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Abstract. We prove the exponential stability and instability of a trivial
solution of perturbed nonlinear differential systems’ with various Coppel–
Conti linear approximations and perturbations of higher order smallness. We
also obtain upper and lower estimates for characteristic exponents of systems
of linear approximation and solutions of the considered perturbed systems.
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We consider the linear systems

ẋ = A(t)x, x ∈ Rn, t ≥ 0, (1A)

with piecewise-continuous coefficients, unbounded, speaking, in general on the
semi-axis [0, +∞) (and bounded on any segment [0, t0]). Let XA(t), XA(0) = E
and XA(t, τ) be respectively the fundamental matrix and the Cauchy matrix
of system (1A). In the sequel, system (1A) will be identified with its matrix of
coefficients A, while its belonging to some set M will be written as the inclusion
A ∈ M .

Definition 1 ([1, pp. 68, 74], [2], [3], [4, p. 40], [5]–[7]). The set of all linear
systems (1A) for whose Cauchy matrices the condition

Cp(A) ≡ sup
t≥0

t∫

0

‖XA(t, τ)‖p dτ < +∞, p > 0,

or the condition

Dp(A) ≡ sup
t≥0

+∞∫

t

‖XA(t, τ)‖p dτ < +∞, p > 0,

is fulfilled is called the Coppel–Conti sets LpS and LpN , p > 0, respectively.
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In the case of systems (1A) with integrally bounded coefficients on the semi-
axis [0, +∞), these sets coincide ([6], [8]) with ES and NS, the sets of uniformly
exponentially stable and unstable linear systems, respectively .

The sets LpD of linear systems (1A) are a generalization of the sets LpS and
LpN , p > 0.

Definition 2 ([1, p. 131], [2]). We say that system (1A) belongs to the set
LpD, p > 0, if for it there exists a pair of mutually complementary projectors
P1 and P2 and a constant Kp(A) such that the equality

t∫

0

‖XA(t)P1X
−1
A (τ)‖pdτ +

+∞∫

t

‖XA(t)P2X
−1
A (τ)‖pdτ ≤ Kp(A), t ≥ 0,

is fulfilled.

It is obvious that if system (1A) belongs to the set ED of exponentially
dichotomous systems, then A ∈ LpD for any p > 0. If however the matrix of
coefficients A of system (1A) is integrally bounded, then the inclusion A ∈ LpD
with some p > 0 implies [8] the inclusion A ∈ ED. In the general case, for any
p > 0 there holds [8] the representation

ED = LpD ∩ L∞D,

where L∞D denotes the set of linear systems with regular dichotomy on R+.
The sets LpS and LpN are obviously the subsets of the set LpD, corresponding

respectively to the projectors P1 = E and P2 = 0 in the former case, and to the
projectors P1 = 0 and P2 = E in the latter case. For the introduced sets we
have ([6], [9], [10]) the strict inclusions

Lp2S ⊂ Lp1S, Lp2N ⊂ Lp1N, Lp2D ⊂ Lp1D, p2 > p1 > 0. (2)

V. Coppel [1, pp. 68, 74] established the following properties of nontrivial
solutions of system (1A) from the set L1D:

x(t) → 0 as t → +∞ if x(0) ∈ P1R
n;

lim
t→+∞

‖x(t)‖ = +∞ if x(0) ∈ P2R
n.

(3)

For any p > 0, these properties of solutions of system (1A) from the set LpD are
established similarly. Moreover, the first of properties (3) of solutions of system
(1A) belonging to the set L1D is refined [1, p. 68] as follows:

‖x(t)‖ ≤ C exp[−K−1
1 (A)t], x(0) ∈ P1R

n.

1. Estimates of the characteristic exponents of linear systems. From
the preceding Coppel’s estimate and inclusion (2) it follows that the character-
istic exponents λ[x] ≡ lim

t→+∞
1
t

ln ‖x(t)‖ of nontrivial solutions x(t) of system

(1A), which belongs to the set LpS for some p ≥ 1, are negative as these expo-
nents are for solutions x(t) of system (1A) from the set LpD for p ≥ 1 with the
initial conditions x(0) ∈ P1R

n.
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There arises a problem of obtaining estimates of the characteristic exponents
of nontrivial solutions of linear systems (1A) which belong to the sets LpS, LpN
and LpD for any fixed p > 0.

Such estimates are obtained in [1] and the theorems formulated below.

Theorem 1. For any fixed value of the parameter p ∈ (0, +∞), any solution
x : [0, +∞) → Rn \ {0} of an n-dimensional system (1A) from the set LpS has
the finite or infinite characteristic exponent λ[x] that satisfies the estimate

λ[x] ≤ −[pCp(A)]−1 < 0, p > 0, (4)

with the constant Cp(A) from the definition of the set LpS.

Corollary 1. For the higher characteristic exponent λn(A) of a system A ∈
LpS, p > 0, we have the estimate λn(A) ≤ −[pCp(A)]−1 < 0.

Corollary 2. A trivial solution of a system A ∈ LpS, p > 0, is exponentially
stable.

In the case of systems (1A) from the set LpN , p > 0, we have established
that the lower characteristic exponent λ1(A) is positive and its lower estimate
is obtained.

Theorem 2. For the characteristic exponents λ[x] of nontrivial solutions x
of a system (1A) that belongs to the set LpN with parameter p > 0, the estimate

λ[x] ≥ [pDp(A)]−1 > 0 (5)

is valid, where Dp(A) is the constant from the definition of the set LpN .

Corollary 3. For the lower characteristic exponent λ1(A) of a system A ∈
LpN , p > 0, we have the estimate λ1(A) ≥ [pDp(A)]−1 > 0.

In the general case of the set LpD, p > 0, with zero mutually complementary
projectors P1 and P2, P1 + P2 = E, we have [11] the following theorem which is
analogous to Theorems 1 and 2.

Theorem 3. Let an n-dimensional system (1A) with piecewise-continuous
coefficients on the semi-axis [0, +∞) belong to the set LpD, p > 0, defined by
the constants

Cp(A) ≡ sup
t≥0

t∫

0

‖XA(t)P1X
−1
A (τ)‖pdτ < +∞,

Dp(A) ≡ sup
t≥0

+∞∫

t

‖XA(t)P2X
−1
A (τ)‖pdτ < +∞.

(6)

Then the characteristic exponents λ[x1] and λ[x2] of any of its solutions x1(t)
and x2(t) with the initial vectors xi(0) ∈ PiR

n \{0}, i = 1, 2, satisfy respectively
estimates (4) and (5) with new constants (6).
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The upper and lower estimates – obtained in Theorems 1–3 and Corollaries
1 and 2 – of the characteristic exponents of solutions of systems (1A) from the
considered sets LpS, LpN and LpD, p > 0, admit a more precise definition
provided that sup

t≥0
{· · · } in the definition of the constants Cp(A) and Dp(A) is

replaced by the upper limit lim
t→+∞

{· · · }.
The assumption that the mutual inclination of subspaces of solutions

XA(t)P1R
n and XA(t)P2R

n is separable from zero on R+ is not, generally speak-
ing, fulfilled [10] for linear systems from the set LpD, p > 0, with nontrivial
projectors P1 and P2, though such an assumption holds [12, Ch. IV, §3, p. 234]
for exponentially dichotomic systems. Moreover, the angular convergence of the
subspaces as t → +∞ may take place with any rate [11].

2. Asymptotic stability and instability of perturbed systems. We es-
tablished in our earlier works [3], [6], [13], see also [14], that Coppel–Conti
sets are open throughout the set of linear systems (1A) if and only if p ≥ 1.
Therefore, in particular, for any linear system (1A) belonging to one of the in-
troduced Coppel–Conti sets with parameter p ≥ 1 there exists ε(A) > 0 such
that the system A + Q with any piecewise-continuous matrix Q, which satisfies
the condition ‖Q(t)‖ < ε(A), t ≥ 0, also belongs to the same set. Thus any
linear system, sufficiently close to a system A from the Coppel–Conti set with
parameter p ≥ 1, inherits all the properties of solutions of system (1A).

There arises the question whether the properties of asymptotic stability and,
accordingly, instability of the system of Coppel–Conti linear approximation are
inherited, and they are, then for what values of the parameter p > 0 they are
inherited by a trivial solution of the perturbed system

ẏ = A(t)y + f(t, y), y ∈ Rn, t ≥ 0, (7)

with any perturbation f ∈ ∪m>1Fm of higher order smallness, where Fm is the
set of vector functions f : [0, +∞)×Uρ(f) → Rn, Uρ(f) ≡ {t ∈ Rn : ‖y‖ < ρ(f)},
piecewise-continuous with respect to t ≥ 0 and continuous with respect to
y ∈ Uρ(f) and satisfying the condition

‖f(t, y)‖ ≤ L‖y‖m, (t, y) ∈ [0, +∞)×Uρ(f), L = L(f) = const > 0, m > 1,

and called m-perturbations [15].
To provide a precise answer to this question in the case of linear approxima-

tions (1A) belonging to the set LpS, we introduce

Definition 3. We denote by LpS1, p > 0, the set of all linear systems A ∈
LpS, for which a trivial solution of system (7) with this linear approximation
and any perturbation f ∈ ∪m>1Fm is asymptotically stable.

The construction of the set LpS1 of the considered linear systems (1A) is given
[10] by

Theorem 4. The set LpS1 ⊂ LpS of linear systems (1A) coincides with the
set LpS if and only if the parameter p belongs to the interval [1, +∞).
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The necessity of the conditions of this theorem is proved by using [16] the
following lemma that yields a more general result.

Lemma 1. For any p ∈ (0, 1) and any σ ≤ 0 and m ≥ 1 there exist respec-
tively a system A ∈ LpS and a vector function f : [0, +∞) × Rn → Rn (with
bounded partial derivatives of any finite order on any segment [0, t0]), piecewise-
continuous with respect to t ≥ 0 and infinitely differentiable with respect to the
variables y1, . . . , yn, which satisfies the condition

‖f(t, y)‖ ≤ Leσt‖y‖m, L = const > 0, (t, y) ∈ [0, +∞)×Rn,

and is such that a trivial solution of the perturbed system (7) is Lyapunov un-
stable.

Corollary of Theorem 4. A trivial solution of system (7) with a linear
approximation A ∈ LpS, p ≥ 1, and any m-perturbation f of order m > 1 is
asymptotically stable.

To get a full answer as to the influence of m-perturbations on the property of
instability of a trivial solution of an unstable Coppel–Conti linear approximation
from the set LpN , we introduce [7]

Definition 4. Let us consider the set LpN1, p > 0, of all linear systems (1A)
from LpN , for everyone of which and for any m-perturbation f : [0, +∞) ×
Uρ(f) → Rn, f ∈ Fm, m > 1, piecewise-continuous with respect to t ∈ [0, +∞)
and continuous with respect to y ∈ Uρ(f), there exists a neighborhood of the
origin of radius ε(A, f) > 0 such that it takes a finite time for any nontrivial
solution of the m-perturbed system (7), which at the initial moment of time
t = 0 belongs to the neighborhood Uε(A,f), to reach the boundary ∂Uε(A,f).

The description of this set which plays an important role in the investigation
of the linear approximation of instability of differential systems with perturba-
tions of higher order smallness is given [7] by

Theorem 5. The set LpN1 ⊂ LpN of linear systems (1A) coincides with the
set LpN if and only if the parameter p belongs to the interval [1, +∞).

The proof of the necessity of the conditions of Theorem 5 follows from the
next lemma which is of independent interest in the case p ∈ (0, 1).

Lemma 2 ([7]). For any numbers p ∈ (0, 1) and m ∈ (1, +∞) there exist a
two-dimensional system Ak = A ∈ LpN with piecewise-continuous coefficients
on the semi-axis [0, +∞) and an m-perturbation fpm = f : [0, +∞)×R2 → R2,
piecewise-continuous with respect to t and infinitely differentiable with respect
to the variables y1 and y2 in the domain (0, +∞) × R2 (with bounded partial
derivatives of any finite order on the set [0, t0] × R2 with any t0 ∈ (0, +∞)),
such that the two-dimensional system

ẏ = A(t)y + f(t, y), y ∈ R2, t ≥ 0,

has countable number of infinitely right-continuable solutions y(n)(t), n ∈ N ,
which decrease – as t → +∞ – faster than any negative exponent (with Lyapunov
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characteristic exponents equal to −∞) and uniformly converge, on the semi-axis
[0, +∞), to a trivial solution y = 0 of this system (y(n)(t) ⇒ 0, t ∈ [0, +∞)).

Corollary of Lemma 2. The statement of Lemma 2 holds for n-dimensional
initial linear systems (1A) belonging to the set LpN , p ∈ (0, 1), and for perturbed
systems (7) with m-perturbations f , m > 1.

Corollary of Theorem 5. A trivial solution of system (7) with a linear
approximation A ∈ LpN , p ≥ 1, and any m-perturbation f of order m > 1 is
Lyapunov-unstable.

In the general case of a linear approximation (1A) from the set LpD with
defining projectors P1 and P2, P1 + P2 = E, P2 6= 0, the answer to the question
as to the stability of a trivial solution with m-perturbation is given by

Theorem 6. If system (1A) belongs to the set LpD with a parameter p ≥ 1
and the nontrivial second projector P2 from Definition 2, then a trivial solution
of system (7) with any perturbation f ∈ ∪m>1Fm is unstable.

3. Estimation of the characteristic exponent of solutions of perturbed
systems. The application of Theorems 1 and 3 and the principle of linear in-
clusion [17, p. 159] allow us to estimate the characteristic exponents of solutions
of system (7).

Theorem 7. Let linear system (1A) belong to the set LpS for p ≥ 1. Then
the characteristic exponent λ[y] of any solution y with the initial condition y(0)
from a sufficiently small neighborhood Uρ of the origin of the perturbed system
(7) with an m-perturbation f of higher order smallness (M > 1) satisfies the

estimate λ[y] ≤ −[C̃1(A)]−1, where

C̃1(A) = lim
t→+∞

t∫

0

‖XA(t, τ)‖dτ.

Proof. According to Theorem 4, any solution y(t) tends to zero as t → +∞.
Therefore, by the principle of linear inclusion, this solution is a solution of
the linear system (1A+Qy) with a piecewise-continuous matrix Qy(t) → 0 with
respect to t ≥ 0 as t → +∞. From Theorem 2 of [2] on the openness of the set
LpS with respect to uniformly small perturbations it follows that the system
A + Qy belongs to LpS. The inclusions A ∈ L1S and (A + Qy) ∈ L1S from the
first property of (2) are also valid.

By virtue of the condition lim
t→+∞

‖XA(t)‖ = 0 for system A ∈ L1S we obtain

that the limit relation lim
t→+∞

t∫
t0

‖XA(t, τ)‖ dτ = C̃1(A) is fulfilled for any t0 ≥ 0.

Now let ε > 0 be so small that the inequality 2ε(C̃1(A)+ε)2 < 1 is fulfilled. For
this ε, we construct t0 such that ‖Qy(t)‖ < ε2 for t ≥ t0. Then the definition of
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C̃1(A) implies the existence of t1 ≥ t0 such that the estimate

t∫

t0

‖XA(t, τ)‖dτ ≤ C̃1(A) +
ε

2

holds for any t ≥ t1 and we therefore have the inequality

JA(t) =

t∫

t1

‖XA(t, τ)‖dτ ≤ C1(A) +
ε

2
, t ≥ t1.

Let us show that the inequality

JA+Qy(t) ≡
t∫

t1

‖XA+Qy(t, τ)‖dτ < C̃1(A) + ε

is fulfilled for every t ≥ t1. Assume the contrary that there exists θ ≥ t1 such
that the following conditions are fulfilled:

JA+Qy(t) < C̃1(A) + ε t ∈ [t1, θ], JA+Qy(θ) = C̃1(A) + ε.

Using the Cauchy formula for the representation of the matrix XA+Qy(t, τ)
and changing the order of integration, by virtue of the first assumption of the
contrary statement we obtain the inequalities

JA+Qy(θ) ≤ JA(θ) +

θ∫

t1

dτ

θ∫

τ

‖XA(θ, ξ)‖‖Qy(ξ)‖‖XA+Qy(ξ, τ)‖dξ

≤ C̃1(A) +
ε

2
+ ε2

θ∫

t1

dξ

ξ∫

t1

‖XA(θ, ξ)‖‖XA+Qy(ξ, τ)‖dτ

< C̃1(A) +
ε

2
+ ε2

(
C̃1(A) +

ε

2

)
(C̃1(A) + ε) < C̃1(A) + ε,

which contradict the second assumption of the contrary statement. By virtue

of an arbitrary smallness of ε the proven inequality implies that C̃1(A + Qy) ≤
C̃1(A), and thereby, by virtue of Theorem 1 and Remark 1, the required estimate

λ[y] < −[C̃1(A)]−1 is valid for the characteristic exponent λ[y] of the considered
solution y of the perturbed nonlinear system (7). This completes the proof of
Theorem 7. ¤

Corollary of Theorems 4 and 7. A trivial solution of system (7) with a
linear approximation A ∈ LpS, p ≥ 1, and any m-perturbation f of order m > 1
is exponentially stable.

When the system of linear approximation of (1A) belongs to the set LpD
for p ≥ 1, there arises the question about the existence of the corresponding
manifold of solutions, vanishing at infinity, of the perturbed system (7) with
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perturbation f ∈ Um>1Fm of some higher order smallness mf = m > 1 and
about the derivation of upper estimates of the characteristic exponents of these
solutions. The following statement is valid.

Theorem 8. Let the system of linear approximation (1A) belong to the set
LpD with a number p ≥ 1 and the mutually complementary projectors P1 and
P2, P1 + P2 = E, of ranks k ∈ {1, . . . , n − 1} and n − k, respectively. Then
for any δ ∈ (0, 1) there exists such an r-neighborhood Ur ⊂ Up of the origin of
radius r > 0 defined by the conditions

L[C1(A) + D1(A)](2c)mrm−1 < δ, r(c) ≡ 2cr < ρ (8)

with a number c ≥ ‖X(t)P1‖ ≥ 1 for t ≥ 0 that
1) for any vector y0 ∈ Rn with projection P1y0 ∈ Ur \ {0} there exists, in the

neighborhood Up, a solution u : [0, +∞) → Ur(c)\{0} of the perturbed system (7)
with perturbation f ∈ Fm of smallness order m > 1 that satisfies the estimates

‖u(0)− P1y0‖ ≤ δ‖P1y0‖, ‖u(t)‖ ≤ (1 + δ)c‖P1y0‖, t ≥ 0, (9)

and has a negative characteristic exponent λ[u];
2) to any two different values P1y1, P2y2 ∈ Ur \ {0} there correspond at least

two different (not coinciding on the entire semi-axis [0, +∞)) solutions ui :
[0, +∞) → Ur(c) \ {0}, i = 1, 2, of system (7). These solutions form a k-
dimensional manifold Mk.

Proof. We begin by noting that according to [10], from the inclusion A ∈ LpD,
p 6= 1, with the mutually complementary projectors P1 and P2 we obtain an
inclusion A ∈ L1D with the same projectors.

Applying the method of successive approximations

yk+1(t) = X(t)P1y0 +

t∫

0

X(t)P1X
−1(τ)f [τ, yk(τ)]dτ

−
+∞∫

t

X(t)P2X
−1(τ)f [τ, yk(τ)]dτ,

P1y0 ∈ Ur \ {0}, k ≥ 0, t ≥ 0,

we prove the existence, on the semi-axis [0, +∞), of a solution y = u(t) of the
n-dimensional system of integral equations

y(t) = X(t)P1y0 +

t∫

0

X(t)P1X
−1(τ)f [τ, y(τ)]dτ

−
+∞∫

t

X(t)P2X
−1(τ)f [τ, y(τ)]dτ, t ≥ 0. (10)

To this end, on any segment [0, t0] of the time axis we define the equicontinuous
sequence {yk(t)} of functions yk : [0, +∞) → Ur(c) \ {0} and, after that, obtain
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from it a subsequence uniformly converging, on this segment, to some continuous
function u(t). Thus we construct the continuous vector-function u : [0, +∞) →
Ur(c) \ {0} and then establish that it is a nontrivial solution of the system
of integral equations (10) and thereby a bounded and piecewise-differentiable
solution, on the semi-axis [0, +∞), of the perturbed differential system (7).
Applying Theorem 10 from [1, p. 74) to this system, we obtain the property
u(t) → 0 of this system as t → +∞. According to the principle of linear
inclusion [17, p. 159] the vector-function u(t) is a nontrivial solution of the
linear system (1A+Qu), too, with the matrix Qu(t) → 0 as t → +∞. Since the
initial system (1A) belongs to the set L1D, by Theorem 23 in [13] the system
(1A+Qu) also belongs to the set L1D, but this time, generally speaking, with
other mutually complementary projectors of the previous dimensions k and n−k
and some constants C1(A+Qu) > 0 and D1(A+Qu) > 0 by means of which we
define the belonging of the system (1A+Qu) to L1D. According to Theorem 3,
the characteristic exponent λ[x] of any nontrivial solution x of any system (1A)
from the set L1D satisfies one of two mutually exclusive estimates

λ[x] ≤ −[C1(A)]−1 < 0, λ[x] ≥ [D1(A)]−1 > 0.

Therefore the characteristic exponent λ[u] of the solution u(t) → 0 as t → +∞
of a system (1A+Qu) ∈ L1D satisfies the required estimate λ[u] ≤ −[C1(A +
Qu)]

−1 < 0. This completes the proof of Theorem 8. ¤
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