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STAGNATION ZONES OF A-SOLUTIONS
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To the blessed memory of Ilia Vekua

Abstract. We investigate stagnation zones of solutions of partial differential
elliptic equations. With the domain width being much less than its length
and special boundary conditions, these solutions can be almost constant over
large subdomains. Such domains are called stagnation zones (s-zones). We
estimate the size, the location of these s-zones and study the behavior of
solutions on s-zones.
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1. Introduction. Below we investigate solutions of partial differential elliptic
equations on non-smooth surfaces. The investigation is motivated in part by
the fact that, with a recent increasing interest in areas such as micro-electrical-
mechanical systems (MEMS) and nanoscale physiological processes, there is a
greater need to improve our understanding of fluid flows, flows of electric and
chemical fields in the micro- or nanocanals, good conductors, cracks etc.

When the width of the band is much smaller than the length, zones inside
which the flows are almost stationary, and consequently their potential functions
are almost constant, will be of sufficiently large size.

We estimate the size and location of these stagnation zones of solutions. At
first sight, the situation seems to be of little interest. However, keeping in mind
that a minute change in the potential function value occurs over a very long
interval, it is clear that a better understanding of such stagnation zones, which
we call s-zones, may allow one to organize calculations in a better way and
minimize the amount of computation as much as possible.

First we define the following concept which will be the key one in this article:

Let f : D → R be a continuous function. Fix a subdomain U ⊂ D and
a constant s > 0. A subdomain U is said to be a stagnation zone with the
deviation s (s-zone) of f if the oscillation of f on U does not exceed the pre-
assigned constant s.

Some estimates of stagnation zones are given in [8], [7], [9, Ch. 7] for solutions
of Laplace–Beltrami equations on Lipschitz surfaces.

In the situation where a solution f : D ⊂ R2 → R describes the goods barter
intensity on some geographical space, the boundary condition ∂f/∂n = 0 de-
scribes the borderline which could be crossed from both sides with an economic
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gain only in exceptional cases (see F. Braudel [1, Ch. I]). The theorems estab-
lished in [7] give (under appropriate restrictions on the model chosen) estimates
of a geometrical size of the stagnation zone (which adjoins that part of the
borderline) in the world economy.

The theorems on stagnation zones are closely connected with the pre-Liouville
theorems, i.e., with the solution oscillation estimates which immediately give
rise to different versions of the classical Liouville theorem on an entire doubly-
periodic function to be identically constant [7].

If an s-zone U ⊂ D is defined for a deviation s > 0, which is the measurement
error of f , then the key problem is the search of indirect methods to receive
information on f on U without direct measurements. Here we present some
results in this direction.

Following I. N. Vekua [10, Chapter 6], we consider equations in metrics of
sufficiently general form.

2. Surfaces. Let D ⊂ Rp be a domain, 2 ≤ p ≤ m, and let Ω be a p-
dimensional surface in Rm given by a locally Lipschitz vector-function

x = f(u) = (f1(u1, . . . , up), . . . , fm(u1, . . . , up)) : D → Rm , (1)

where x = (x1, . . . , xm) .
In the general case, Ω can have self-intersections. We shall say, that Ω is

imbedded in Rm, if f realizes a homeomorphic map of D onto f(D) with the
metric (and, consequently, topology !) induced by Rm. A surface Ω is immersed
in Rm if f is imbedded locally on D.

Since f is locally Lipschitz, by the Rademacher theorem [2, Section 3.1.6],
there exists the differential df(u) a.e. on D.

Let u ∈ D be a point where f has the differential. By

f ′ =




f ′1u1
f ′2u1

. . . f ′mu1

f ′1u2
f ′2u2

. . . f ′mu2

. . .

f ′1up
f ′2up

. . . f ′mup




we denote the derivative of f at a point u = (u1, . . . , up), where it exists. Using
the standard notation

gij =

〈
∂f

∂ui

,
∂f

∂uj

〉
, i, j = 1, 2, . . . , p ,

we define the first quadratic form of Ω on D:

ds2
Ω =

p∑
i,j=1

gij(u) dui duj . (2)
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Below we assume that the following property holds a.e. on D:

rank (df) = p . (3)

Let g = det (gij). At each point where (3) holds, the quadratic form (2) is
positive and g > 0. At such a point, the inverse matrix (gij) = (gij)

−1 is defined
and

gij =
adj gij

g
.

We set

|ξ|Ω =

(
p∑

i,j=1

gij(u) ξiξj

)1/2

.

We denote by

dHp
Ω =

√
g du1 · · · dup

the volume element on Ω.

Let Ω ⊂ Rm be a locally bi-Lipschitz surface. Since the metric on f(D)
is induced by Rm, the p-dimensional Hausdorff measure Hp

Ω(E), E ⊂ f(D) is
defined. Moreover, a tangent plane Ty(Ω) exists a.e. on Ω and consequently
a.e. on Ω we can define the gradient ∇Ω.

By W 1,p
loc (Ω) we denote the set of functions ϕ : Ω → R of the class W 1,p(U)

on every open subset U b Ω.1

Let D be a subdomain of Ω, homeomorphic to the ball Bp(0, 1) in Rp and let
w : D → Bp(0, 1) be a homeomorphism from D onto the ball. We fix a closed
set S ⊂ ∂Bp(0, 1) and denote by S the set of all sequences {uk} lying on D and
such that w(uk) → S. We call the sets of such sequences S boundary sets of
D.

A subdomain U ⊂ D adjoins a boundary set S, if there exists a sequence
{uk} ∈ S lying in U .

Let P, Q ⊂ ∂Bp(0, 1) be non-overlapping sets and let P , Q denote the sets of
{uk} lying in D and such that w(uk) → P , w(uk) → Q, respectively. A triple
of the form (P ,Q; D) is called a condenser.

3. Structure conditions. Let D b Ω be a domain on the surface Ω and let

A :
∧p

(T (D)) →
∧p

(T (D))

be a map defined a.e. on the foliation
∧p(T (D)) of tangent p-covectors. We

suppose that for a.e. y ∈ D the map A is defined on the space
∧p(Ty(D)) of

p-covectors, i.e., for a.e. y ∈ D, the map

A(y, . ) : ξ ∈
∧p

(Ty(D)) →
∧p

(Ty(D))

is defined and continuous. We assume that the map

y 7→ A(y, ξ)

1 U b Ω means that a subdomain U is bounded and its closure U ⊂ Ω.
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is measurable in the Lebesgue sense for all measurable p-covector fields ξ and

A(y, λξ) = λ |λ|α−2 A(y, ξ) , λ ∈ R1 , α ≥ 1. (4)

Suppose that for a.e. y ∈ D and all ξ ∈ ∧p(Ty(D)) the following properties
hold:

ν1 |ξ|αΩ ≤ 〈ξ, A(y, ξ)〉Ω, |A(x, ξ)|Ω ≤ ν2 |ξ|α−1
Ω (5)

with α ≥ 1 and some constants ν1, ν2 > 0. (Here and below, the subscript Ω
means that the corresponding quantity is calculated with respect to the metric
of Ω.)

We consider the equation

divΩ A(y,∇f) = 0 . (6)

Recall that the divergence of a vector field A on Ω is defined by

divΩ A =

p∑
i=1

〈∇Ei
A,Ei〉Ω .

Here the summation is taken over an arbitrary orthonormal basis {Ei}p
i=1 of the

tangent space Ty(Ω).
We note a special case of (6)

∆Ωh =
1√
g

p∑
i=1

∂

∂ui

(
√

g

p∑
j=1

gij(u)
∂h

∂uj

)
= 0 . (7)

Equation (7) is called the Laplace–Beltrami equation with respect to the met-
ric of Ω.

4. Capacity. Let D be a subdomain of Rp, p ≥ 2, and let Ω be a surface in
Rm given by the locally Lipschitz vector-function (1) with (3).

Fix a constant α ≥ 1 and a condenser (P ,Q; D). Let

capα,Ω(P ,Q; D) = inf

∫

D

|∇Ωϕ|αΩ dHp
Ω . (8)

Here the infimum is taken over all locally Lipschitz functions ϕ : D → (0, +∞)
with properties:

lim
{uk}∈P

ϕ(uk) = 0 , lim
{uk}∈Q

ϕ(uk) = 1 (9)

and such that for every subdomain D′ b D

0 < ess inf
D′
|∇Ωϕ(x)|Ω ≤ ess sup

D′
|∇Ωϕ(x)|Ω < ∞ . (10)

The quantity capα,Ω (P ,Q; D) is called the α-capacity of a condenser with re-
spect to the metric of Ω.
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Also, we shall need a capacity of a more generalized form. Consider a con-
denser (P ,Q; D) on the surface Ω. Fix a vector field A(y, ξ) and define the
A-capacity of (P ,Q; D) by

capA(P ,Q; D) = inf

∫

D

〈A(y,∇Ωϕ),∇Ωϕ〉Ω dHp
Ω , (11)

where the infimum is taken over all functions ϕ with (9), (10).
In the case, where A(y, ξ) = |ξ|p−2ξ and p = 2, we have the standard harmonic

capacity of the condenser on the surface. For p = n, we obtain the conformal
capacity.

5. A-solutions. Let ϕ : D ⊂ Ω → R be a locally Lipschitz function. We
denote by Db(ϕ) the set of all points a ∈ D at which ϕ has no differential. We
denote by Db(Ω) the set of y ∈ Ω, in which Ω has no tangent plane.

Let U ⊂ D be a subset and let ∂′U = ∂U \ ∂D be its boundary with respect
to D. If ∂′U is (Hn−1, n − 1)-rectifiable, then it has a locally finite perimeter
in the sense of De Giorgi and Hn−1-almost everywhere on ∂U , a unit normal
vector n exists [2, Sections 3.2.14, 3.2.15].

Let D ⊂ Ω be a domain and let S be a boundary set of D. Define the
concept of a generalized solution of (6) with zero boundary Neumann condition
on ∂D \ S. A subset U ⊂ D is called admissible, if U does not adjoin S and
has a (Hn−1, n− 1)-rectifiable boundary with respect to D.

We denote by ∂̃D the boundary of D with respect to the extended space
Rp ∪ {∞}. Let G ⊂ ∂̃D be a set closed in Rp ∪ {∞} (the case where G = ∅
is possible). We consider the set (G,D) of all subdomains U ⊂ D with ∂̃U ⊂
(D ∪G) and (Hp−1, p− 1)-rectifiable boundaries ∂′U = ∂̃U \ ∂̃D.

Definition 1. We say that a boundary set G ⊂ ∂̃D is absolutely non-
transparent for a locally Lipschitz solution f : D → R of (6), if for every
subdomain U ∈ (G,D),

Hp−1 [∂′U ∩Db(f)] = 0 , (12)

and for every locally Lipschitz function ϕ : U \ G → R the following property
holds ∫

∂′U

ϕ 〈A(u,∇Ωf) ,n〉Ω dHp−1
Ω =

∫

U

〈A(u,∇Ωf) ,∇Ωϕ〉Ω dHp
Ω . (13)

Here n is a unit inner normal vector to ∂′U and dHp
Ω is a volume element on Ω.

Following [3, Chapter 6], we call solutions of (6) A-solutions. However we
should note that our definition of generalized solutions is slightly different from
the definition in [3].

In the case of a smooth surface Ω, a smooth boundary ∂D, smooth Ai (i =
1, . . . , p) and f ∈ C2, relation (13) implies (6) with

〈A(y,∇Ωh),n〉Ω = 0 (14)
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everywhere on G (see [9, §7.2.1]).
The surface integral exists by (12). Indeed, this assumption guarantees that

∇Ωf(u) exists Hp−1-a.e. on ∂′U . The assumption that U ∈ (G,U) implies the
existence of a normal vector n for Hp−1-a.e. points on ∂′U [2, Chapter 2 §3.2].
Thus the scalar product 〈A(u,∇Ωf) ,n〉Ω is defined and finite a.e. on ∂′U .

Monotonicity close to the boundary. Let D ⊂ Rp be a domain and let
2≤p<∞.

Definition 2. A function f : D → R is called monotone up to a boundary
set G ⊂ ∂̃D, if for every subdomain U ⊂ D with (∂U \ G) ⊂ D the following
property holds

osc (f, U) ≤ osc (f, ∂U \G) . (15)

For functions on subdomains of R2, this property was studied in [4], [5].
If G = ∅, then we have the well-known class of functions monotone in the
Lebesgue sense. If G = ∂̃D, then it is easy to see that every monotone up to
the boundary function f ≡ const.

Theorem 1. If a boundary set G ⊂ ∂̃D is absolutely non-transparent for a
locally Lipschitz solution f : D → R of (6) with (4) and (5), then f is monotone
up to G.

Proof. The idea of the proof is close to the proof of the corresponding result in
[5] and so we shall restrict ourselves to its main points. We fix a subdomain U
of D such that (∂U \G) ⊂ D. First we prove that

sup
U

f(u) = sup
∂′U

f(u). (16)

Suppose that the contrary holds. There exists a point u0 ∈ U where

f(u0) > sup
∂′U

f(u) = M.

We choose ε > M such that f(u0) > ε. By Theorem 3.2.22 [2] for a.e. ε > 0,
sets {x ∈ D : f(x) = ε} are (Hp−1, p − 1)-rectifiable and, consequently, have a
locally finite perimeter. In particular, a.e. there exists a normal to these sets.

We fix a component U, u0 ∈ U , of {x ∈ U : f(x) > ε}. Without loss
of generality, we may assume that the boundary ∂′U is locally (Hp−1, p − 1)-
rectifiable. Using (13) with ϕ = f(x)− ε, we write∫

U

〈∇Ωf ,A(u,∇Ωf)〉Ω dHp
Ω =

∫

∂′U

(f − ε)〈A(u,∇Ωf),n〉Ω dHp−1
Ω = 0.

By (5), we have
∇Ωf(u) = 0 a.e. on U,

and f ≡ const on U . This contradicts the definition of a component U, x0 ∈ U .
Thus (16) is proved.

The function −f is a solution of this equation. Hence (16) implies

inf
U

f(u) = inf
∂′U

f(u). (17)
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Relations (16) and (17) guarantee the monotonicity of f up to G. ¤

7. Stagnation zones. Let D be a domain in Rp, p ≥ 2. Let Ω be a p-
dimensional locally Lipschitz surface in Rm, 2 ≤ p < m < ∞, defined by the
vector function (1) with (3).

Theorem 2. Assume that a boundary set G ⊂ ∂̃D is absolutely non-trans-
parent for a locally Lipschitz solution f : D → R of (6) with (4) and (5). If
subdomains U1 ⊂ U2 ⊂ U3 of D belong to the class (G,D), then∫

U1

|∇Ωf |αΩ dHp
Ω ≤ C capα

α,Ω(U1, U3 \ U2; U3) . (18)

Here

C = k αα supα
U3
|f(u)| , k =

να
2

να−1
1

.

Proof. Fix a locally Lipschitz function ψ ≥ 0 on U3 such that

ψ|U3\U2 = 0 , ψU1|U1 = 1 .

Let ϕ = f ψα. By (13) we may write∫

U3

〈A(u,∇f) ,∇(fψα)〉Ω dHp
Ω =

∫

∂′U3

fψα 〈A(u,∇f) ,n〉Ω dHp−1
Ω = 0 .

We have∫

U3

ψα〈∇f, A(u,∇f)〉Ω dHp
Ω = −α

∫

U3

fψα−1〈∇ψ, A(u,∇f)〉Ω dHp
Ω .

Assumption (5) for A implies that

〈∇ψ, A(u,∇f)〉αΩ ≤ k |∇Ωψ|αΩ 〈∇f, A(u,∇f)〉α−1
Ω . (19)

Indeed, we have

|〈∇ψ, A(u,∇f)〉Ω| ≤ |∇ψ|Ω |A(u,∇f)|Ω
and

|A(u, ∇f)|Ω ≤ ν2 |∇f |α−1
Ω =

= ν2 (|∇f |αΩ)(α−1)/α ≤ ν2

(
1

ν1

〈∇f, A(u,∇f)〉Ω
)(α−1)/α

.

Thus we obtain

|A(u,∇f)|αΩ ≤
να

2

να−1
1

〈∇f, A(u,∇f)〉α−1
Ω

and (19) follows easily.
By (19) we have∫

U3

ψα〈∇f, A(u,∇f)〉Ω dHp
Ω ≤ c1

∫

U3

ψα−1|∇ψ|Ω〈∇f, A(u,∇f)〉
α−1

α
Ω dHp

Ω
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with

c1 = k
1
α α sup

U3

|f(u)| .

The Hölder inequality implies

∫

U3

ψα−1|∇ψ|Ω 〈∇f, A(u,∇f)〉
α−1

α
Ω dHp

Ω

≤



∫

U3

|∇ψ|αΩ dHp
Ω




1
α




∫

U3

ψα〈∇f, A(u,∇f)〉Ω dHp
Ω




α−1
α

.

Thus we come to the inequality
∫

U3

ψα〈∇f, A(u,∇f)〉Ω dHp
Ω ≤ cα

1

∫

U3

|∇ψ|αΩ dHp
Ω .

Since ψ ≡ 1 on U1, we obtain
∫

U1

〈∇f, A(u,∇f)〉Ω dHp
Ω ≤ cα

1

∫

U3\U2

|∇ψ|αΩ dHp
Ω .

Taking the infimum over all admissible functions ψ, we come to (18). ¤

Now, let h(u) be a locally Lipschitz function such that

lim
u→G

h(u) = 0 .

We may choose h(u), for example, as a distance function from the boundary set
G to u ∈ D at the metric dsΩ. For an arbitrary t > 0 we set

Σh(t) = {u ∈ D : h(u) = t} , Bh(t) = {u ∈ D : h(u) > t} .

Since h is locally Lipschitz by Theorem 3.2.15 [2], a.e. h-spheres Σh(t) are
countably (Hp−1, p − 1)-rectifiable. Let α ≥ 1 be a constant. For every open
subset V ⊂ Σh(t), we introduce the following numerical characteristic

µα,A(V ) = inf




∫

V

〈∇Σϕ, A(u,∇Σϕ)〉Σ|∇Ωh|−1
Ω dHp−1

Σ

∫

V

ϕα|∇Σh|Σ |∇Ωh|−1
Ω dHp−1

Σ




1/α

. (20)

Here the infimum is taken over all Lipschitz functions ϕ : V → R such that
∫

V

ϕdHp−1
Σ = 0 . (21)
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Theorem 3. Let D be a domain in Rp, p ≥ 2. Assume that a non-empty
boundary set G ⊂ ∂̃D is absolutely non-transparent for a locally Lipschitz solu-
tion f : D → R of A [f ] = 0 with (5).

If the subdomains Bh(t2) ⊂ Bh(t1), t1 < t2, belong to (G,D), then

I(t1) ≤ I(t2) exp



−kα

t2∫

t1

µ(Σh(t)) dt



 (22)

for

I(t) =

∫

Bh(t)

〈∇f, A(u,∇f〉Ω dHp
Ω

and

µ(Σh(t)) = µα,A(Σh(t)) .

Moreover, if s > 0, Ui = Bh(ti), i = 1, 2, and

k αα supα
D|f(u)| capα

α,Ω(U1, D \ U2; D) exp



−kα

t2∫

t1

µ(Σh(t)) dt



 < s , (23)

then U1 is an s-zone of f .

Proof. We assume that Bh(t) is an h-ball with a locally (Hp−1, p− 1)-rectifiable
boundary h-sphere Σh(t). Since t1 < t < t2 and Bh(t1), Bh(t2) belong to the
class (G,D), Bh(t) also belongs to (G,D). We choose a constant c0 such that
the function ϕ = f − c0 satisfies (21). By (13), we may write that

I(t) =

∫

Bh(t)

〈A(u,∇Ωf) ,∇Ωf〉Ω dHp
Ω =

∫

Σh(t)

(f − c0) 〈Ai(u,∇Ωf), n〉Ω dHp−1
Σ .

Here n is a unit normal to Σh(t).
For Hp−1

Σ -a.e. points on Σh(t), we have

n = ∇Ωh/ |∇Ωh|Ω ,

and hence for a.e. t we have

I(t) =

∫

Σh(t)

(f − c0) 〈A(u,∇Ωf),
∇Ωh

|∇Ωh|Ω 〉Ω dHp−1
Σ .

Let a ∈ Σh(t) be a point where the h-sphere has a tangent plane. Using (5),
we have

|〈A(u,∇Ωf), ∇Ωh〉Ω|α ≤ k |∇Ωh|αΩ |〈∇Ωf, A(a,∇Ωf)〉|α−1 .
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Since this h-sphere is locally (Hp−1, p− 1)-rectifiable, we find

I(t) ≤
∫

Σh(t)

|f − c0|
∣∣∣∣〈A(u,∇Ωf)

∇Ωh

|∇Ωh|〉Ω
∣∣∣∣ dHp−1

Σ

≤ k
1
α

∫

Σh(t)

|f − c0| |∇Ωh|Ω〈∇Ωf, A(u,∇Ωf)〉
α−1

α
Ω

dHp−1
Σ

|∇Ωh|Ω .

We have

I(t) ≤ k
1
α

∫

Σh(t)

|f − c0| |∇Ωh|Ω〈∇Ωf, A(u,∇Ωf)〉
α−1

α
Ω

dHp−1
Σ

|∇Ωh|Ω

≤ k
1
α

( ∫

Σh(t)

|f − c0|α |∇Ωh|Ω dHp−1
Σ

|∇Ωh|

) 1
α

×
( ∫

Σh(t)

〈∇Ωf, Ai(u,∇Ωf)〉Ω dHp−1
Σ

|∇Ωh|Ω

)α−1
α

.

We use the characteristic µ. By (20) we have

( ∫

Σh(t)

|f − c0|α |∇Ωh|Ω dHp−1
Σ

|∇Ωh|

) 1
α

≤ µ−1(Σh(t))

( ∫

Σh(t)

〈∇Ωf, A(u,∇Ωf)〉Ω dHp−1
Σ

|∇Ωh|Ω

) 1
α

and hence

I(t) ≤ k
1
α µ−1(Σh(t))

∫

Σh(t)

〈∇Ωf, A(u,∇Ωf)〉Ω dHp−1
Σ

|∇Ωh|Ω .

Observing that by the co-area formula

I ′(t) =

∫

Σh(t)

〈∇Ωf, A(u,∇Ωf)〉Ω dHp−1
Σ

|∇Ωh|Ω ,

we come to the differential inequality

I(t) ≤ I ′(t) k
1
α µ−1(Σh(t)) .

Solving it, we obtain

t2∫

t1

µ(Σh(t)) dt ≤ k
1
α log

I(t2)

I(t1)
,
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and (22) follows easily. ¤

8. A-solutions on a stagnation zone. The following theorem describes the
behavior of A-solutions on a stagnation zone.

Theorem 4. Let Ω ⊂ Rm be a p-dimensional locally bi-Lipschitz surface and
let (P ,Q; D) be a condenser on Ω. If f is a locally Lipschitz solution of (6)
with the boundary condition (14) on ∂D \ (P ∪Q), then for every pair of non-
overlapping (p − 1)-dimensional surfaces Σ1 and Σ2 lying in D and separable
P, Q, the following property holds

( I
capA (Σ1, Σ2; U)

)1/p

≤ sup{a ∈ Σ1, b ∈ Σ2 : |f(a)− f(b)|} . (24)

Here U is the subdomain of D contained between the cross-sections Σ1, Σ2 and

I =

∣∣∣∣∣∣

∫

Σ

〈A(y,∇Ωf),n〉Ω dHn−1
Σ

∣∣∣∣∣∣
is a constant independent of the cross-section Σ separating the boundary sets P
and Q in D.

Proof. First we observe that (13) implies∫

Σ1

〈A(y,∇Ωf),n〉Ω dHn−1
Σ =

∫

Σ2

〈A(y,∇Ωf),n〉Ω dHn−1
Σ .

Thus the quantity I is independent of the surface Σ separating P and Q in D.
We set

µ = sup{a ∈ Σ1, b ∈ Σ2 : |f(a)− f(b)|} .

Now we assume that

f(y)|Σ1 ≡ M , f(y)|Σ2 ≡ m and M −m = µ .

The function

f ∗(y) =
f(y)−m

µ

is admissible for calculation of the A-capacity of the condenser (Σ1, Σ2; U) and
is extremal. Hence

capA (Σ1, Σ2; U) =

∫

U

〈A(y,∇Ωf ∗),∇Ωf ∗〉Ω dHp
Ω

and by (4),

capA (Σ1, Σ2; U) =
1

µp

∫

U

〈A(y,∇Ωf),∇Ωf〉Ω dHp
Ω .

Thus we obtain

capA (Σ1, Σ2; U) =
I
µp

. (25)
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In the general case we find the level surfaces Σ′
1 ⊂ {y : f(y) = M} and

Σ′
2 ⊂ {y : f(y) = m}. Let U ′ be a subdomain of D lying between Σ′

1 and Σ′
2.

Then

capA (Σ′
1, Σ

′
2; U

′) ≤ capA (Σ1, Σ2; U)

and, by (25), for the condenser (Σ1, Σ2; U) we have

capA (Σ1, Σ2; U) ≥ I
|M −m|p ,

which implies (24). ¤

9. Corollaries. Now we shall formulate some corollaries. We consider a con-
denser (P ,Q; D). Let ρ : D → R be a locally Lipschitz function satisfying 9)
and (10).

Let Σ1, Σ2 be a pair of non-overlapping hyper-surfaces in D separating P
and Q such that under the motion from P to Q along the Jordan arc, we first
reach Σ1. We set

ρ1 = sup
y∈Σ1

ρ(y) , ρ2 = inf
y∈Σ2

ρ(y) .

Corollary 1. Let Ω ⊂ Rm be an n-dimensional locally bi-Lipschitz surface
and let (P ,Q; D) be a condenser on Ω. If f is a locally Lipschitz solution of
(6) with (14) on ∂D \ (P ∪ Q), then for a pair of non-overlapping (p − 1)-
dimensional surfaces Σ1 and Σ2 lying in D, separating P, Q and such that
ρ2 > ρ1, the following estimate holds:

(ρ2− ρ1)




I
ν2

∫

U

|∇Ωρ|pΩ dΩ




1/p

≤ sup{x ∈ Σ1, y ∈ Σ2 : |f(x)− f(y)|} . (26)

Let us consider another special case. Let ∆ be a domain in Rn−1 and let
D = ∆×R1 be a cylindrical domain in Rn. We assume that a special coordinate
system y = (y′, yn), y′ = (y1, . . . , yn−1) in Rn introduced so that the domain ∆
lies on the hyperplane of variables y′ = (y1, . . . , yn−1), yn = 0.

Denote by P and Q the sets of sequences {yk} of points yk = (y′k, yk,n) ∈ D
with coordinates y′k ∈ ∆ and yk,n tending to −∞ and +∞, respectively.

We set

ρ(y) =
2

π

(
arctan yn+1 +

π

2

)
.

This function satisfies (9), (10) and, by Corollary 1, we come to the following
statement.

Corollary 2. Let D ⊂ Rn be a cylindrical domain of the described form.
If f is a locally Lipschitz solution of (6) with the boundary conditions (14) on
∂D \ (P ∪ Q), then for a pair of non-overlapping (n− 1)-dimensional surfaces
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Σ1 and Σ2 lying in D, separating P, Q and such that ρ2 > ρ1, the following
estimate holds

(ρ2 − ρ1)

(
π I

/
2 ν2

∫

U

dx1 . . . dxn

(1 + x2
n)p/2

)1/p

≤ sup{a ∈ Σ1, b ∈ Σ2 : |f(a)− f(b)|} . (27)
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