
Georgian Mathematical Journal
Volume 14 (2007), Number 3, 457–469

ON DOUBLY PERIODIC SOLUTIONS OF NONLINEAR
HYPERBOLIC EQUATIONS OF HIGHER ORDER

TARIEL KIGURADZE

Abstract. Unimprovable conditions of the existence and uniqueness of dou-
bly periodic solutions are established for nonlinear hyperbolic equations of
higher order with two independent variables.
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1. Statement of the Problem and the Main Results

Consider the nonlinear hyperbolic equation

u(2m,2n) =
n−1∑

k=0

(
amku

(2m,2k) + bmku
(2m,2k+1)

)
+

m−1∑
i=0

(
ainu

(2i,2n) + cinu
(2i+1,2n)

)

+
m−1∑
i=0

n−1∑

k=0

(
aiku

(2i,2k) + biku
(2i,2k+1) + ciku

(2i+1,2k)
)

+ f(x, y, u), (1.1)

where aik, bik, cik are real constants, f : R3 → R is a continuous function, and
for any i and k

u(i,k)(x, y) =
∂i+ku(x, y)

∂xi∂yk
.

A function u : R2 → R is called a solution of equation (1.1) if it is continuous
together with all its derivatives u(i,j) (i = 0, 1, . . . , 2m; k = 0, 1, . . . , 2n) and
satisfies equation (1.1) everywhere in R2.

Let ω1 and ω2 be positive numbers. A solution u of equation (1.1) is called
(ω1, ω2)-periodic if

u(x + ω1, y) = u(x, y), u(x, y + ω2) = u(x, y) for (x, y) ∈ R2.

Problems on the existence of (ω1, ω2)-periodic solutions to hyperbolic equa-
tions of second and fourth orders were studied in [1–4, 8–14], and for higher
order equations in [6]. In the present paper new, unimprovable in a sense,
conditions of existence and uniqueness of (ω1, ω2)-solutions are established.

Naturally, we assume that f is (ω1, ω2)-periodic with respect to the first two
variables, i.e., the following equalities hold in R3

f(x + ω1, y, z) = f(x, y, z), f(x, y + ω2, z) = f(x, y, z).
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Theorem 1.1. Let

(−1)m+n+i+kaik ≥ 0 (i = 0, . . . , m; k = 0, . . . , n;

i + k < m + n), a0n 6= 0, am0 6= 0, (1.2)

and let there exist positive constants a, b and c such that

n−1∑

k=0

(ω2

2π

)2n−2k

|amk|+
m−1∑
i=0

(ω1

2π

)2m−2i

|ain|

+
m−1∑
i=0

n−1∑

k=0

(ω1

2π

)2m−2i(ω2

2π

)2n−2k

|aik|+
(ω1

2π

)m(ω2

2π

)n

b
1
2 < 1, (1.3)

a|z| − c ≤ (−1)m+nf(x, y, z) ≤ b|z|+ c for (x, y, z) ∈ R3. (1.4)

Then equation (1.1) has at least one (ω1, ω2)-periodic solution.

Theorem 1.2. Let inequalities (1.2) and (1.3) hold, and

a|z1 − z2| ≤ (−1)m+n
(
f(x, y, z1)− f(x, y, z2)

) ≤ b|z1 − z2|, (1.5)

where a and b are positive constants. Then equation (1.1) has one and only one
(ω1, ω2)-periodic solution.

For higher order ordinary differential equations results similar to Theorems
1.1 and 1.2 were obtained by I. Kiguradze and T. Kusano in [7].

Example 1.1. Let ε ∈ (0, 1) be an arbitrarily small number and

δ =
1−√1− ε

2
.

Consider the differential equation

u(2m,2n) =
n−1∑

k=0

amku
(2m,2k) +

m−1∑
i=0

ainu
(2i,2n)

+
m−1∑
i=1

n−1∑

k=1

aiku
(2i,2k) + (−1)m+nb u + sin

2πx

ω1

sin
2πy

ω2

, (1.6)

where aik (i = 0, . . . , m; k = 0, . . . , n; 2 ≤ i+k < m+n) are constants satisfying
inequalities (1.2), and

n−1∑

k=0

(ω2

2π

)2n−2k

|amk|+
m−1∑
i=0

(ω1

2π

)2m−2i

|ain|

+
m−1∑
i=0

n−1∑

k=0

(ω1

2π

)2m−2i(ω2

2π

)2n−2k

|aik| = 1− δ2, b = δ2
(2π

ω1

)2m(2π

ω2

)2n

. (1.7)
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It is clear that equation (1.6) satisfies all of the conditions of Theorems 1.1 and
1.2 except condition (1.3). Instead of (1.3) it satisfies the condition

n−1∑

k=0

(ω2

2π

)2n−2k

|amk|+
m−1∑
i=0

(ω1

2π

)2m−2i

|ain|

+
m−1∑
i=0

n−1∑

k=0

(ω1

2π

)2m−2i(ω2

2π

)2n−2k

|aik| +
(ω1

2π

)m(ω2

2π

)n

b
1
2 < 1 + ε. (1.8)

Let us show that equation (1.1) has no (ω1, ω2)-periodic solution. Assume the
contrary that such a solution exists. Then

ω1∫

0

ω2∫

0

sin
2πx

ω1

sin
2πy

ω2

u(2i,2k)(x, y) dx dy

= (−1)i+k
(2π

ω1

)2i(2π

ω2

)2k
ω1∫

0

ω2∫

0

sin
2πx

ω1

sin
2πy

ω2

u(x, y) dx dy. (1.9)

Multiplying both sides of equation (1.6) by sin 2πx
ω1

sin 2πy
ω2

, integrating over

[0, ω1]× [0, ω2] and taking into account (1.7) and (1.9), we get the contradiction

ω1∫

0

ω2∫

0

sin2 2πx

ω1

sin2 2πy

ω2

dx dy = 0.

The constructed example shows that in Theorems 1.1 and 1.2 inequality (1.3)
cannot be replaced by inequality (1.9) whatever small ε > 0 may be.

Theorem 1.3. Let

(−1)m+n+i+kaik ≤ 0 (i = 0, . . . , m; k = 0, . . . , n;

i + k < m + n), a0n 6= 0, am0 6= 0, (1.10)

and let there exist a positive constant c such that

(−1)m+nf(x, y, z)z < 0 for (x, y) ∈ R2, |z| > c. (1.11)

Then equation (1.1) has at least one (ω1, ω2)-periodic solution.

Example 1.2. Consider the differential equation

u(2m,2n) =
n−1∑

k=0

amku
(2m,2k) +

m−1∑
i=0

ainu
(2i,2n)

+
m−1∑
i=1

n−1∑

k=1

aiku
(2i,2k) +

1

1 + u2
, (1.12)

where aik (i = 0, . . . , m; k = 0, . . . , n; 2 ≤ i + k < m + n) are the constants
satisfying inequalities (1.10). Equation (1.12) satisfies all the conditions of
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Theorem 1.3 except condition (1.11). Instead of (1.11) it satisfies the condition

lim sup
|z|→+∞

(−1)m+nf(x, y, z) ≤ 0 for (x, y) ∈ R2. (1.13)

On the other hand, it is clear that equation (1.12) has no (ω1, ω2)-periodic
solution for any positive ω1 and ω2. This example shows that in Theorem 1.3
condition (1.11) is optimal and cannot be replaced by condition (1.13).

Theorem 1.4. Let all of the conditions of Theorem 1.3 hold and

(−1)m+n
(
f(x, y, z1)−f(x, y, z2)

)
(z1 − z2) < 0 for (x, y) ∈ R2, z1 6= z2. (1.14)

Then equation (1.1) has one and only one (ω1, ω2)-periodic solution.

In contrast to Theorems 1.1 and 1.2, Theorems 1.3 and 1.4 do not restrict
the growth order of the function f with respect to the third argument. For
example, the function

f(x, y, z) = (−1)m+n+1p0(x, y) exp(p1(x, y)z2)z2l−1 + q(x, y),

where p0 : R2 → (0, +∞), p1 : R2 → [0, +∞) and q : R2 → R are arbitrary
continuous (ω1, ω2)-periodic functions and l is an arbitrary natural number,
satisfies conditions (1.11) and (1.14).

Example 1.3. Let inequalities (1.10) hold and

f(x, y, z) = (−1)m+n+1p0(x, y)f0(z),

where

f0(z) =

{
0 for |z| ≤ δ,

z − δ sgn z for |z| > δ,

δ is a positive constant, and p0 : R2 → (0, +∞) is a continuous (ω1, ω2)-periodic
function. Then it is clear that f satisfies condition (1.11), where c > δ. However,
instead of (1.14) f satisfies the condition

(−1)m+n
(
f(x, y, z1)−f(x, y, z2)

)
(z1 − z2) ≤ 0 for (x, y) ∈ R2. (1.15)

On the other hand, it is clear that for any γ ∈ [−δ, δ] the constant function
u(x, y) = γ is a (ω1, ω2)-periodic solution of equation (1.1). Thus we have
shown that in Theorem 1.4 condition (1.14) cannot be replaced by (1.15).

The equation

u(2m,2n) =
n−1∑

k=0

(
amku

(2m,2k) + bmku
(2m,2k+1)

)
+

m−1∑
i=0

(
ainu

(2i,2n) + cinu
(2i+1,2n)

)

+
m−1∑
i=0

n−1∑

k=0

(
aiku

(2i,2k)+biku
(2i,2k+1)+ciku

(2i+1,2k)
)

+p(x, y)u+q(x, y) (1.16)

is a particular case of equation (1.1), where p and q : R2 → R are continu-
ous (ω1, ω2)-periodic functions. Theorems 1.2 and 1.4, respectively, imply the
following Corollaries 1.1 and 1.2.
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Corollary 1.1. Let inequalities (1.2) and (1.3) hold, and

a ≤ (−1)m+np(x, y) ≤ b for (x, y) ∈ R2,

where a and b are positive constants. Then equation (1.16) has one and only
one (ω1, ω2)-periodic solution.

Corollary 1.2. If

(−1)m+np(x, y) < 0 for (x, y) ∈ R2

and inequalities (1.10) hold, then equation (1.16) has one and only one (ω1, ω2)-
periodic solution.

2. Auxiliary Statements

2.1. Lemmas on a priori estimates. Denote by Ck,l
ω1ω2

the Banach space of
continuous (ω1, ω2)-periodic functions u having continuous partial derivatives
u(i,j) (i = 0, . . . , k; j = 0, . . . , l), with the norm

‖u‖Ck,l
ω1ω2

= max

{ k∑
i=0

l∑
j=0

|u(i,k)(x, y)| : (x, y) ∈ Ω

}
.

Besides, we will use the notation C0,0
ω1ω2

= Cω1ω2 and

‖u‖L2
ω1ω2

=
( ω1∫

0

ω2∫

0

u2(s, t) ds dt
) 1

2
.

Set

L(u)(x, y) = u(2m,2n)(x, y)−
n−1∑

k=0

(
amku

(2m,2k)(x, y) + bmku
(2m,2k+1)(x, y)

)

+
m−1∑
i=0

(
ainu

(2i,2n)(x, y) + cinu
(2i+1,2n)(x, y)

)

+
m−1∑
i=0

n−1∑

k=0

(
aiku

(2i,2k)(x, y) + biku
(2i,2k+1)(x, y) + ciku

(2i+1,2k)(x, y)
)
, (2.1)

and consider the differential inequalities

a|u(x, y)| − c ≤ (−1)m+nL(u)(x, y) sgn u(x, y) ≤ b|u(x, y)|+ c (2.2)

and
(−1)m+nL(u)(x, y)u(x, y) ≤ −g(x, y, u(x, y)), (2.3)

where a > 0, b ≥ a, c ≥ 0 are constants and g : R3 → R is a continuous function
such that

g(x+ω1, y, z) = g(x, y, z), g(x, y+ω2, z) = g(x, y, z) for (x, y, z) ∈ R3 (2.4)

and
g(x, y, z) > 0 for (x, y) ∈ R2, |z| ≥ c. (2.5)
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By a (ω1, ω2)-periodic solution of the differential inequality (2.2) (differential
inequality (2.3)) we understand a function u ∈ C2m,2n

ω1ω2
satisfying this inequality

everywhere in R2.

Lemma 2.1. If conditions (1.2) and (1.3) hold, then there exists a positive
constant r independent of c such that an arbitrary (ω1, ω2)-periodic solution u
of the differential inequality (2.2) admits the estimate

‖u‖Cω1ω2
≤ r c. (2.6)

To prove the lemma we will need Lemmas 2.2–2.6 formulated below.

Lemma 2.2. Let u ∈ C1,1
ω1ω2

and

|u(x0, y0)| = min{|u(x, y)| : (x, y) ∈ R2}.
Then

|u(x0, y0)| ≤ (ω1ω2)
− 1

2‖u‖L2
ω1ω2

and

‖u‖Cω1ω2
≤|u(x0, y0)|+

(ω2

ω1

) 1
2‖u(0,1)‖L2

ω1ω2

+
(ω1

ω2

) 1
2‖u(1,0)‖L2

ω1ω2
+ 2(ω1ω2)

1
2‖u(1,1)‖L2

ω1ω2
.

The proof of the lemma is in [6].

Lemma 2.3. If u : R→ R is a k-times continuously differentiable ω-periodic
function, then

ω∫

0

|u(i)(s)|2 ds ≤
( ω

2π

)2k−2i
ω∫

0

|u(k)(s)|2 ds (i = 1, . . . , k).

This is Wirtinger’s lemma and one can find its proof in [5] (see also [7]).
Lemma 2.3 immediately implies

Lemma 2.4. If u ∈ Ck,l
ω1ω2

, then

‖u(i,0)‖L2
ω1ω2

≤
(ω1

2π

)k−i

‖u(k,0)‖L2
ω1ω2

, ‖u(0,j)‖L2
ω1ω2

≤
(ω2

2π

)l−j

‖u(0,l)‖L2
ω1ω2

,

‖u(i,j)‖L2
ω1ω2

≤
(ω1

2π

)k−i(ω2

2π

)l−j

‖u(k,l)‖L2
ω1ω2

(i = 1, . . . , k; j = 1, . . . , l).

Lemma 2.5. Let ε be a positive constant and u be a (ω1, ω2)-periodic solution
of the differential inequality (2.2). Then the following inequalities hold in R2

u2(x, y) ≤ 2

a
|L(u)(x, y)u(x, y)|+ c2

a2
, (2.7)

(−1)m+nL(u)(x, y)u(x, y) ≥ |L(u)(x, y)u(x, y)| − c2

a
, (2.8)

L2(u)(x, y) < (b + ε)|L(u)(x, y)u(x, y)|+ γ2c2, (2.9)



DOUBLY PERIODIC SOLUTIONS 463

where

γ = (2aε)−
1
2 (b + ε). (2.10)

Proof. From (2.2) we have

(−1)m+nL(u)(x, y)u(x, y) ≥ au2(x, y)− c |u(x, y)| ≥ a

2
u2(x, y)− c2

2a

which implies inequalities (2.7) and (2.8).
Let (x, y) ∈ R2 be an arbitrarily fixed point. If u(x, y) = 0, then in view of

(2.2) we have |L(u)(x, y)| ≤ c and, consequently, inequality (2.9). Therefore it
remains to consider the case, where u(x, y) 6= 0. Setting

η =
(
(−1)m+nL(u)(x, y) sgn u(x, y)− a|u(x, y)|+ c

)(
(b− a)|u(x, y)|+ 2c

)−1
,

p = a + (b− a)η, q = (2η − 1)c sgn u(x, y),

and taking into account (2.2) we get

a ≤ p ≤ b, |q| ≤ c. (2.11)

On the other hand, it is clear that

(−1)m+nL(u)(x, y) = pu(x, y) + q.

Therefore

L2(u)(x, y) = (−1)m+npL(u)(x, y)u(x, y) + pqu(x, y) + q2

≤ p|L(u)(x, y)u(x, y)|+ a

2
εu2(x, y) +

p2q2

2aε
+ q2.

Hence according to (2.7), (2.10) and (2.11) we get inequality (2.9). ¤

The following lemma is an immediate consequence of the formula of integra-
tion by parts.

Lemma 2.6. If

u ∈ C2m,2n
ω1ω2

,

then for arbitrary k ∈ {0, . . . ,m}, l ∈ {0, . . . , n}, i ∈ {0, . . . , 2m − 2k} and
j ∈ {0, . . . , 2n− 2l}

ω1∫

0

ω2∫

0

u(i,j)(x, y)u(i+2k,j+2l)(x, y) dx dy = (−1)k+l‖u(i+k,j+l)‖2
L2

ω1ω2
,

ω1∫

0

ω2∫

0

u(i,j)(x, y)u(i+2k−1,j+2l)(x, y) dx dy = 0,

ω1∫

0

ω2∫

0

u(i,j)(x, y)u(i+2k,j+2l−1)(x, y) dx dy = 0.
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Proof of Lemma 2.1. By (1.3) there exist numbers ε > 0 and δ ∈ (0, 1) such
that

n−1∑

k=0

(ω2

2π

)2n−2k

|amk|+
m−1∑
i=0

(ω1

2π

)2m−2i

|ain|

+
m−1∑
i=0

n−1∑

k=0

(ω1

2π

)2m−2i(ω2

2π

)2n−2k

|aik|+
(ω1

2π

)m(ω2

2π

)n

(b + ε)
1
2 < 1− δ. (2.12)

Let u be an arbitrary (ω1, ω2)-periodic solution of equation (2.2). Then by
Lemma 2.5, inequalities (2.7)–(2.9) hold, where γ is the number given by (2.10).

By Lemma 2.6 and conditions (1.2), (2.1), we have

(−1)m+n

ω1∫

0

ω2∫

0

L(u)(x, y)u(x, y) dx dy = ‖u(m,n)‖2
L2

ω1ω2
−

m−1∑
i=0

|ain| ‖u(i,n)‖2
L2

ω1ω2

−
n−1∑

k=0

|amk| ‖u(m,k)‖2
L2

ω1ω2
−

m−1∑
i=0

n−1∑

k=0

|aik| ‖u(i,k)‖2
L2

ω1ω2
,

ω1∫

0

ω2∫

0

L(u)(x, y)u(2m,2n)(x, y) dx dy = µ2 −
m−1∑
i=0

|ain| ‖u(m+i,2n)‖2
L2

ω1ω2

−
n−1∑

k=0

|amk| ‖u(2m,n+k)‖2
L2

ω1ω2
−

m−1∑
i=0

n−1∑

k=0

|aik| ‖u(m+i,n+k)‖2
L2

ω1ω2
,

where µ = ‖u(2m,2n)‖L2
ω1ω2

. Hence by Lemma 2.4 and inequality (2.8) it follows

that

ω1∫

0

ω2∫

0

|L(u)(x, y)u(x, y)| dx dy + |a0n| ‖u(0,n)‖2
L2

ω1ω2
+ |am0| ‖u(m,0)‖2

L2
ω1ω2

≤
(ω1

2π

)2m(ω2

2π

)2n

µ2 +
ω1ω2

a
c2, (2.13)

µ2 ≤
(

m−1∑
i=0

n−1∑

k=0

(ω1

2π

)2m−2i(ω2

2π

)2n−2k

|aik|+
n−1∑

k=0

(ω2

2π

)2n−2k

|amk|

+
m−1∑
i=0

(ω1

2π

)2m−2i

|ain|
)

µ2 +

ω1∫

0

ω2∫

0

L(u)(x, y)u(2m,2n)(x, y) dx dy. (2.14)

On the other hand, by Schwartz’s inequality and inequality (2.9) we have

ω1∫

0

ω2∫

0

L(u)(x, y)u(2m,2n)(x, y) dx dy
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≤ µ(b + ε)
1
2

( ω1∫

0

ω2∫

0

|L(u)(x, y)u(x, y)| dx dy

) 1
2

+ γ(ω1ω2)
1
2 µc.

If along with this we take into account inequalities (2.12) and (2.13), then from
(2.14) we get

µ2 = (1− δ)µ2 + δr0c, where r0 = δ−1
(
(b + ε)

1
2

(ω1ω2

a

) 1
2

+ γ(ω1ω2)
1
2

)

and, consequently,
µ ≤ r0c. (2.15)

Setting

r1 =
(ω1

2π

)m(ω2

2π

)n

r0 +
(ω1ω2

a

) 1
2

and applying Lemma 2.4 again, from (2.7), (2.13) and (2.15) we obtain

‖u(i,j)‖L2
ω1ω2

≤ rijc (i, j = 0, 1), (2.16)

where

r00 =
(2

a

) 1
2
r1 + a−1(ω1ω2)

1
2 , r01 = |a0n|− 1

2

(ω2

2π

)n−1

r1,

r10 = |am0|− 1
2

(ω1

2π

)m−1

r1, r11 =
(ω1

2π

)m−1(ω2

2π

)n−1

r0.

By Lemma 2.2, estimate (2.6) follows from (2.16), where

r = (ω1ω2)
− 1

2 r00 +
(ω2

ω1

) 1
2
r01 +

(ω1

ω2

) 1
2
r10 + 2(ω1ω2)

1
2 r11

is a positive constant independent of u and c. ¤
Lemma 2.7. Let conditions (1.10), (2.4) and (2.5) hold. Then there exists

a positive constant r independent of c such that an arbitrary (ω1, ω2)-periodic
solution u of the differential inequality (2.3) admits the estimate

‖u‖Cω1ω2
≤ rg∗(c), (2.17)

where
g∗(c) = c + max{|g(x, y, z)| 12 : (x, y) ∈ R2, |z| ≤ c}. (2.18)

Proof. If we integrate inequality (2.3) over [0, ω1]×[0, ω2], then in view of Lemma
2.6 and inequality (2.11) we get

‖u(m,n)‖2
L2

ω1ω2
+

m−1∑
i=0

|ain| ‖u(i,n)‖2
L2

ω1ω2
+

n−1∑

k=0

|amk| ‖u(m,k)‖2
L2

ω1ω2

+
m−1∑
i=0

n−1∑

k=0

|aik| ‖u(i,k)‖2
L2

ω1ω2
+

ω2∫

0

ω1∫

0

g(x, y, u(x, y)) dx dy ≤ 0.

Hence by (2.5) and (2.18) it follows that

min{|u(x, y)| : (x, y) ∈ R2} ≤ c, (2.19)
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‖u(m,n)‖L2
ω1ω2

≤ (ω1ω2)
1
2 g∗(c), ‖u(0,n)‖L2

ω1ω2
≤ |a0n|−1 (ω1ω2)

1
2 g∗(c),

‖u(m,0)‖L2
ω1ω2

≤ |am0|−1 (ω1ω2)
1
2 g∗(c).

Hence Lemma 2.4 yields

‖u(i,j)‖L2
ω1ω2

≤rijg
∗(c) (i, j = 0, 1), (2.20)

where

r10 = |am0|(ω1ω2)
1
2

(ω1

2π

)m−1

, r01 = |a0n|(ω1ω2)
1
2

(ω2

2π

)n−1

,

r11 = (ω1ω2)
1
2

(ω1

2π

)m(ω2

2π

)n

.

By Lemma 2.2, (2.19) and (2.20) imply estimate (2.6), where

r = 1 +
(ω2

ω1

) 1
2
r01 +

(ω1

ω2

) 1
2
r10 + 2

(
ω1ω2

) 1
2 r11

is a constant independent of u and c. ¤

2.2. Lemmas on the solvability of linear and nonlinear periodic prob-
lems. Consider the linear nonhomogeneous and homogeneous hyperbolic equa-
tions

L(u) = (−1)m+nbu + q(x, y), (2.21)

L(u) = (−1)m+nbu (2.22)

and the linear homogeneous ordinary differential equations

v(2m) =
m−1∑
i=0

(ainv
(2i) + cinv

(2i+1)), (2.23)

w(2n) =
n−1∑

k=0

(amkw
(2k) + bmkW

(2k+1)), (2.24)

where L is the differential operator given by equality (2.1) and b is some constant
different from zero.

Lemma 2.8. Let either b > 0 and inequalities (1.2) and (1.3) or b < 0 and
inequalities (1.10) hold. Then there exists a linear bounded operator G : Cω1ω2 →
C2m,2n

ω1ω2
such that for any q ∈ Cω1ω2 equation (2.21) has a unique (ω1, ω2)-periodic

solution

u(x, y) = G(q)(x, y) for (x, y) ∈ R2. (2.25)

Proof. By Theorem 1.1 from [6], to prove the lemma it is sufficient to show that
equation (2.22) has only a trivial (ω1, ω2)-periodic solution, and equation (2.23)
(equation (2.24)) has only a trivial ω1-periodic (ω2-periodic) solution.

Let u, v and w be, respectively, a (ω1, ω2)-periodic, a ω1-periodic and a ω2-
periodic solution of equations (2.22), (2.23) and (2.24). Our goal is to prove
that u(x, y) ≡ 0, v(t) ≡ 0 , w(t) ≡ 0.
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First consider the case where b > 0 and conditions (1.2) and (1.3) hold.
Then u is a solution of the differential inequality (2.2), where a = b and c = 0.
Hence by Lemma 2.1, we get that u(x, y) ≡ 0. Multiplying (2.23) and (2.24),
respectively, by v(2m)(t) and w(2n)(t) and integrating over [0, ω1] and [0, ω2], we
get

ω1∫

0

|v(2m)(t)|2 dt =
m−1∑
i=0

(−1)m+iain

ω1∫

0

|v(m+i)(t)|2 dt, (2.26)

ω2∫

0

|w(2n)(t)|2 dt =
n−1∑
i=0

(−1)n+kamk

ω2∫

0

|w(n+k)(t)|2 dt. (2.27)

Hence by Lemma 2.3 and inequality (1.3) it follows that
ω1∫

0

|v(2m)(t)|2 dt ≤ α

ω1∫

0

|v(2m)(t)|2 dt,

ω2∫

0

|w(2n)(t)|2 dt ≤ β

ω2∫

0

|w(2n)(t)|2 dt,

where

α =
m−1∑
i=0

(ω1

2π

)2m−2i

|ain| < 1, β =
n−1∑
i=0

(ω2

2π

)2n−2k

|amk| < 1.

Therefore it is clear that v(2m)(t) ≡ 0, w(2n)(t) ≡ 0 and, consequently, v(t) ≡
const and w(t) ≡ const. Taking into account the fact that a0n 6= 0 and am0 6= 0,
from (2.23) and (2.24) we conclude that v(t) ≡ 0 and w(t) ≡ 0.

Now consider the case, where b < 0 and inequalities (1.10) hold. Then u is
a solution of the differential inequality (2.3), where g(x, y, z) ≡ |b|z2. Hence by
Lemma 2.7, it follows that u(x, y) ≡ 0. On the other hand, using inequalities
(1.10), from (2.23) and (2.26) ((2.4) and (2.27)) we obtain that v(t) ≡ 0 (w(t) ≡
0). ¤

Lemma 2.9. Let either b > 0 and inequalities (1.2) and (1.3) or b < 0 and
inequalities (1.10) hold. Moreover, let there exist a positive constant ρ such that
for any λ ∈ (0, 1) every (ω1, ω2)-periodic solution of the differential equation

L(u) = (−1)m+n(1− λ)bu + λf(x, y, u) (2.28)

admits the estimate
‖u‖C2m−1,2n−1

ω1ω2
≤ ρ. (2.29)

Then equation (1.1) has at least one (ω1, ω2)-periodic solution.

This lemma immediately follows from Lemma 2.8 and Theorem 2.1 from [6].

3. Proofs of the Main Results

Proof of Theorem 1.1. Let r and G be the number and the operator appearing
in Lemmas 2.1 and 2.8, and let ‖G‖ be the norm of the operator G. Set

ρ0 = max{b r c + |f(x, y, z)| : (x, y) ∈ R2, |z| ≤ r c}, ρ = ‖G‖ρ0. (3.1)
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By Lemma 2.9 and conditions (1.2), (1.3), to prove the theorem it is sufficient
to show that for any λ ∈ (0, 1) an arbitrary (ω1, ω2)-periodic solution u of
equation (2.28) admits estimate (2.29).

According to (1.4) u is a solution of the differential inequality (2.2). Hence
by Lemma 2.1 we get estimate (2.6). On the other hand, by Lemma 2.8 we
have the representation

u(x, y) = G(
λf(·, ·, u)− (−1)m+nλu

)
(x, y).

By (2.6) and (3.1), the latter representation immediately implies estimate
(2.29). ¤
Proof of Theorem 1.2. Inequality (1.4) follows from (1.5), where

c = max{|f(x, y, 0)| : (x, y) ∈ R2}.
However, by Theorem 1.1, this inequality along with conditions (1.2) and (1.3)
guarantees the existence of (ω1, ω2)-periodic solution of equation (1.1). It re-
mains to prove that (1.1) has at most one (ω1, ω2)-periodic solution. Let u1 and
u2 be arbitrary (ω1, ω2)-periodic solutions of that equation and

u(x, y) = u1(x, y)− u2(x, y).

Then in view of (1.5) the function u is a (ω1, ω2)-periodic solution of the differ-
ential inequality (2.2), where c = 0. Hence according to (1.2), (1.3) and Lemma
2.1 it follows that u(x, y) ≡ 0, i.e., u1(x, y) ≡ u2(x, y). ¤

We omit the proof of Theorem 1.3, since it can be proved in much the same
way as Theorem 1.1. The only difference is that the constant b should be an
arbitrary negative number, and instead of Lemma 2.1 one should use Lemma
2.7, where

g(x, y, z) = min{|b| z2, (−1)m+n+1f(x, y, z)}.
Theorem 1.4 immediately follows from Theorem 1.3 and Lemma 2.7.
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