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FINITE DIMENSIONAL GRADING OF THE VIRASORO
ALGEBRA

RUBÉN A. HIDALGO, IRINA MARKINA, AND ALEXANDER VASIL’EV

Abstract. The Virasoro algebra is a central extension of the Witt algebra,
the complexified Lie algebra of the sense preserving diffeomorphism group of
the circle Diff S1. It appears in Quantum Field Theories as an infinite dimen-
sional algebra generated by the coefficients of the Laurent expansion of the
analytic component of the momentum-energy tensor, Virasoro generators.
The background for the construction of the theory of unitary representations
of Diff S1 is found in the study of Kirillov’s manifold Diff S1/S1. It possesses
a natural Kählerian embedding into the universal Teichmüller space with the
projection into the moduli space realized as an infinite-dimensional body of
the coefficients of univalent quasiconformally extendable functions. The dif-
ferential of this embedding leads to an analytic representation of the Virasoro
algebra based on Kirillov’s operators. In this paper we overview several inter-
esting connections between the Virasoro algebra, Teichmüller theory, Löwner
representation of univalent functions, and propose a finite-dimensional grad-
ing of the Virasoro algebra such that the grades form a hierarchy of finite
dimensional algebras which, in their turn, are the first integrals of Liouville
partially integrable systems for coefficients of univalent functions.
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1. Introduction

The Virasoro–Bott group vir appears in physics literature as the space of
reparametrization of a closed string. It may be represented as the central ex-
tension of the infinite-dimensional Lie–Fréchet group of sense preserving diffeo-
morphisms of the unit circle. The corresponding Virasoro algebra Vir is realized
as the central extension of the algebra of vector fields on S1. The coadjoint or-
bits of the Virasoro–Bott group are related to the unitary representation of vir
as an analogue to the representation of finite-dimensional compact semi-simple
Lie groups given by the Borel–Weil–Bott theorem, see [36]. Two orbits are of
particular importance because they carry the structure of infinite-dimensional
homogeneous Kählerian manifolds. They are Diff S1/S1 and Diff S1/SL2(R),
both are homogeneous complex analytic Fréchet–Kähler manifolds.

We deal with the analytic representation of Diff S1/S1. Let U be the unit
disk U = {z : |z| < 1}. Let S stand for the standard class of holomorphic
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univalent functions f : U → C normalized by

f(z) = z

(
1 +

∞∑
n=1

cnz
n

)
, z ∈ U.

By S̃ we denote the class of functions from S smooth (C∞) on the boundary S1

of U . Given a map f ∈ S̃ we construct an adjoint univalent meromorphic map

g(z) = d1z + d0 +
d−1

z
+ · · ·

defined in the exterior U∗ = {z : |z| > 1} of U , and such that Ĉ\f(U) = g(U∗).
This gives the identification of Diff S1/S1 with the space of smooth contours Γ
that enclose univalent domains Ω of conformal radius 1 with respect to the
origin and such that ∞ 6∈ Ω, 0 ∈ Ω, see [1, 19]. Being quasicircles, the smooth
contours allow us to embed Diff S1/S1 into the universal Teichmüller space
making use of the above conformal welding, and then, to project it to the set
M ⊂ CN which is the limiting set for the coefficient bodies M = limn→∞Mn,
where

Mn = {(c1, . . . , cn) : f ∈ S̃}. (1)

Then the Virasoro generators can be realized by the first order differential op-
erators

Lj = ∂j +
∞∑

k=1

(k + 1)ck∂j+k, j ∈ N,

in terms of the affine coordinates of M, acting over the set of holomorphic
functions, where ∂k = ∂/∂ck. A representation [1] of the Virasoro algebra into

the Lie algebra of the differential operators on S̃ can be given by means of the
Neretin [27] homogeneous polynomials Pk(c1, . . . , ck) given by the recurrence
relation (2) below, where

12

z2

∞∑
n=0

Pn(c1, . . . , cn)zn = Sf (z),

and

Sf (z) =
f ′′′(z)

f ′(z)
− 3

2

(
f ′′(z)

f ′(z)

)2

is the Schwarzian derivative of a univalent function f ∈ S̃. Indeed, the polyno-
mials Pn satisfy the following recurrence relations

Lk(Pj) = (j + k)Pj−k +
1

12
k(k2 − 1)δj,k, P0 ≡ P1 ≡ 0, Pj(0) = 0. (2)

Note that Lk(Pj) ≡ 0 for k > j, so we do not need to define the polynomials Pj

for negative indices.
From the physics viewpoint the Virasoro generators naturally appear as coef-

ficients of the Laurent mode expansion of a momentum-energy tensor in the 2-D
Conformal Field Theory. The Schwarzian derivative comes into play as a defect
term in the chart-change formula for this tensor (its analytic component).
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The Virasoro algebra Vir is an infinite-dimensional vector space, moreover,
the dimension of this space is uncountably infinite. It is natural to reduce
Vir to a finite-dimensional grading by truncating and to study the resulting
finite-dimensional grades with respect to standard bases. Indeed, the recurrence
relation (2) does not require a complete series of operators ∂j at each step.
Moreover, the limiting coefficient body M is of very complicated form although
we know thanks to de Branges [8] that its projection to Cn is bounded for any
fixed n ∈ N. Note that M = limn→∞Mn 6= ∪∞n=1Mn. Let us construct the
truncated generators

Lj = ∂j +

n−j∑

k=1

(k + 1)ck∂j+k, (3)

for j = 1, . . . , n, Lj = 0 for j > n, defined on Mn. For each fixed n we get
a finite-dimensional algebra An = span(L1, . . . ,Ln) with the same commutator
relation as for A = span(L1, . . . , Ln, . . . ), and satisfying the same relations (2)
for Neretin polynomials. All these algebras are disjoint and form a kind of hier-
archy with respect to n. We use here the attribution ‘hierarchy’ because it turns
out that the vector fields Lj naturally appear in the hierarchies of the Hamil-
tonian systems for the coefficient bodies for univalent functions (see [22, 30]).
These systems are partially integrable in the sense of Liouville and the vector
fields Lj serve as first integrals replacing ∂j by formal variables corresponding
to the velocity components of the Hamiltonian systems.

We also discuss the Kählerian embedding of the Virasoro–Bott group/ Vira-
soro algebra into the universal Teichmüller space/the space of harmonic Bel-
trami differentials and connections between corresponding embedding of the
finite-dimensional grades and Teichmüller spaces of Fuchsian groups.

2. CN and C∞

The infinite vector space C∞ consists of infinite sequences of elements from C
such that only finitely many elements are non-vanishing. Algebraic operations
for such sequences can be introduced in the same way as for Cn. The dimension
of C∞ is countably infinite. So C∞ is a coproduct of countably many copies
of C. The space CN consists of sequences with possibly infinitely many non-
vanishing elements. The dimension of this space is uncountably infinite and CN
is the product of countably many copies of C. The space CN is dual to C∞,
but these spaces are not isomorphic (see, e.g., [15, Section 1.3]). The Virasoro
algebra topologically is uncountably infinite-dimensional.

3. Virasoro Algebra and Kirillov’s Operators

We denote by Diff S1 the infinite-dimensional Lie–Fréchet group of sense pre-
serving diffeomorphisms of the unit circle. The associated Lie algebra is the Lie
algebra Vect S1 of right-invariant vector fields φ(θ) d

dθ
with the vanishing mean

value on S1, and with the usual Lie–Poisson bracket

[φ1, φ2] = φ1φ
′
2 − φ′1φ2, φ1, φ2 ∈ Vect S1,
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where the derivative is taken with respect to the angular variable. Fixing the
trigonometric basis in Vect S1, the commutator relations admit the form

[cos nθ, cos mθ] =
n−m

2
sin (n + m)θ +

n + m

2
sin (n−m)θ,

[sin nθ, sin mθ] =
m− n

2
sin (n + m)θ +

n + m

2
sin (n−m)θ,

[sin nθ, cos mθ] =
m− n

2
cos (n + m)θ − n + m

2
cos (n−m)θ.

Let VectC S1 be the complexified Lie algebra of Vect S1. The topological
complex basis vn = −ieinθ d

dθ
satisfies the commutation rule of the Witt algebra

[vn, vm] = (m− n)vn+m.

The Lie algebra Vect S1 contains the span(v1, . . . , vn, . . . ) as a dense Lie subal-
gebra in the Fréchet topology.

The Virasoro algebra is a unique (up to an isomorphism) non-trivial central
extension VectC S1⊕C of VectC S1 by C (or Vect S1 by R in the real case) given
by the Gelfand–Fuchs 2-cocycle [13]:

ω(vn, vm) =
1

12
n(n2 − 1)δn,−m,

and the commutation rule becomes

[vn, vm]V ir = (m− n)vn+m +
c

12
ω(vn, vm), (4)

(we put c = 1 in (2)). The above cocycle is cohomologically equivalent to the
cocycle

ω0(vn, vm) = n3δn,−m,

or, in the functional form, to

ω0(φ1, φ2) =
−i

2π

2π∫

0

φ′1φ
′′
2dθ =

−i

4π

2π∫

0

(φ′1φ
′′
2 − φ′′1φ

′
2)dθ.

The Gelfand–Fuchs cocycle admits the following functional form

ω(φ1, φ2) = − 1

2πi

2π∫

0

(φ′1 + φ′′′1 )φ2dθ. (5)

Thus, we consider the Virasoro algebra V ir to be a Lie algebra over the space
VectC S1 ⊕ C defined by the commutator

[(φ1, a), (φ2, b)]V ir = ([φ1, φ2]Vect S1 ,
c

12
ω(φ1, φ2)),

where a and b are elements of the center C, and c ∈ C is the central charge.
Integration by parts leads to the Jacobi identity

ω(φ1, [φ2, φ3]) + ω(φ2, [φ3, φ1]) + ω(φ3, [φ1, φ2]) = 0.
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Following the construction for the algebra, let us consider the group Diff S1.
In the real case the Virasoro–Bott group vir is the unique (up to an isomorphism)
non-trivial central extension of Diff S1 given by the Thurston–Bott cocycle [7]

Ω(f, g) =
1

2π

2π∫

0

log((f ◦ g)′)d log(g′).

The Virasoro–Bott group is given by the following product on Diff S1 × R
(f, α)(g, β) = (f ◦ g, α + β +

c

12
Ω(f, g)).

The Kirillov infinitesimal action [17] of Vect S1 on S̃ is given by the Goluzin–
Schiffer variational formulas which lift the actions from the Lie algebra Vect S1

onto S̃. Let f ∈ S̃ and let ν(eiθ) ∈ Vect S1 be a C∞ real-valued function in
θ ∈ (0, 2π]. The infinitesimal action θ 7→ θ + εν(eiθ) yields a variation of the
univalent function f ∗(z) = f + ε δνf(z) + o(ε), where

δνf(z) =
f 2(z)

2πi

∫

S1

(
wf ′(w)

f(w)

)2
ν(w)dw

w(f(w)− f(z))
. (6)

Kirillov and Yuriev [19], [20] (see also [1]) established that the variations δνf(ζ)
are closed with respect to the commutator (4) and the induced Lie algebra is
the same as Vect S1. Moreover, Kirillov’s result [16] states that there is an
exponential map Vect S1 → Diff S1 such that the subgroup S1 coincides with
the stabilizer of the map f(z) ≡ z from S̃.

Taking the complexification VectC S1 of Vect S1 and the basis ν = −izk in
the integrand of (6) we calculate the residue in (6) and obtain

Lk(f)(z) = δνf(z) = zk+1f ′(z), k = 1, 2, . . . .

In terms of the affine coordinates in M we get Kirillov’s operators as

Lj = ∂j +
∞∑

k=1

(k + 1)ck∂j+k.

Kirillov’s operators act over Neretin’s polynomials as was shown in the Intro-
duction. In general, we have real vector fields from Vect S1. The computation
of Lk must be carried out with respect to the basis 1, e±kiθ, which leads to Lk

with k ≤ 0. However, we deal with holomorphic functions, and Lk with k > 0
are to be treated as holomorphic vector fields (see the discussion in [17, p. 738],
[1, p. 632–634]).

4. Kählerian Embedding into the Universal Teichmüller Space

The universal Teichmüller space T is a holomorphically homogeneous complex
Banach manifold QS(S1)/ Möb(S1), the quotient of the space of quasisymmet-
ric maps (QS) over the space of Möbius maps (Möb) over the unit circle S1.
All finite Teichmüller spaces of arbitrary Fuchsian groups are holomorphically
embedded into T .
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The analytic representation of T is based on quasiconformally extendable
holomorphic mappings. Given a function µ(z), z ∈ Ĉ, from the class L∞1 (U∗)
in U∗ (of essentially bounded functions ‖µ‖∞ < 1), let us solve the Beltrami
equation wz̄ = µ(z)wz extending µ by 0 into U . Normalizing the solution
w = f(z) by f(0) = 0, f(∞) = ∞, f ′(0) = 1, we obtain a unique quasiconformal
map, conformal in the unit disk U . It is said that two Beltrami coefficients µ1

and µ2 represent the same point of the Teichmüller space x ∈ T if the normalized
solutions to the Beltrami equation fµ1 and fµ2 map the unit disk U onto one and
the same domain in Ĉ. So the universal Teichmüller space T can be thought of as
the family Sqc of all normalized conformal maps of U admitting quasiconformal
extension. Any compact subspace of T consists of conformal maps f of U that
admit quasiconformal extension to U∗ with ‖µf‖ ≤ k < 1 for some k.

Let x, y ∈ T and f, g ∈ Sqc be such that µf ∈ x and µg ∈ y. Then, the
Teichmüller distance τ(x, y) on T is defined as

τ(x, y) = inf
µf∈x, µg∈y

1

2
log

1 + ‖µg◦f−1‖∞
1− ‖µg◦f−1‖∞ .

Unlike Teichmüller spaces of Fuchsian groups, geodesics in the universal Te-
ichmüller space are not unique. Indeed, for a given x ∈ T we consider the
extremal Beltrami coefficient µ∗ such that ‖µ∗‖∞ = infν∈x ‖ν‖∞. The extremal
µ∗ does not need to be unique. A geodesic on T can be described in terms of
the extremal coefficient µ∗ as a continuous homomorphism xt : [0, 1] 7→ T such
that τ(0, xt) = tτ(0, x1). Hence the geodesic does not need to be unique either.

We consider the Banach space H2,0(U) of all quadratic differentials ϕ(z)dz2,
with holomorphic ϕ in U , equipped with the norm

‖ϕ‖H2,0 = sup
z∈U

|ϕ(z)|(1− |z|2)2,

which is finite. For a function f from S the Schwarzian derivative

Sf (z) =
∂

∂z

(
f ′′(z)

f ′(z)

)
− 1

2

(
f ′′(z)

f ′(z)

)2

is defined and Nehari’s [25] estimate ‖Sf‖H2,0 ≤ 6 holds. Given x ∈ T , µ ∈ x,
we construct the mapping fµ ∈ Sqc and have the holomorphic Bers embed-
ding T 7→ H2,0(U) by the Schwarzian derivative. This embedding models the
universal Teichmüller space as an infinite-dimensional complex manifold on the
Banach space H2,0(U). All finite Teichmüller spaces of Fuchsian groups are holo-
morphically embedded into T . They possess an additional Hilbert structures
given by the Kählerian Weil–Petersson metric. Hans Petersson first introduced
his scalar product in 1939 [28] and then André Weil used it for the moduli
spaces [35] (see also [12, 23, 37]).

The Banach space H2,0(U) is an infinite-dimensional vector space that can
be thought of as a co-tangent space to T at the initial point. Let us give an
explicit realization of tangent and cotangent spaces. The map fµ ∈ Sqc has a
Fréchet derivative at a point µ in a direction ν. Let us construct the variation



FINITE DIMENSIONAL GRADING OF THE VIRASORO ALGEBRA 425

in Sqc

f τν(z) = z + τV (z) + o(τ), z ∈ U.

Taking the Schwarzian derivative in U we get

Sfτν = τV ′′′(z) + o(τ), z ∈ U,

locally uniformly in U . Taking into account the normalization of the class Sqc

we have (see, e.g., [14, 21])

V (z) = −z2

π

∫∫

U∗

ν(w)dσw

w2(w − z)
,

V ′′′(z) = − 6

π

∫∫

U∗

ν(w)dσw

(w − z)4
= − 6

π

∫∫

U

w̄2

w2

ν(1/w̄)dσw

(1− w̄z)4
. (7)

The integral formula implies V ′′′(A(z))A′(z)2 = V ′′′(z) (subject to the relation

for the Beltrami coefficient µ(A(z))A′(z) = µ(z)A′(z)) for any Möbius trans-
form A.

Let us extend ν(z), z ∈ U∗ into U by putting ν(1/z̄) = ν(z)z2/z̄2, z ∈ U .
Taking Λν(z) = Sfτν (z) and Λ̇ν(z) = V ′′′(z) we have (see, e.g., [12, Section 6.5,
Theorem 5])

Λν(z)− τ Λ̇ν(z) =
o(τ)

(1− |z|2)2
, z ∈ U,

or Λ̇ν is the derivative of Λν at the initial point of the universal Teichmüller
space with respect to the norm of the Banach space H2,0(U). The reproducing
formula for the Bergman integral gives

ϕ(z) =
3

π

∫∫

U

ϕ(w)(1− |w|2)2dσw

(1− w̄z)4
, ϕ ∈ H2,0(U). (8)

Changing the variables w → 1/w̄ in the latter integral we come to the so-called
harmonic (Bers’) Beltrami differential

ν(z) = Λ∗ϕ(z) = −1

2
ϕ(z)(1− |z|2)2, z ∈ U.

Let us denote by A(U) the Banach space of analytic functions with the finite
L1-norm. Then A(U) ↪→ H2,0(U) is a continuous inclusion ([23], Section 1.4.2).
On L∞(U)× A(U) one can define the coupling

〈ν, ϕ〉 :=

∫∫

U

ν(z)ϕ(z) dσz,

where dσz means the area element in U . Denote by N the space of locally trivial
Beltrami coefficients which is a subspace of L∞(U) that forms the kernel of the
operator 〈·, ϕ〉 for all ϕ ∈ A(U). Then one can identify the tangent space to T
at the initial point with the space H := L∞(U)/N . It is natural to relate it to a
subspace of L∞(U). The superposition Λ̇ν ◦Λ∗ϕ acts identically on A(U) due to
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(7), (8). The space N is also the kernel of the operator Λ̇ν . Thus, the operator
Λ∗ splits the following exact sequence

0 −→ N ↪→ L∞(U)
Λ̇ν−→ A(U) −→ 0.

Then, H = Λ∗(A(U)) ∼= L∞(U)/N . The coupling 〈µ, ϕ〉 defines A(U) as a
cotangent space.

Let A2(U) denote the separable Hilbert space of analytic functions ϕ with
the finite norm

‖ϕ‖2
A2(U) =

∫∫

U

|ϕ(z)|2(1− |z|2)2dσz.

Then A(U) ↪→ A2(U) and Petersson’s Hermitian product [32, 37] is defined on
A2(U) as

(ϕ1, ϕ2) =

∫∫

U

ϕ1(z)ϕ2(z)(1− |z|2)2dσz.

The Kählerian Weil–Petersson metric {ν1, ν2} = 〈ν1, Λ̇ν2〉 can be defined on the
tangent space to T which gives a Kählerian manifold structure to T (see a recent
monograph [32] by Takhtajan and Teo). In [32] it was proved that the Weil–
Petersson metric is right-invariant and continuous. Moreover, the connected
component T0 of the origin in T is a topological group.

As we have already mentioned, Kirillov’s manifold Diff S1/S1 is naturally
embedded into T by the conformal welding. Moreover, a complex structure on
Diff S1/S1 is defined as follows. We identify Vect0 S1 = Vect S1/S1 with the
functions with the vanishing mean value over S1. This gives

φ(θ) =
∞∑

n=1

an cos nθ + bn sin nθ.

Let us define a complex structure by the operator

J(φ)(θ) =
∞∑

n=1

−an sin nθ + bn cos nθ.

Then J2 = −id. On Vect0 S1 ⊗ C, the operator J diagonalizes and we have

φ → v :=
1

2
(φ− iJ(φ)) =

∞∑
n=1

(an − ibn)einθ,

and the latter extends into the unit disk as a holomorphic function. Then
Diff S1/S1 is embedded into T as a complex submanifold.

Simple calculations give

ω(φ, J(φ)) =
1

2i

∞∑
n=1

(n3 − n)(a2
n + b2

n).
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A homogeneous Kählerian metric on Diff S1/S1 is of the form [17]

‖v‖2
a,b =

∞∑
n=1

(an3 + bn)|cn|2, cn = an − ibn.

The Gelfand–Fuchs cocycle represents a Kählerian form and the homogeneous
Kählerian metric is compatible with the Gelfand–Fuchs cocycle if a = −b =
1/12.

Let us realize the Lie algebra Vect S1 within the space of harmonic Beltrami
differentials H. In [33] it was proved that a vector v(eiθ) ∈ Vect S1 generates
the harmonic Beltrami differential as

ν(z) =
3

2π

2π∫

0

(
1− |z|2

(1− eiθz̄)2

)2

e2iθv(eiθ)dθ. (9)

This formula was derived making use of the Douady–Earle quasiconformal ex-
tension of diffeomorphisms of S1 instead of the extension by Beurling and
Ahlfors used in [32], because the former extension is compatible with Möbius
transforms, which is important when working with Teichmüller spaces. There
exist constants M1 and M2 independent of z such that |ν(z)| ≤ M1(1−|z|2)/|z|2
and |ν(z)| ≤ M2/(1 − |z|2), see [33]. Formula (9) gives an explicit Kählerian
embedding of Diff S1/S1 into T as a holomorphic submanifold.

5. Finite Grading and Coefficients of Univalent Functions

Let us recall that Teichmüller spaces T (Γ) of Fuchsian groups Γ are contained
canonically and holomorphically in T . Nag and Verjovsky [24] discovered that
Teichmüller spaces (finite in particular) of Fuchsian groups are embedded trans-
versely to Diff S1/S1 thought of as a leaf of a holomorphic foliation of T . This
happens first of all because of the fractal structure of quasicircles invariant un-
der a Fuchsian group. This fact implies, in particular, that the Weil–Petersson
metric defined on T is not “universal” for the corresponding Weil–Petersson
metrics defined on T (Γ) although the construction is similar. On the other
hand, given the dimension m of T (Γ), we can see more common features by
projecting both T and T (Γ) to CN and Cm, respectively.

Here we would like to mention a lemma by Krushkal [18, Ch. V]. Let T (Γ)
be a finite Teichmüller space of a Fuchsian group Γ and let m be its dimension.
There is a holomorphic embedding j of T (Γ) into Mm as a bounded analytic
surface in Cm+1, where Mm is the coefficient body for univalent functions from
Sqc. The first m coefficients (c1, . . . , cm) in the Taylor expansion

f(z) = z

(
1 +

∞∑
n=1

cnz
n

)
, z ∈ U,

of functions f from Sqc play the role of local parameters of T (Γ). This embed-
ding is represented in the diagram
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T (Γ) −→j Mm ⊂ Cm+1

6

T0T (Γ)

6

−→j
∗

TMm ⊂ TCm+1,

and, for the universal Teichmüller space, in

Diff S1/S1 T↪→i −→j M⊂ CN −→π Cm+1

Vect S1

6

↪→ T0T
i∗

6

−→j
∗

TM⊂ TCN−→π
∗

TCm+1.

6

We are going to construct the projections π and π∗ aiming at a finite-dimensional
grading (with respect to m) of the Virasoro algebra. At the same time we want
to preserve the Virasoro algebra structure of the new finite basis. We choose
(∂1, . . . , ∂m) as a standard affine basis in TCm, where ∂k := ∂/∂ck. The Virasoro
basis is the embedding of a complex Fourier basis under the mapping i∗ ◦ j∗.
The result of this embedding is the operators

Lj = ∂j +
∞∑

k=1

(k + 1)ck∂j+k, j ∈ N.

Acting over the functions from S̃ as Lk(f)(z) = zk+1f ′(z), k ∈ N. Let g =
a0 +a1z+ . . . be an analytic function. Fix m. We denote by [g]m the truncation
of the function g: [g(z)]m = a0 + a1z + · · ·+ amzm, and construct the operators
Lk ≡ Lm

k by the formula Lk = [zk+1f ′(z)]m+1. This leads to the expression (3)
in terms of the affine coordinates or



L1

L2

L3

. . .
Lm




=




1 2c1 . . . (m− 1)cm−2 mcm−1

0 1 . . . (m− 2)cm−3 (m− 1)cm−2

0 0 . . . (m− 3)cm−4 (m− 2)cm−3

. . . . . . . . . . . . . . .
0 0 . . . 0 1







∂1

∂2

∂3

. . .
∂m




. (10)

The projection π∗ is defined by the above truncation.

6. Connections with the Löwner Theory

6.1. Coefficient bodies. By the coefficient problem for univalent functions
we mean the problem of finding precisely the regions Mn defined above (1).
These sets have been investigated by a great number of authors, but the most
remarkable source is the monograph [31] written by Schaeffer and Spencer in
1950. Among other contributions to the coefficient problem we distinguish the
monograph by Babenko [4] that contains a good collection of qualitative results
on coefficient bodies Mn. The results concerning the structure and properties
of Mn include (see [4], [31])

(i) Mn is homeomorphic to a (2n − 2)-dimensional ball and its boundary
∂Mn is homeomorphic to a (2n− 3)-dimensional sphere;



FINITE DIMENSIONAL GRADING OF THE VIRASORO ALGEBRA 429

(ii) every point x ∈ ∂Mn corresponds to exactly one function f ∈ S which
is called a boundary function for Mn;

(iii) with the exception for a set of smaller dimension, at every point x ∈
∂Mn there exists a normal vector satisfying the Lipschitz condition;

(iv) there exists a connected open set X1 on ∂Mn such that the boundary
∂Mn is an analytic hypersurface at every point of X1, the points of
∂Mn corresponding to the functions that give the extremum to a linear
functional belong to the closure of X1.

It is worth to note again that all boundary functions have a similar structure.
They map the unit disk U onto the complex plane C minus piecewise analytic
Jordan arcs forming a tree with a root at infinity and having at most n tips.
The uniqueness of boundary functions implies that each point of ∂Mn defines
the rest of coefficients uniquely.

6.2. Hamiltonian dynamics and integrability. Let us recall briefly the
Hamiltonian and symplectic definitions and concepts that will be used in the
sequel. There exists a vast amount of modern literature dedicated to different
approaches to and definitions of integrable systems (see, e.g., [2], [3], [6], [38]).

The classical definition of a completely integrable system in the sense of Li-
ouville applies to a Hamiltonian system. If we can find independent conserved
integrals which are pairwise involutory, this system is completely integrable (see
e.g., [2], [3], [6]). That is each first integral allows us to reduce the order of the
system not just by one, but by two. We formulate this definition in a slightly
adopted form as follows.

A dynamical system in C2n is called Hamiltonian if it is of the form

ẋ = ∇sH(x), (11)

where ∇s denotes the symplectic gradient given by

∇s =

(
∂

∂x̄n+1

, . . . ,
∂

∂x̄2n

,− ∂

∂x1

, . . . ,− ∂

∂xn

)
.

The function H in (11) is called the Hamiltonian function of the system. It
is convenient to redefine the coordinates (xn+1, . . . , x2n) = (ψ1, . . . , ψn), and
rewrite the system (11) as

ẋk =
∂H

∂ψk

, ψ̇k = −∂H

∂xk

, k = 1, 2 . . . , n. (12)

The system has n degrees of freedom. The two-form ω =
∑n

k=1 dx∧ dψ̄ admits
the Lie–Poisson bracket [·, ·]

[f, g] =
n∑

k=1

(
∂f

∂xk

∂g

∂ψk

− ∂f

∂ψk

∂g

∂xk

)

associated with ω. The symplectic pair (C2n, ω) defines the Poisson manifold
(C2n, [·, ·]).
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The system (12) may be rewritten as

ẋk = [xk, H], ψ̇k = [ψk, H], k = 1, 2, . . . , n, (13)

and the first integrals L of the system are characterized by

[L,H] = 0. (14)

In particular, [H, H] = 0, and the Hamiltonian function H is an integral of
the system (11). If the system (13) has n functionally independent integrals
L1, . . . , Ln, which are pairwise involutory [Lk, Lj] = 0, k, j = 1, . . . , n, then it is
called completely integrable in the sense of Liouville. The function H is included
in the set of first integrals. The classical theorem of Liouville and Arnold [2]
gives a complete description of the motion generated by the completely inte-
grable system (13). It states that such a system admits action-angle coordinates
about connected regular compact invariant manifold.

If the Hamiltonian system admits only 1 ≤ k < n independent involutory
integrals, then it is called partially integrable. The case k = 1 is known as
the Poincaré–Lyapunov theorem which states that a periodic orbit of an auto-
nomous Hamiltonian system can be included in a one-parameter family of such
orbits under a non-degeneracy assumption. A bridge between these two extreme
cases k = 1 and k = n has been proposed by Nekhoroshev [26] and justified
later in [5], [10], [11]. The result states the existence of k-parameter families of
tori under suitable non-degeneracy conditions.

6.3. Hamiltonian system for coefficients. The Löwner–Kufarev parametric
method (see, e.g., [9, 29]) is based on a representation of any function f from
the class S by the limit

f(z) = lim
t→∞

etw(z, t), (15)

where the function

w(z, t) = e−tz

(
1 +

∞∑
n=1

cn(t)zn

)

is a solution to the Löwner–Kufarev equation

dw

dt
= −wp(w, t), (16)

with the initial condition w(z, 0) ≡ z. The function p(z, t) = 1 + p1(t)z + · · · is
holomorphic in U and has the positive real part for all z ∈ U almost everywhere
in t ∈ [0,∞). If f ∈ S̃, then

ċn = cn − et

2πi

∫

S1

w(z, t)p(w(z, t), t)
dz

zn+2
,

= − 1

2πi

∫

S1

n∑

k=1

e−kt(etw)k+1pk
dz

zn+2
, n ≥ 1. (17)
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We consider the adjoint vector ψ̄(t) = (ψ̄1(t), . . . , ψ̄n(t))T with complex-
valued coordinates ψ1, . . . , ψn, and the complex Hamiltonian function

H(a, ψ, u) =
n∑

k=1

ψ̄k


ck − et

2πi

∫

S1

w(z, t)p(w(z, t), t)
dz

zk+2


 .

To come to the Hamiltonian formulation for the coefficient system we require
that ψ̄ satisfy the adjoint to (17) system of differential equations

˙̄ψj = −∂H

∂cj

, 0 ≤ t < ∞,

or

˙̄ψj = −ψ̄j +
1

2πi

n∑

k=1

ψ̄k

∫

S1

(p + wp′)
dz

zk−j+1
, j = 1, . . . , n− 1, (18)

and
˙̄ψn = 0. (19)

6.4. First integrals and partial integrability. Let us construct the follow-
ing series

n∑

k=1

v̄n−k+1z
k−1 = etw′(z, t)

n∑

k=1

ψ̄n−k+1z
k−1 + etw′(z, t)

∞∑

k=n

bkz
k. (20)

Taking into account (18) and the formula for the derivative

∂(etw′)
∂t

= etw′(1− p(w, t)− wp′(w, t)),

we come to the conclusion that ˙̄v = 0 and v̄ is constant. We denote by
(L1, . . . ,Ln)T the vector of the first integrals of the Hamiltonian system (17–
19). It is easily seen that they are the same as given by (10).

Indeed, equality (20) implies that Lk = v̄k are constants for all t and k =
1, . . . , n. Naturally,

[Lj, H] =
n∑

k=1

∂Lj

∂ck

∂H

∂ψk

− ∂Lj

∂ψk

∂H

∂ck

=
n∑

k=1

∂Lj

∂ck

ċk +
∂Lj

∂ψk

˙̄ψk = L̇j = 0.

The commutator relations are

[Lj,Lk] = (j − k)Lk+j, when k + j ≤ n, (21)

or 0 otherwise. This implies that

• the first integrals (L[(n+1)/2], . . . , Ln) are pairwise involutory;
• the integrals (L1, . . . , L[(n−1)/2]) are not pairwise involutory, but their

Lie–Poisson brackets give all the rest of integrals.

Here [·] within the index field means the integer part. It is clear from the
form of the matrix in the above representation of Lk, k = 1, . . . , n, that all
these integrals are algebraically (even linearly) independent. Therefore, the
Hamiltonian system (17–19) is partially integrable in the Liouville sense.
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Remark. All previous considerations have been done for the class S̃. But the
result on partial integrability is still valid for the whole class S going inside the
unit disk by f → 1

r
f(rz), and letting r → 1.

Remark. The complete integration of this Hamiltonian system requires addi-
tional information on the trajectories, in particular, on the controls p1, p2, . . . .
One way to perform such integration is to solve of the extremal problem of
finding the boundary hypersurfaces of Mn by optimal control methods, see
[30].

Remark. In view of Hamiltonian mechanics, our Hamiltonian system de-
scribes ‘trivial’ motion with constant velocity because the Hamiltonian function
is linear with respect to ψ. An attempt to get a non-trivial description of the
Löwner–Kufarev motion was launched in [34] by introducing into consideration
a special Lagrangian.

Remark. The coefficient bodies M1, M2, . . . generate a hierarchy of Hamil-
tonian systems (17-19)
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Universidad Técnica Federico Santa Maŕıa
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