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MULTIPLICITY OF SOLUTIONS FOR SECOND ORDER
TWO-POINT BOUNDARY VALUE PROBLEMS WITH

ASYMPTOTICALLY ASYMMETRIC NONLINEARITIES AT
RESONANCE

FELIX SADYRBAEV

Abstract. Estimations of the number of solutions are given for various
resonant cases of the boundary value problem x′′ + g(t, x) = f(t, x, x′),
x(a) cos α − x′(a) sin α = 0, x(b) cos β − x′(b) sin β = 0, where g(t, x) is an
asymptotically linear nonlinearity, and f is a sublinear one. We assume that
there exists at least one solution to the BVP.
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1. Introduction

Theory of nonlinear boundary value problems for ordinary differential equa-
tions is a rapidly growing field of applied analysis. There are more than twenty
monographs devoted to the subject and a lot of books containing several chap-
ters on nonlinear BVPs. We mention those by Bernfeld and Lakshmikantham
[1], Kiguradze [11] and Vasilyev and Klokov [12]. Of the most recent ones there
is a book by De Coster and Habets [2].

A second order nonlinear equation together with two-point boundary condi-
tions still remains a popular object for investigations. Numerous methods of
topological, variational, functional-analytic, computational nature are used to
solve the basic problems of the theory. These are the existence of solutions
(also the nonexistence), properties of solutions and estimations of the number
of solutions. In treating these problems, researchers often try to reduce the
original problem to a quasi-linear one, which has a linear part and a nonlin-
ear one which is bounded (or sublinear). For instance, the Dirichlet boundary
value problem x′′ = f(t, x, x′), x(a) = A, x(b) = B can be reduced (in some
cases) to the quasi-linear problem x′′ = F (t, x, x′), x(a) = A, x(b) = B, where
F is a bounded nonlinearity. The solvability of the latter problem follows from
the well-known results if the related homogeneous problem x′′ = 0, x(a) = 0,
x(b) = 0 is non-resonant, that is, it has the trivial solution only. The reduced
quasi-linear equation may also have the form x′′ + p(t)x′ + q(t)x = F (t, x, x′)
with a richer linear part. The non-resonance property of the linear part in
a functional analytic interpretation means that a respective linear operator is
invertible, that is, it has a zero kernel.
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Additional difficulties appear if the problem is under resonance in the sense
that the corresponding homogeneous problem has nontrivial solutions, too. An
example is the Dirichlet problem for the equation x′′ + x = F (t, x, x′), to which
the corresponding homogeneous one x′′ + x = 0, x(0) = 0, x(π) = 0 has a
continuum of nontrivial solutions. Nevertheless, for the specific right sides F
the nonlinear problem may have exactly a prescribed number of solutions.

A step towards considering more complicated problems was done in [3], where
the piece-wise linear part x′′ + ax+ − bx− was discussed (x+ = max{x, 0},
x− = max{−x, 0}), which in some sense is similar to the linear one. The Fučik
equation x′′ + ax+ − bx− = 0 is a limiting case of the nonlinear equation

x′′ + g(x) = F (t, x, x′), (1)

where g(x) behaves like the linear function ax (resp. bx) at +∞ (resp. at −∞)
and the right side F is bounded. Such equations are now called equations with
asymptotically asymmetric nonlinearities. Since the left side in (1) is “almost
linear”, its resonant or non-resonant behavior heavily affects the solvability of
the related boundary value problems.

In what follows we consider the resonant cases of the boundary value problem

x′′ + g(t, x) = f(t, x, x′), (2)

x(a) cos α− x′(a) sin α = 0, α ∈ [0, π),
x(b) cos β − x′(b) sin β = 0, β ∈ (0, π],

(3)

where the nonlinearity g(t, x) is asymptotically linear and, possibly, asymmetric,

that is, the limits g+ = limx→+∞
g(t,x)

x
and g− = limx→−∞

g(t,x)
x

exist and may
be distinct.

Problems of this kind were studied intensively under the assumption that
g− < g+ (the case of g+ < g− can be reduced to the above case by changing the
variable x to −x). The interested reader may trace the stages of investigation
of boundary value problems with “jumping nonlinearities” (or, in alternative
terminology, asymptotically asymmetric equations) following the works [15],
[20], [6], [21], [17] and the references therein.

A natural way to consider a problem like (2), (3) is to compare it with the
associated linear eigenvalue problem

x′′ + λx = 0, (4)

x(a) cos α− x′(a) sin α = 0,
x(b) cos β − x′(b) sin β = 0,

(5)

which, by classical results, has a countable set of eigenvalues {λ1, λ2, . . .} of
multiplicity 1.

The cases of (g−, g+) ⊂ (−∞, λ1) and (g−, g+) ⊂ (λk, λk+1) can be character-
ized as “good” ones, when considering the solvability of problems with general
right sides f .

Problems with a nonlinearity g “crossing” several eigenvalues, that is

g− < λ1 < . . . < λk < g+ < λk+1 or
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λn < g− < λn+1 < . . . < λn+k < g+ < λn+k+1

seem to be more complicated. Problems of this type are very likely to have
multiple solutions for appropriate right sides f . The estimations of the number
of solutions were obtained, for example, in the works [3], [5], [6], [7], [20]. Mostly,
the cases of constant limits g+ and g− and f depending on t and some parameters
only were considered.

It was observed that a lower bound for the number of solutions to the problem
(2), (3) generally increases along with the number of eigenvalues being crossed
by a nonlinearity g though for the specific right sides f only. It is an easy
matter to construct examples of problems of the type (2), (3) with g crossing
arbitrarily many eigenvalues and having at most one solution. The problem
x′′+ c2x+ = 0, x(0) = 0 = x(π), for instance, has only a trivial solution for any
c > 1 (here g− = 0, g+ = c2).

This paper uses the technical background and ideas of [21], where non-
resonant boundary value problems were considered. It was observed in [21]
that usual assumptions on g, crossing eigenvalues of the linear problem (4), (5),
and on the right side f imply the existence of a particular solution ξ(t) of the
problem (2), (3). The properties of this particular solution, expressed in terms
of oscillatory behavior of the corresponding linear equation of variations

y′′ + gx(t, ξ(t))y = fx(t, ξ(t), ξ
′(t))y + fx′(t, ξ(t), ξ

′(t))y′, (6)

where gx, fx and fx′ stand for the respective partial derivatives, heavily affect
the number of solutions to the BVP. It appears that the estimation from below
of the number of solutions to the problem (2), (3) depends also on the properties
of the asymptotically linear equation

z′′ + g+(t)z+ − g−(t)z− = 0, (7)

where z+(t) = max(z(t), 0), z−(t) = z+ − z(t). This equation describes the
behaviour of solutions of the nonlinear equation (2) at infinity (that is, the
behaviour of solutions with large initial values x2(a) + x′2(a)).

We use the angular function technique described in the book [13], Ch. 15.
This technique for asymptotically asymmetric nonlinearities was used in [21]
and, within the functional analytic framework instead of shooting one, was
used for the study of other questions related to boundary value problems with
jumping nonlinearities in [10].

Our assumptions on g and f are:

(A1) g, f , gx(t, x), fx(t, x, x′), fx′(t, x, x′) are continuous;

(A2) the limits g+(t) = limx→+∞
g(t,x)

x
and g−(t) = limx→−∞

g(t,x)
x

exist and
are uniform in t ∈ [a, b];

(A3) f(t, x, y) is sublinear, that is f(t,x,y)
|x|+|y| tends to zero as |x| + |y| tends to

infinity, uniformly in t ∈ [a, b];

(A4) there exists a solution ξ to the problem (2), (3).
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Obviously, solutions of the equation (2) exist on the interval [a, b], are uniquely
determined by the initial conditions and depend continuously on the initial data
and on the functions g(t, x) and f(t, x, y).

2. Preliminary Results

In this section, we provide some necessary tools for our investigation. Let
ξ(t) be a particular solution to the problem (2), (3).

Introduce the polar coordinates by

u := x− ξ = ρ sin φ, u′ = x′ − ξ′ = ρ cos φ. (8)

In our notation, the increase of φ(t) corresponds to the clock-wise rotation of a
solution on a phase plane (u, u′).

Denote by φ+(t, ρ) and φ−(t, ρ) the angular functions defined by the condi-
tions

φ+(a, ρ) = α, u2(a) + u′2(a) = ρ2, (9)

φ−(a, ρ) = α− π, u2(a) + u′2(a) = ρ2, (10)

respectively.
The angular functions for solutions of equations (6) and (7) can be introduced

similarly. Notice that both the linear equation (6) and the piece-wise linear
equation (7) possess the property of positive homogeneity. This means that
if w(t) is a solution to (6) or (7), then c2w(t) also is a solution, where c is a
constant. For positively homogeneous equations the angular function is defined
only by the initial value of a polar angle and is independent of ρ.

Lemma 2.1. Let θ(t) be the angular function of solutions of the equation of
variations (6), defined by θ(0) = α.

Then φ+(t; ρ) → θ(t) as ρ → 0, and φ−(t; ρ) → θ(t)− π as ρ → 0 uniformly
in t ∈ [a, b].

Proof is accomplished by a standard argument (see, for example, [13], Theorem
15.11). ¤

Lemma 2.2. Let θ+(t) and θ−(t) be the angular functions for solutions of
(7), defined by the initial conditions θ+(0) = α and θ−(0) = α− π, respectively.

Then
φ+(t; ρ) → θ+(t) as ρ →∞, uniformly in t,

φ−(t; ρ) → θ−(t) as ρ →∞, uniformly in t.

Proof. Use Lemma 3.3 from [21]. ¤
In the paper [21], the results were obtained assuming that for the angular

functions θ(t), θ+(t), θ−(t), described in the above two lemmas the following
conditions hold:

θ(b) 6= β(mod π), θ+(b) 6= β(mod π), θ−(b) 6= β(mod π). (11)

It is natural to call these conditions nonresonant.
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In this paper, we consider the situation, where equality (or equalities) may
occur in (11). We call these cases resonant and propose the classification of
types of resonance described in the next sections.

3. Symmetric Resonance

In this section we consider the equation

x′′ + g(t, x) = f(t, x, x′), (12)

where

lim
x→+∞

g(t, x)

x
= lim

x→−∞
g(t, x)

x
=: g(t) (13)

and the limits are uniform in t ∈ [a, b].

Definition 3.1. We say that the problem (2), (3) is under symmetric k-
resonance if the linear equation

x′′ + g(t)x = 0 (14)

has a nontrivial solution satisfying the homogeneous boundary conditions (5),
and the angular functions θ±(t) of solutions of (14) defined by the initial con-
ditions

θ+(a) = α, θ−(a) = α− π,

are such that both functions θ±(t) take exactly k values of the form β−πi when
t ∈ [a, b] with θ±(t) = β(mod π) (in fact θ−(t) ≡ θ+(t)− π).

Example. To illustrate the problem under symmetric 1-resonance consider

x′′ + x + ω(x) = 0, x(0) = 0 = x(π),

where ω(x) = 1
x2+1

for large values of |x| and is smooth. Since solutions with
x(0) = 0 and x′(0) positive and large enough have a zero less than π, and
solutions with x(0) = 0 and x′(0) negative and large in modulus have a zero
greater than π, there exists a solution ξ(t) with ξ(0) = 0 and ξ(π) = 0. This
solution may be trivial.

We introduce now

Definition 3.2. We say that a solution ξ(t) of the problem (2), (3) is of index
n if the angular function θ(t) of a solution y(t) of the equation of variations (6)
defined by the initial data

y(a) cos α− y′(a) sin α = 0, y2(a) + y′2(a) = 1 (15)

takes exactly n values of the form β + πi (i is an integer) in the interval [a, b]
and

θ(b) 6= β(mod π). (16)

The following result provides the estimation of the number of solutions to
the resonant problem (2), (3) under the assumption that there exists a specific
solution ξ(t).
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Theorem 3.1. Suppose the condition (A3) holds and the problem (2), (3) is
under symmetric k-resonance. Let there exist a solution ξ(t) of index n of the
problem (2), (3) and n > k (resp. n < k).

Then there exist at least 2(n− k) + 1 (resp. 2(k−n− 1) + 1) solutions to the
problem (2), (3), ξ(t) counted.

Proof. Consider the angular functions φ+(t, ρ) and φ−(t, ρ) defined by (9) and
(10). Let the inequality n > k hold. By lemma (2.1), the angular function
φ+(t, ρ) takes exactly n values of the form β + πi when ρ is sufficiently small.
On the other hand, φ+(t, ρ) is close to β + πk for ρ large enough. Changing
ρ from zero to infinity, one gets at least (n − k) solutions. Analogously, one
can trace the behaviour of the function φ−(t, ρ). Hence at least 2(n − k) + 1
solutions, ξ(t) counted.

Consider the case with n < k. Changing ρ from zero to infinity, one gets now
at least k − n− 1 solutions for both functions φ+ and φ−. ¤

4. Asymmetric Resonance

We consider now the problem (2), (3) under the assumption that

g+(t) = lim
x→+∞

g(t, x)

x
> lim

x→−∞
g(t, x)

x
= g−(t) (17)

and the limits are uniform in t ∈ [a, b].
Equation (7) is now substantial in our considerations and plays a role analo-

gous to that played by equation (14) in the previous section.
The angular functions θ+(t) and θ−(t) defined in Lemma 2.2 can take now

different numbers of values of the form β(mod π) although these numbers may
differ at most by unity (Proposition 2.1 in [21]).

We introduce the following definitions.

Definition 4.1. We say that the problem (2), (3) is under (+)-asymmetric
(k, m)-resonance if the angular functions θ+(t) and θ−(t) of the equation (7)
satisfy the conditions below:

1) θ+(t) takes exactly k values of the form β(mod π) for t ∈ [a, b] and
θ+(b) = β(mod π);

2) θ−(t) takes exactly m values of the form β(mod π) for t ∈ [a, b] and
θ−(t) 6= β(mod π).

Definition 4.2. We say that the problem (2), (3) is under (−)-asymmetric
(k, m)-resonance if the angular functions θ+(t) and θ−(t) of the equation (7)
satisfy the conditions below:

1) θ+(t) takes exactly k values of the form β(mod π) for t ∈ [a, b] and
θ+(b) 6= β(mod π);

2) θ−(t) takes exactly m values of the form β(mod π) for t ∈ [a, b] and
θ−(t) = β(mod π).

Theorem 4.1. Suppose the condition (A3) holds and the problem (2), (3)
is under either (+)-asymmetric or (−)-asymmetric (k, m)-resonance. Let there
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exist a solution ξ(t) of index n of the problem (2), (3) and n > max{k, m} (resp.
n < min{k,m}).

Then there exist at least (n − k) + (n − m) + 1 (resp. (k − n) + (m − n))
solutions to the problem (2), (3), ξ(t) counted.

Proof. Let the problem (2), (3) be under (+)-asymmetric (k, m)-resonance.
Consider the angular functions φ+(t, ρ) and φ−(t, ρ) defined by (9) and (10).
Let the inequality n > max{k, m} hold. By Lemma 2.1, the angular function
φ+(t, ρ) takes exactly n values of the form β + πi when ρ is sufficiently small.
On the other hand, φ+(t, ρ) is close to β + πk for ρ large enough. Changing ρ
from zero to infinity, one gets at least (n− k) solutions. Tracing the behaviour
of the function φ−(t, ρ) when ρ changes from zero to infinity one gets at least
n−m solutions. Hence there are at least (n− k) + (n−m) + 1 solutions, ξ(t)
counted.

Consider the case of n < min{k, m}. Changing ρ from zero to infinity, one
gets now at least k−n− 1 solutions for φ+ and at least m−n solutions for φ−.
Hence at least (k − n − 1) + (m − n) + 1 = (k − n) + (m − n) solutions, ξ(t)
counted.

The case of the problem (2), (3) being under (−)-asymmetric (k, m)-resonance
can be treated analogously. ¤

Example. Consider the problem x′′+g(x) = f(x), x(0) = 0 = x(1), where
f and g are C1-functions such that g(0) = f(0) = 0, gx(0)−fx(0) = (7π+ε)2 in
some neighborhood of x = 0, 0 < ε < π. This ensures that nontrivial solutions
of the equation of variations with respect to ξ ≡ 0, which vanish at t = 0,
have exactly 7 zeros in the interval (0, 1) and do not vanish at t = 1. Suppose
also that f is bounded and g(x) → (4π)2x as x → +∞ and g(x) → (2π)2x
as x → −∞. The limiting equation (7) is now z′′ + (4π)2z+ − (2π)2z− = 0.
It follows that k = 3, m = 2 and the boundary value problem has at least
(7− 3) + (7− 2) + 1 solutions, the trivial one counted.

5. Double Resonance

Definition 5.1. We say that the problem (2), (3) is under double asymmetric
(k, m)-resonance if the angular functions θ+(t) and θ−(t) of the equation (7)
satisfy the conditions below:

1) θ+(t) takes exactly k values of the form β(mod π) for t ∈ [a, b] and
θ+(b) = β(mod π);

2) θ−(t) takes exactly m values of the form β(mod π) for t ∈ [a, b] and
θ−(t) = β(mod π).

Theorem 5.1. Suppose the condition (A3) holds and the problem (2), (3)
is under double asymmetric (k, m)-resonance. Let there exist a solution ξ(t) of
index n of the problem (2), (3) and n > max{k, m} (resp. n < min{k, m}).

Then there exist at least (n− k) + (n−m) + 1 (resp. (k− n) + (m− n)− 1)
solutions to the problem (2), (3), ξ(t) counted.

Proof is analogous to the proof of Theorem 4.1. ¤
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Remark. By double resonance we usually call (see, for example, [8]) the case
of a boundary value problem of the type (2), (3), where g+ = λi and g− = λj

(λ’s are eigenvalues of the associated linear problem (4), (5)). However in this
case the angular functions θ+(t) and θ−(t) need not satisfy the conditions

θ±(b) = β(mod π)

and in fact the problem (2), (3) does not exhibit resonant behaviour.

Example. Consider the problem x′′+g(x) = f(x), x(0) = 0 = x(1), where
f and g are C1-functions such that g(0) = f(0) = 0, gx(0)−fx(0) = (7π+ε)2 in
some neighborhood of x = 0, 0 < ε < π. This ensures that nontrivial solutions
of the equation of variations with respect to ξ ≡ 0, which vanish at t = 0,
have exactly 7 zeros in the interval (0, 1) and do not vanish at t = 1. Suppose
also that f is bounded and g(x) → (6π)2x as x → +∞ and g(x) → (3π)2x
as x → −∞. The limiting equation (7) is now z′′ + (6π)2z+ − (3π)2z− = 0.
Notice that a solution z∗(t) with z(0) = 0, z′(0) = 1 has exactly 3 zeros in
(0, 1) and vanishes at t = 1. So does a solution z∗(t) with z(0) = 0, z′(0) = −1,
but they are not multiples of each other. This means that the problem is under
double asymmetric (4, 4)-resonance and the boundary value problem has at least
(7− 4) + (7− 4) + 1 solutions, the trivial one counted.

6. Internal Resonance

Suppose that there exists a solution ξ(t) of the problem (2), (3). Consider
the equation of variations (6). Let θ(t) be the angular function of a solution
of (6), defined by the initial conditions (15). It is natural to call the case of
θ(t) = β(mod π) resonant.

Definition 6.1. We say that the problem (2), (3) is under internal n-reso-
nance (with respect to ξ) if the angular function θ(t) of a solution y(t) of the
equation of variations (6) defined by the initial data (15) takes exactly n values
of the form β + πi (i is an integer) in the interval [a, b] and θ(b) = β(mod π).

Definition 6.2. We say that the problem (2), (3) is k-nonresonant if the
angular functions θ±(t) of solutions of (14) take exactly k values of the form
β + πi (i is an integer) in the interval [a, b] and θ±(b) 6= β(mod π).

Theorem 6.1. Suppose the condition (A3) holds and the problem (2), (3)
is k-nonresonant. Suppose also that the problem (2), (3) is under internal n-
resonance with respect to a particular solution ξ of the BVP.

Then there exist at least 2(n − k) + 1 solutions to the problem (2), (3), ξ(t)
counted.

Example. Consider the problem x′′+g(x) = f(x), x(0) = 0 = x(1), where
f and g are C1-functions such that g(x) = (7π)2x in some neighborhood of
x = 0, f(0) = fx(0) = 0. This ensures that nontrivial solutions of the equation
of variations with respect to ξ ≡ 0, which vanish at t = 0, have exactly 7
zeros in the interval (0, 1] and vanish at t = 1. Therefore the equation is under
internal 7-resonance. Suppose also that f is bounded and g(x) → (2π)2x as
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x → +∞ and g(x) → (3π)2x as x → −∞. The limiting equation (7) is now
z′′ + (2π)2z+ − (3π)2z− = 0. Notice that the solution z∗(t) with z(0) = 0,
z′(0) = 1 has exactly 2 zeros in (0, 1) and does not vanish at t = 1. So does
the solution z∗(t) with z(0) = 0, z′(0) = −1. Therefore the problem is 2-
nonresonant. The boundary value problem has at least (7 − 2) + (7 − 2) + 1
solutions, the trivial one counted.

The following result relates to the case where the problem (2), (3) is under
symmetric k-resonance.

Theorem 6.2. Let the condition (A3) hold and the problem (2), (3) be under
symmetric k-resonance. Suppose also that the problem (2), (3) is under internal
n-resonance.

Then there exist at least 2(n − k) − 1 solutions to the problem (2), (3), ξ(t)
counted.

Proofs of Theorems 6.1 and 6.2 are carried out by considering the behavior
of the respective angular functions.

In a similar manner various combinations of resonances can be considered.
Also, examples can be constructed showing that the estimation of the number
of solutions are sharp.

Example. Consider the boundary value problem

x′′ + x

(
1 + x4 sin

1

x

)
= 0,

x(0) = 0, x(π) = 0,

(18)

in the interval [0, π], where the right side of the equation is defined at x = 0 by
continuity. The equation of variations with respect to a trivial solution is

y′′ + y = 0

and the problem (18) is under 1-internal resonance. Standard calculations show
that the first zero function t1(λ) of solutions, defined by the initial data x(0) = 0,
x′(0) = λ, oscillates near t = π like sin 1

λ
. Hence (18) has an infinite number of

solutions.
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