get an existence domain whose area
is large.

7. Concluding Remark

S. Graubner’s papers [4, 5, 6] and the papers [1, 3] are concentrated on the
conditions under which the optimization problem is uniquely solvable. The
above examples show that the solution of the optimization problem under con-
sideration here is not always uniquely determined. Therefore the optimization
problem of this paper is not included neither in the criteria of S. Graubner’s pa-
pers [4, 5, 6] nor in those of [1, 3]. So it would be useful to generalize these earlier
theories in order to include therein the optimization of the Goursat problem as
well.
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