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Abstract. In the space Rn+1, n-dimensional surfaces are considered having
the parametrizations which are functions of the Sobolev class W 2

p with p > n.
The first and the second fundamental tensor are defined. The Peterson–
Codazzi equations for such functions are understood in some generalized
sense. It is proved that if the first and the second fundamental tensor of
one surface are close to the first and, respectively, to the second fundamental
tensor of the other surface, then these surfaces will be close up to the motion
of the space Rn+1. A difference between the fundamental tensors and the
nearness of the surfaces are measured with the help of suitable W -norms. The
proofs are based on a generalization of Frobenius’ theorem about completely
integrable systems of the differential equations which was proved by Yu. E.
Borovskĭı. The integral representations of functions by differential operators
with complete integrability condition are used, which were elaborated by the
author in his other works.
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1. Introduction. In [1], [2] and [3], the problem of a continuous dependence
of a surface on its first and second quadratic forms is investigated in the three-
dimensional space. The interest of the authors of these papers in the founda-
tions of differential geometry of surfaces is motivated by questions arisen in the
elasticity theory.

In [1]–[3], consideration is given to surfaces of the class C3 and it is shown
that if in the topology of the space Cl, l ≥ 2, the fundamental quadratic forms
of surfaces are close, then these surfaces differ little from each other in the sense
of the topology of the space Cl+2.

In the present paper, it is claimed that the requirements for smoothness in
[1]–[3] can be essentially weakened by means of minimal assumptions under
which the classical analytic methods of the surface theory can be constructed
in differential geometry. We consider n-dimensional surfaces of the class W 2

p ,

p > n, in the space Rn+1. Thus we admit surfaces whose parametrization has
no third order derivatives.

In the context of the above-said, a natural question arises: how should we
understand the basic derivational equations of a surface which demand the
differentiation of expressions containing second derivatives? These equations
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(Peterson–Mainardi–Codazzi equations) have the form

∂P

∂x
− ∂Q

∂y
= R, (1.1)

where P and Q are the values containing second derivatives of the surface
parametrization. We can answer this question following the ideas stated in the
classical works of S. L. Sobolev (see, for instance, [4], [5]). The formulation
and proof of derivational equations for smooth surfaces of the class W 2

2 in the
space R3 were given for the first time by I. Ya. Bakel’man in [9]. It was shown
there how the basic notions of the surface theory in differential geometry can
be extended to the case we are interested in.

Peterson–Mainardi–Codazzi equations yield necessary conditions which must
be satisfied by the quadratic forms so that one of these forms be the first and the
other be the second quadratic form of a surface. Yu. E. Borovskĭı [8] established
the sufficiency of these conditions for n-dimensional surfaces of the class W 2

p ,

p > n, in Rn+1. The proof of the sufficiency rests on the generalization of
Frobenius’ theorem on completely integrable systems. This generalization was
obtained by Yu. E. Borovskĭı in his papers [6] and [7].

The main result of the present paper is contained in Theorems 1, 2 and 4.
Preliminarily, we give some corollaries of Borovskĭı’s theorem on Pfaff differen-
tial equations for systems of linear differential equations of the form

∂z

∂xi

= Ai(x)z, i = 1, 2, . . . , n, (1.2)

where Ai(x) are m×m matrices whose elements are functions of the class Lp,
p > n. It is assumed that system (1.2) is completely integrable. For functions
z : Ω → Rm, where Ω is a domain in Rn, we define differential operators

Liz =
∂z

∂xi

− Ai(x)z, i = 1, 2, . . . , n.

An integral representation of a vector function z is constructed through the set of
differential operators Liz. This is done by the method previously developed by
the author of the paper for the case where matrix functions Ai(x) are sufficiently
smooth (see [10], [11]). As will be shown in the sequel, this method with no
essential modifications extends also to the case where the elements of functions
Ai(x) are functions of the class Lp for appropriate values of p (see Subsection 3).

Using the integral representations obtained by us, we first estimate, in Sub-
section 4, the norm of a function z in the space W 1

p by means of Lp-norms
of functions Liz (Theorem 1). Further, in Subsection 5, using the result of
Theorem 1 we prove the stability of solutions of a linear, completely integrable
system of equations with respect to a change of the coefficients of this system
(Theorem 2).

The statement as to the stability in Bonnet’s theorem (Subsection 6, Theo-
rem 4) follows from Theorem 2.

In Subsection 6 we also give the formulation of Yu. E. Borovskĭı’s theorem
(Theorem 3), where Bonnet’s theorem on the recovery of a surface by its first
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and second quadratic forms extends to the case of surfaces from the class W 2
p

(see [9]).
Analytic techniques used in the present paper were developed by the author in

connection with the problem on the stability in Liouville’s theorem on conformal
mappings of a space. Some authors, in their comments on my works dealing
with this problem, note that the results obtained in them have a “qualitative”
character, since explicit values of constants in the found estimates cannot be
indicated. This observation is formally a correct one. Indeed, we can only prove
the existence and finiteness of constants occurring in the obtained estimates of
the stability. It should be said that this situation is typical of modern studies
in the area of mathematical analysis. Even in the cases where explicit values
of constants in the obtained estimates can be indicated, these values are either
fantastically large or, on the contrary, extremely small.1

V. I. Semenov indicated ([16]) explicit values for individual constants in the
estimates obtained by me and presented in [11].

Mention should also be made of yet another important fact. Let ε ≥ 0
characterize an extent of violation of the conditions of Liouville’s theorem for
some mapping. (For ε = 0, the mapping is the Möbius one). The estimates
established by me give an exact order, as ε → 0, of a deviation of the mapping
from the Möbius mapping (for details see the author’s monograph [11]).

2. Notation and some preliminary results. In the sequel, Ω is a domain,
i.e., a connected open set in the space Rn. It is assumed that n ≥ 2.

The symbol B(a, r) is an open ball in Rn, centered at a and having a radius
r > 0; S(a, r) denotes a sphere with center a and radius r.

The Banach space of real functions defined almost everywhere and p-th power
integrable, p ≥ 1, over the domain Ω is denoted by Lp(Ω) or, simply, by Lp.
The norm in Lp(Ω) is defined as usual:

‖f‖Lp =





∫

Ω

|f(x)|p dx





1
p

. (2.1)

The family of all functions defined on the set Ω and having there generalized
(in the Sobolev sense) derivatives of order l, which are p-th power integrable,
p ≥ 1, are denoted by the symbol W l

p(Ω). The set W l
p is a Banach space. The

norm in this space is defined by the equality

‖f‖W 1
p

= ‖Πf‖+





∫

Ω

[∑

|α|=l

l!

α!

(
∂αz

∂xα
(x)

)2] p
2
dx





1
p

, (2.2)

1 This is exemplified by the following fact: in the proof of one well-known theorem of
the theory of numbers, which was carried out by the methods of mathematical analysis, the
validity of the theorem statement was established only for integer numbers n > C, where
C = 3315

> 105000000.
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where Π is the projection mapping of the space W l
p(Ω) onto the set of all poly-

nomials of a degree not exceeding l − 1.
Cr(Ω) is the set of all functions defined in Ω, whose all partial derivatives of

order r are defined and continuous in the domain Ω. A function ϕ ∈ C∞0 (Ω) if
ϕ vanishes outside the compact set contained in Ω, and ϕ ∈ Cr(Ω) for any r.

We also consider vector and matrix functions defined in the domain Ω. Given
a function

z : x ∈ Ω 7→ (z1(x), z2(x), . . . , zm(x)),

we say that z ∈ Lp(Ω) (z ∈ W l
p(Ω), z ∈ Cr) if each of the real functions zi,

i = 1, 2, . . . ,m, belongs to the class Lp(Ω) (resp., to the class W l
p(Ω), Cr).

Analogously, a matrix function Z(x) = (zij(x))i,j=1,2,...,m defined in the domain
Ω belongs to the class Lp(Ω) (to the class W r

p (Ω), Cr(Ω)) of each of the real
functions zi,j, i, j = 1, 2, . . . , m belongs to the class Lp(Ω) (resp., to the class
W r

p (Ω), Cr(Ω)).
The norm in Lp(Ω) of vector functions z = (z1(x), z2(x), . . . , zm(x)) of the

class Lp(Ω) (of the class W l
p(Ω)) is defined as a sum of Lp-norms (resp., of

W l
p-norms) of the components of a vector function z.
For an arbitrary m×m matrix Z, the symbol |Z| denotes the operator norm

of Z, i.e.,

|Z| = sup
|ξ|≤1

|Zξ|.

We apply Sobolev’s embedding theorems for functions of classes W 1
p . These

theorems are true under the assumption that the domain boundary satisfies
certain additional conditions. We say that Ω is a domain of Sobolev type or,
briefly, a domain of the class S if for it there hold the conclusions Sobolev’s
embedding theorems for the space W 1

p . Any domain in Rn, whose boundary is

an (n− 1)-dimensional manifold of the class C1, is a domain of the class S.
We will consider the vector functions z : Ω → Rm of the class W 1

1 (Ω) which
satisfy a system of differential equations of the form

∂z

∂xi

= Ai(x)z(x), i = 1, 2, . . . , n, (2.3)

where Ai(x) is an m×m matrix for each x ∈ Ω. Note that elements of matrix
functions Ai(x) are measurable functions in the domain Ω.

Lemma 1. Let Ω be a bounded domain of the class S in the space Rn and a
function z : Ω → Rm of the class W 1

1 (Ω) be such that for each i = 1, 2, . . . , n
and for almost all x ∈ Ω the equality

∂z

∂xi

= Ai(x, z) (2.4)

is fulfilled, where vector functions Ai(x, z) are defined on the set Ω × Rm and
are such that

∀i ∈ {1, 2, . . . , n}Ai(x, 0) ∈ Lp(Ω), |Ai(x, z)− Ai(x, z̄)| ≤ M(x)|z − z̄|, (2.5)
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where the function M belongs to a class Lp(Ω), p > n. Then the vector function
z : Ω → Rm belongs to the class W 1

p . In particular, in that case the function
z(x) is continuous in the domain Ω.

Proof. Let us assume that the conditions of the lemma are fulfilled. According
to Sobolev’s embedding theorem, if z ∈ W 1

r , where r ≤ n, then z ∈ Ls for s
satisfying the condition 1

s
= 1

r
− 1

n
. In particular, if z ∈ W 1

1 , then z ∈ Ls, where
s = n

n−1
> 1. The proof of the lemma rests on two propositions.

Proposition A. Let z : Ω → Rm be a solution of equation (2.5). In that
case, if z ∈ Lq for some q ≥ n

n−1
, then z ∈ W 1

λ , where λ is such that 1
λ

= 1
p
+ 1

q
.

Condition (2.5) obviously implies that for any (x, z) and for each i=1, 2, . . . , n
the following inequality is valid:

|Ai(x, z)| ≤ |Ai(x, 0)|+ M(x)|z|. (2.6)

Applying estimate (2.6) we obtain




∫

Ω

|Ai(x, z(x))|λ dt




1/λ

≤



∫

Ω

|Ai(x, 0)|λ dx




1/λ

+




∫

Ω

|M(x)|λ|z(x)|λ dt




1/λ

. (2.7)

Here λ is defined from the condition 1
λ

= 1
p

+ 1
q
. It is obvious that 1 < λ < p.

The first integral on the right-hand side of inequality (2.7) is finite since λ < p
and the domain Ω is bounded. To the second integral on the right-hand side of
(2.7) we apply the Hölder inequality. Assuming σ = p+q

q
, τ = p+q

p
and λ = pq

p+q
,

we have 1
σ

+ 1
τ

= 1, λσ = p, λτ = q. Now,

∫

Ω

‖M(x)‖λ|z(x)|λ dx ≤




∫

Ω

‖M(x)‖λσ dx





1
σ





∫

Ω

|z(x)|λτ dt





1
τ

. (2.8)

Inequalities (2.7) and (2.8) imply
∥∥∥∥

∂z

∂xi

∥∥∥∥
Lλ

≤ ‖Ai(x, 0)‖λ + ‖M‖Lp‖z‖Lq .

Thus all partial derivatives of the vector function z(x) are λ-th power inte-
grable, λ = pq

p+q
. Proposition A is proved. ¤

Proposition B. If a solution z(x) of system (2.4) belongs to the class W 1
λ ,

λ ≤ n, then z ∈ Lq(Ω), where q is such that

1

q
=

1

λ
− 1

n
.
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If the right-hand side of the latter equality is equal to zero, then z ∈ Lq(Ω) for
any q > 1.

It is obvious that by virtue of Sobolev’s embedding theorem the next propo-
sition is also true.

Proposition C. If a solution z of system (2.4) belongs to a class W 1
r , where

r > n, then z ∈ W 1
p .

Indeed, if z ∈ W 1
r , where r > n, then by virtue of Sobolev’s embedding

theorem the function z(x) is bounded and continuous in the domain Ω. Hence
by virtue of conditions (2.5) it follows that the right-hand side of each equation
of system (2.4) belongs to the class Lp(Ω). Therefore we conclude that all
derivatives ∂z

∂xi
belong to the class Lp(Ω) and thus z ∈ W 1

p (Ω). Proposition C
is proved. ¤

We finish proving the lemma by means of some iteration procedure. By
condition, a solution z(x) of system (2.4) belongs to the class W 1

1 (Ω).
Assume that α = 1

n
− 1

p
. Obviously, 0 < α < 1

n
.

Let k be a smallest integer number such that 1
n

> 1 − kα. It is clear that
k ≥ 1. By the definition of k we have 1 − (k − 1)α ≥ 1

n
. Hence it follows that

1− kα ≥ 1
n
− α = 1

p
> 0.

For a nonnegative integer number ν we assume that rν = 1
1−να

. By the

condition of the lemma, z belongs to the class W 1
r0

.
Assume that for some ν < k it is proved that z ∈ W 1

rν
. If rν < n, then

Proposition B allows us to conclude that then z ∈ Lq, where

1

q
=

1

rν

− 1

n
.

Hence by virtue of Proposition A it follows that z ∈ W 1
r , where r is defined

from the condition
1

r
=

1

q
+

1

p
= 1− να +

1

p
− 1

n
= 1− (ν + 1)α.

We conclude by induction that if rν 6= n for all integer numbers ν < k, then
z ∈ W 1

rk
. Since rk > n, by virtue of Proposition C the function z ∈ W 1

p (Ω).
Let us consider the case where rν = n for some ν < k. It is obvious that this

may take place only for ν = k − 1.
Thus, assuming that z ∈ W 1

n is proved, by virtue of Sobolev’s embedding
theorem z ∈ Lq for any q ≥ 1. Proposition A allows us now to conclude that
z ∈ W 1

r for r = r(q) = pq
p+q

for any q ≥ 1.

Furthermore, we have lim
q→∞

r(q) = p > n. Thus there exists a value q such

that r(q) > n. Therefore z ∈ W 1
r for some r > n and thus, by Proposition C,

z ∈ W 1
p . The lemma is proved. ¤

Corollary. Assume that Ω is a domain of the class S and the matrix func-
tions Ai in system (2.3) belong to to the class Lp(Ω) for some p > n. In that
case, if a vector function z : Ω → Rm of the class W 1

1 satisfies system (2.3), then
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z belongs to the class W 1
p . In particular, the function z(x) is then continuous

in the domain Ω.

The proof is obvious.

3. Some information on completely integrable systems of equations.
Let a system of differential equations of the form

∂z

∂xi

= Ai(x)z(x), i = 1, 2, . . . , n, (3.1)

be given in a domain Ω of the space Rn. Here Ai(x) for each x ∈ Ω is an m×m
matrix whose elements are functions of a class Lp(Ω), where p > n. According
to Lemma 1, any solution of system (3.1) is a function of the class W 1

p (Ω) and
therefore is a bounded continuous function in the domain Ω.

Let us first recall some of Yu. Borovskĭı’s results from [6], [7], where a general
system of equations of the form

∂z

∂xi

= Ai(x, z) (3.2)

is considered, assuming that for each i = 1, 2, . . . , m the vector function Ai(x, z)
satisfies the conditions

Ai(x, 0) ∈ L2(Ω), ‖Ai(x, z)− Ai(x, z̄)‖ ≤ M(x)|z − z̄′|, (3.3)

where the function M belongs to a class Lp(Ω), p > n.
In [6], the author introduces the notion of a complete system of differential

equation of form (3.2). Let zλ, λ = 1, 2, . . . , m, be the coordinates of a vector
z in the space Rm. System (3.3) can be rewritten in the form

dzλ = ωλ =
n∑

i=1

Aλ
i [x, z(x)]dxi.

The notion of a generalized differential is introduced for external forms. A
form θ with degree 2 is a generalized differential of form ω with degree 1 if the
equality ∫

Ω

θ ∧ ϕ =

∫

Ω

ω ∧ dϕ

is fulfilled for any external form ϕ with degree n − 2 whose coefficients are
functions of the class C∞0 (Ω).

As shown in [6], in the particular case of systems of form (3.1) (we are in-
terested only in this case) the condition of system completeness can be repre-
sented in the following equivalent form. For vector functions Ai(x, u) we have
the equalities

∂Ai

∂xj

− ∂Aj

∂xi

= AiAj − AjAi. (3.4)
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The derivatives are meant in the sense of the theory of generalized functions.
Namely, equality (3.4) is equivalent to the following: for any function ϕ ∈ C∞(Ω)
with a compact support including in the domain Ω the equality

∫

Ω

{
∂ϕ

∂xi

Aj − ∂ϕ

∂xj

Ai

}
dx =

∫

Ω

ϕ[AiAj − AjAi] dx (3.5)

holds.
By the definition given in [6], system (3.1) is completely integrable if there

exists a homeomorphism κ of the space Rm into the space W 1
p,m of functions of

class W 1
p its value in Rm such that a) for each β ∈ Rm the function u(x, β) =

κ(β) is a solution of system (3.1) and b) for almost all x ∈ Ω the mapping
β 7→ u(x, β) ∈ Rm is a one-to-one mapping onto. It is shown in [6] that a system
of equations, which is complete in the sense of [5], is completely integrable.

Let reformulate the definition of complete integrability so as to make it sound
like a more customary assertion of the solvability of the Cauchy problem.

Let E ⊂ Ω be the set of measure zero, consisting of those points x for which
β 7→ u(x, β) is not a homeomorphism of the space Rn onto.

Let x0 /∈ E. Then for any vector ξ ∈ Rn there exists a unique solution u(x)
of system (1.1) such that u(x0) = ξ. Indeed, for this x0 β 7→ (u(x0, β) there is
a homeomorphism of the space Rn onto and therefore there exists β0 ∈ Rn such
that u(x0, β0) = ξ. It is obvious that u(x) = u(x, β0) is the desired solution of
system (1.1).

Thus we obtain that if the system of differential equations (1.1) is complete
in the sense of the definition given in [5], then there exists a set E ⊂ Ω such
that if x /∈ E, then for any vector ξ ∈ Rm there exists a unique solution z of
system (1.1) that satisfies the Cauchy condition z(x0) = ξ.

Let us show that the set E is empty. For this we need some simple formalism
that is well known in the regular case [15].

Along with equation (3.1) we will also consider the following system of equa-
tions with respect to matrix functions

∂X

∂xi

(x) = Ai(x)X(x), (3.6)

where X(x) is a m×m matrix.
System (3.6) is completely integrable in the sense that for any point x0 ∈ Ω\E

and for any m×m matrix H there exists a solution X of this system that satisfies
the Cauchy condition X(x0) = H.

Indeed, let the vector ai be the i-th column of the matrix H and x(i) be a
solution of system (3.1). Then the matrix function X(x), whose i-th column is
x(i) for each i = 1, 2, . . . , m, is a solution of system (3.6) for which the Cauchy
condition X(x0) = H is fulfilled.

Consider the system of equations

∂v

∂xi

(x) = −A∗
i (x)v(x), i = 1, 2, . . . , m. (3.7)
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Here ∗ denotes the operation of matrix transposition. The system of equations
(3.7) is called conjugate to system (3.1).

Let us show that system (3.7) also satisfies the condition of completeness.
Indeed, applying the operation of transposition to the left- and right-hand sides
of equality (3.5), we obtain that for any function ϕ ∈ C∞0 (Ω) there holds the
equality

∫

Ω

{
∂ϕ

∂xi

(Aj)
∗ − ∂ϕ

∂xj

(Ai)
∗
}

dx =

∫

Ω

ϕ[(AiAj)
∗ − (AjAi)

∗] dx. (3.8)

For any matrices P and Q we have (PQ)∗ = Q∗P ∗. Assume that Bi = −A∗
i .

After obvious transformations, equality (3.8) yields
∫

Ω

{
∂ϕ

∂xi

Bj − ∂ϕ

∂xj

Bi

}
dx =

∫

Ω

ϕ[BiBj −BjBi] dx

for any function ϕ ∈ C∞0 (Ω). Hence it follows that system (3.7) is complete in
the sense of Borovskĭı [6].

By what has been proved above there exists a set E ′ ⊂ Ω of measure zero
such that for any x0 ∈ Ω \ E ′ and any vector ξ ∈ Rm there exists a solution
v(x) of system (3.5) such that v(x0) = ξ.

Along with system (3.7) we will also consider the following system of equa-
tions with respect to matrix functions

∂Y

∂xi

(x) = −A∗
i (x)Y (x). (3.9)

We have Y (x0) = H. Replacing Ai by −A∗
i in the above reasoning, we obtain

that for every m×m matrix H and for any point x0 /∈ E ′ there exists a solution
of system (3.9) for the Cauchy condition Y (x0) = H is fulfilled.

Let Y (x) be a solution of the matrix system of equations (3.9) and

∂Y

∂xi

(x) = −A∗
i (x)Y (x)

for each i = 1, 2, . . . , n. Applying the operation of matrix transposition to both
sides of this equality, we obtain

∂Y ∗

∂xi

(x) = −[Y (x)]∗Ai(x) (3.10)

for each i = 1, 2, . . . , n.
If the matrix function X is a solution of equation (3.6) and Y is a solution of

equation (3.9), then the matrix Y ∗X in the domain Ω is constant. Indeed, by
equality (3.10) we obtain

∂

∂xi

(Y ∗X) =
∂Y ∗

∂xi

X + Y ∗∂X

∂xi

= −Y ∗AiX + Y ∗AiX = 0.

Thus the derivatives of the matrix function Z = Y ∗X in the domain Ω are
constant, whence it follows this function is constant in the domain Ω.
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Let us choose arbitrarily a point x0 ∈ Ω not belonging to anyone of the sets
E and E ′. Let the matrix functions P (x) and Q(x) be solutions of systems
(3.6) and (3.9) with Cauchy conditions P (x0) = I and Q(x0) = I, respectively.
(Here I denotes the unit m×m matrix.) Such solutions exist since x0 /∈ E∪E ′.
Then [Q(x)]∗P (x) = I for x = x0 and therefore [Q(x)]∗P (x) = I for all x ∈ Ω.

The matrix [Q(x)]∗ is thus inverse to P (x) at each point x ∈ Ω.
We put

Θ(x, y) = P (x)[Q(y)]∗, Θ̃(x, y) = Q(x)[P (y)]∗. (3.11)

For any vectors ξ, η ∈ Rm the vector function z(x) = Θ(x, y)ξ is a solution of

system (3.1), while v(x) = Θ̃(x, y)η is a solution of system (3.9). Also, z(y) =
P (y)[Q(y)]∗ξ = ξ and, exactly in the same way, v(y) = Q(y)[P (y)]∗ξ = η, i.e.,
the functions z(x) and v(x) satisfy the Cauchy conditions z(y) = ξ, v(y) = η.

The point y ∈ Ω has been chosen arbitrarily and therefore we obtain that for
any point y ∈ Ω and for any vector ξ ∈ Rm there exists a solution of system
(3.1) such that z(y) = ξ.

Simultaneously, we obtain that for any η ∈ Rm system (3.6) has a solution
v(x) for which v(y) = η. This means that the sets E and E ′, consisting of those
points y ∈ Ω for which the Cauchy problems z(y) = ξ and v(x) = η are not
always solvable, are empty.

The matrix function Θ(x, y) = P (x)[Q(y)]∗ = P (x)[P (y)]−1 is called the fun-

damental matrix of system (3.1). Analogously, Θ̃(x, y) is called the fundamental
matrix of system (3.6).

Further, we have

Θ̃(x, y) = [Θ(y, x)]∗.

Let Li be the differential operator defined by the equality (Liz)(x) = ∂z
∂xi

(x)−
Ai(x)z(x), where Ai(x) are the matrices contained in system (3.1), while P (x)
and Q(x) are the matrix function define above. Then we have the equality

Li = P ◦ ∂

∂xi

◦Q∗ (3.12)

or, in the explicit form,

Liz(x) = P (x)
∂

∂xi

{
[Q(x)]∗z(x)

}
. (3.13)

Let z(x) and v(x) be solutions of systems (3.1) and (3.7), respectively, in the
domain Ω. Then the scalar product 〈z(x), v(x)〉 is a constant function in the
domain Ω. Indeed, if we choose arbitrarily a point y ∈ Ω and put z(y) = ξ,
v(y) = η, then we have

〈z(x), v(x)〉 = 〈Θ(x, y)ξ, Θ̃(x, y)η〉 = 〈Θ(x, y)ξ, [Θ(y, x)]∗η〉
= 〈Θ(y, x)Θ(x, y)ξ, η〉 = 〈ξ, η〉.
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4. Estimates for operators under the condition of complete integra-
bility. A domain Ω in the space Rn is called star-shaped with respect to a ball
B(a, r) ⊂ Ω if for any point x ∈ Ω and for any point y ∈ B(a, r) the rectilinear
segment connecting the points x and y (i.e., the set of all points u = λx+(1−λ)y,
where 0 ≤ λ ≤ 1) is contained in the domain Ω. A domain which is star-shaped
with respect to a ball belongs to the class S.

The main results are further formulated for the case of star-shaped domains
with respect to a ball. Transition to a more general case is performed by purely
technical means as was done, for instance, in the monograph [9].

Assume that we are given the linear differential operators

Li =
∂

∂xi

− Ai(x), i = 1, 3, . . . , n, (4.1)

defined in the domain Ω and being such that the system of equations

Liz = 0, i = 1, 2, . . . , n, (4.2)

satisfies all conditions discussed in Subsection 3.
Assume that Ω is a star-shaped domain of the space Rn with respect to a ball

B(a, r). Then any function z ∈ W 1
p , p ≥ 1, admits an integral representation of

the form

z(x) =

∫

Ω

z(y)ϕ(y) dy +

∫

Ω

n∑

k=1

K(x, y)(xk − yk)
∂z

∂xi

(y)dy, (4.3)

where ϕ is a nonnegative function of the class C∞ whose carrier is contained in
the ball B(a, r). Assuming z ≡ 1 in equality (4.3), we obtain that the integral
of the function ϕ with respect to the domain Ω is equal to one. The function
K(x, y) admits a representation K(x, y) = λ(x, x− y)− µ(x, y), where

λ(x, z) =

∞∫

0

ϕ(x− zt)tn−1 dt, µ(x, y) =

1∫

0

ϕ[x + (y − x)t]tn−1 dt. (4.4)

The function λ(x, z) is of positively homogeneous degree −n and belongs to
the class C∞ on the set Rn× (Rn \ {0}), µ(x, y) is a function of the class C∞ on
the set Rn×Rn. Applying equality (3.13), from (4.4) we can obtain an integral
representation of the function z through the values of differential operators Li,
i = 1, 2, . . . , n, satisfying the condition of complete integrability.

Let the matrix functions P (x) and Q(x) be defined as indicated in Subsection
3, i.e., P (x) is a solution of equation (3.6), Q(x) is a solution of equation (3.9),
where Q(y) = I for some y ∈ ω and P (y) = I. Replacing in (4.4) the function z
by [Q(x)]∗z(x) and left-multiplying both parts of the resulting equality by the
matrix P (x), after obvious transformations and by means of equalities (3.13)
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and (3.11) we come to the integral representation

z(x) =

∫

Ω

Θ(x, y)z(y)ϕ(y) dy

+

∫

Ω

Θ(x, y)
n∑

k=1

K(x, y)(xk − yk)Lkz(y) dy. (4.5)

Assume that

(Πz)(x) =

∫

Ω

Θ(x, y)z(y)ϕ(y) dy, (4.6)

where ϕ is the function contained in equalities (4.3) and (4.5).
Substituting an arbitrary solution z(x) of system (4.2) into equality (4.5), we

see that the equality z(x) ≡ (Πz)(x) is fulfilled for this z(x).
For an arbitrary function z ∈ W 1

p (Ω) assume that

‖Lz‖Lp(Ω) =
n∑

i=1

‖Liz‖Lp(Ω).

In the sequel we will need the following proposition whose proof can be found,
for instance, in the monograph [14].

Theorem A (on integrals with a weak singularity). Let Ω be the bounded
domain in the space Rn, ω(x, z), the function of variables x ∈ Ω and z ∈
(Rn \ 0), be homogeneous of zero degree with respect to the variable z. Assume
that the function ω has all partial derivatives of order not higher than l on the
set Ω × (Rn \ 0), these derivatives being bounded on the set Ω × S(0, 1). Let a
number p > 1 and a function f ∈ Lp(Ω) be given. Assume that

Hf(x) =

∫

Ω

ω(x, x− y)

|x− y|n−l
dy. (4.7)

The value Hf(x) is well-defined and finite for almost all x ∈ Ω and the thus
defined function Hf(x) belongs to the class W l

p(Ω). Then there exists a number
C < ∞ not depending on a choice of f and being such that the inequality

‖Hf‖W l
p(Ω) ≤ C‖f‖Lp(Ω) (4.8)

is fulfilled.

Theorem 1. Let Li, i = 1, 2, . . . , n, be the set of differential operators of
form (4.1) defined in the domain Ω and being such that the matrix functions
Ai belong to the class Lp(Ω) and the system of differential equations (4.2) is
completely integrable. Then there exists a constant < ∞ such that for any
function z : Ω → Rm of the class W 1

p (Ω) the inequality

‖z − Πz‖W 1
p (Ω) ≤ C‖Lz‖Lp(Ω) (4.9)

is fulfilled, where Π is the integral operator defined by equality (4.6).
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Proof. Let z : Ω → Rm be an arbitrary function of the class W 1
p (Ω), where

as usual it is assumed that p > n. From the integral representation (4.5) we
conclude that

z(x)− (Πz)(x) =

∫

Ω

Θ(x, y)
n∑

k=1

K(x, y)(xk − yk)Lkz(y) dy. (4.10)

The matrix Θ(x, y) is representable in the form Θ(x, y) = P (x)[P (y)]−1, while
the matrix function P (x) is a solution of system (3.6) and [P (x)]−1 = [Q(x)]∗,
where Q(x) is a solution of system (3.9). Also, P (y) = Q(y) = I for some
point y ∈ Ω. In that case, the point y can be chosen arbitrarily. Assume that
P (x0) = Q(x0) = I. Put Liu = vi. The matrix functions P and Q belong to
the class W 1

p (Ω) and therefore are bounded and continuous on the set Ω. Let

M < ∞ be such that the inequalities |P (x)| ≤ M , |[P (x)]−1| ≤ M are fulfilled
for all x ∈ Ω.

Let us consider individual summands on the right-hand side of equality (4.10).
Assume that

Rkvi(x) = P (x)

∫

Ω

(xk − yk)K(x, y)[P (y)]−1vi(y) dy.

We have Rkvi(x) = Skvi(x)− Tkvi(x), where

Skvi(x) =

∫

Ω

(xk − yk)λ(x, x− y)vi(y) dy, Tkvi(x) =

∫

Ω

(xk − yk)µ(x, y)vi(y) dy,

while the functions λ(x, z) and µ(x, y) are defined by equalities (4.4). As-
suming that in the theorem on integrals with a weak singularity ω(x, z) =
zk|z|n−1λ(x, z), we obtain ‖Skvi‖W 1

p (Ω) ≤ C‖vi‖Lp(Ω) ≤ MC‖ui‖Lp(Ω).

The function µ(x, y) has continuous derivatives of any order with respect to
each of the variables x and y everywhere in Rn. In the domain Ω these deriva-
tives are bounded. Hence it follows that the functions Tkvi(x) have continuous
derivatives, which can be found if in the formula representing Tkvi(x) we re-
place the integrand by the corresponding derivative. Now it is not difficult to
conclude that derivatives of the function Tkvi(x) on the set Ω are bounded and
continuous and therefore Tkvi(x) belongs to the class W 1

p (Ω). From the integral
formula by means of which derivatives of the function Tkvi(x) are expressed it
immediately follows that ‖Tkvi‖W 1

p (Ω) ≤ C‖vi‖Lp(Ω) ≤ MC‖ui‖Lp(Ω).

Thus the functions Rkvi = Skvi − Tkvi belong to the class W 1
p (Ω) and the

estimate

‖Rkvi‖W 1
p (Ω) ≤ C‖ui‖Lp(Ω)

is valid.
Let u : Ω → Rm be a vector function of the class W 1

p (Ω), p > n, and P (x) be

the matrix function defined above. Then u ∈ W 1
1 (Ω) and the equality

∂(Pu)

∂xi

=
∂P

∂xi

u + P
∂u

∂xi
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is fulfilled for each i = 1, 2, . . . , n. The validity of this statement can be easily
established if we approximate the functions P (x) and u(x) by Sobolev averaged
functions. Then we obtain∥∥∥∥

∂Pu

∂xi

∥∥∥∥
Lp(Ω)

≤ sup
x∈Ω

|u(x)|
∥∥∥∥

∂P

∂xi

∥∥∥∥
Lp(Ω)

+ sup
x∈Ω

|P (x)|
∥∥∥∥

∂u

∂xi

∥∥∥∥
Lp(Ω)

. (4.11)

Since p > n, the value sup
x∈Ω

|u(x)| is finite. Also, sup
x∈Ω

|u(x)| ≤ C‖u‖W 1
p (Ω).

Let us find a constant M < ∞ such that maxx∈Ω |P (x)| ≤ M and∥∥∥∥
∂P

∂xi

∥∥∥∥
Lp(Ω)

≤ M

for each i = 1, 2, . . . , n. Then from inequality (4.11) it follows that

‖Pu‖W 1
p (Ω) ≤ C‖u‖W 1

p (Ω),

where C < ∞.
The obtained estimates obviously imply the assertion of the theorem. ¤

5. Stability of solutions of completely integrable systems. Let Ω be a
bounded domain in the space Rn, star-shaped with respect to the ball B(x0, r) ⊂
Ω. It is assumed that in the domain Ω we have the completely integrable systems
of differential equations

∂z

∂xi

(x)− Ai(x)z(x) = 0, (5.1)

∂z

∂xi

(x)−Bi(x)z(x) = 0, (5.2)

where Ai(x) and Bi(x) are m×m matrices, i = 1, 2, . . . , n. Also, it is assumed
that the matrix functions Ai and Bi belong to the class Lp(Ω) for some p > n.
We put

δp(A,B) =

{
n∑

i=1

∥∥∥|Ai −Bi|
∥∥∥

p

Lp

}1/p

.

Theorem 2. Let z : Ω → Rm and z : Ω → Rm be solutions of systems (5.1)
and (5.2), respectively. Assume that these systems satisfy all the conditions
given above and the equality z(x0) = ξ, z(x0) = ξ ξ, ξ ∈ Rm, is fulfilled. Then
there exist constants ε0 > 0, C < ∞ and M < ∞ such that if δp(A,B) < ε0,
then the inequality

‖z − z‖W 1
p (Ω) ≤ Cδp(A,B)|ξ|+ M |ξ − ξ|

is fulfilled.

Proof. Let z0 be a solution of system (5.1) that satisfies the Cauchy condition
z0(x0) = ξ. We assume that ζ = z − z0. From equality (5.2) we have

∂z

∂xi

(x)− Ai(x)z(x) = −[Ai(x)−Bi(x)]z, i = 1, 2, . . . , n. (5.3)
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Replacing in equality (5.1) z by z0 and subtracting termwise the resulting equal-
ity from (5.3), we obtain

∂(z − z0)

∂xi

(x)− Ai(x)[z(x)− z0(x)] = −[Ai(x)−Bi(x)]z. (5.4)

Hence it follows that
∂ζ

∂xi

(x)− Ai(x)ζ(x) = −[Ai(x)−Bi(x)]z0(x)− [Ai(x)−Bi(x)]ζ(x). (5.5)

Let Θ(x, y) be the fundamental matrix of system (5.1). The matrix function
P (x) = Θ(x, x0) belongs to the class W 1

p and therefore by virtue of Sobolev’s
embedding theorem

‖P‖L∞(Ω) = sup
x∈Ω

|P (x)| = K < ∞.

Thus we have z0(x) = P (x)ξ. Hence we conclude that |z0(x)| ≤ K|ξ| for all
x ∈ Ω.

By virtue of Lemma 1, the function ζ belongs to the class W 1
p (Ω). By the

embedding theorem this implies that ‖ζ‖L∞(Ω) ≤ C‖ζ‖W 1
p (Ω). By virtue of

Theorem 1, from equalities (5.5) it follows that

‖ζ‖W 1
p (Ω) ≤ Cδp(A,B)|z|L∞(Ω) + Cδp(A,B)|ζ|L∞(Ω).

Hence we obtain

‖ζ‖W 1
p (Ω) ≤ C1δp(A,B)|ξ|+ C2δp(A,B)|ζ|W 1

p (Ω),

where C1 and C2 are constants.
Let us define ε0 > 0 by the condition C2ε0 ≤ 1

2
. Then for δp(A,B) ≤ ε0 we

have the inequality
‖ζ‖W 1

p (Ω) ≤ Cδp(A,B)|ξ|, (5.6)

where C = 2C1.
We have z(x) = P (x)ξ, z0(x) = P (x)ξ, whence

‖z − z0‖W 1
p (Ω) ≤ ‖P‖W 1

p (Ω)|ξ − ξ| = M |ξ − ξ|. (5.7)

Inequalities (5.6) and (5.7) obviously imply

‖z − z‖W 1
p (Ω) ≤ Cδp(A,B)|ξ|+ M |ξ − ξ|.

The theorem is proved. ¤

6. Stability in Bonnet’s theorem of the surface theory. We will use the
terms and notation from differential geometry without specifying them specially.

Let Ω be a bounded domain of the class S in the space Rn, and r : Ω → Rn+1

be a vector function of the class W 2
p (Ω), p > n. Assume ri = ∂r

∂xi . The functions

ri, i = 1, 2, . . . , n, belong to the class W 1
p . They are continuous and bounded

in the domain Ω since p > n.
We say that the mapping r defines the hypersurface V of the class W 2

p in the

space Rn+1 if the vectors r1(x), r2(x), . . . , rn(x) are linearly independent for any
x ∈ Ω.
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Further, 〈·, ·〉 denotes a scalar product in Rn+1.
For any point x ∈ Ω, let n(x) be the normal unit vector to the n-dimensional

surface V in the point r(x), i.e., the vector orthogonal to n-dimensional plane
“stretched” onto the vectors ri(x), i=1, 2, . . . , n, and being such that |n(x)|=1.

The vectors r1(x), . . . , rn(x),n(x) are linearly independent at each point x ∈
Ω. The direction of the normal is defined under the assumption that the ori-
entation of the frame {r1(x), . . . , rn(x),n(x)} is the same as that of the base
frame of the space Rn+1. A collection of vectors r1(x), r2(x), . . . , rn(x),n(x) is
called a moving frame of the parametrization r of the surface V at a point x.

Let R(x) be an (n + 1) × (n + 1)-matrix such that for 1 ≤ i ≤ n the i-th
row of this matrix is the vector ri, while the row with number n + 1 is the
vector n. We say that R(x) is a matrix representation of a moving frame of the
parametrization r of the hypersurface V at a point x.

Note that det R(x) > 0 for any x ∈ Ω.
The metric tensor gij = 〈ri, rj〉 of the hypersurface V is defined in a usual

manner. We also call it it the first fundamental tensor of the hypersurface V .
The components of this tensor gij are functions of the class W 1

p . These functions
are continuous since, by assumption, p > n.

Let G(x) be the matrix (gij)i,j=1,2,...,n whose elements are the components
of the metric tensor of the surface, g(x) = det G(x) > 0. The function g(x) is
continuous. Hence we conclude that for any domain Σ whose closure is compact
and contained in Ω there exists a constant γ

Σ
such that g(x) ≥ γ

Σ
for all x ∈ Σ.

Let gij(x) be the contravariant form of the metric tensor of the hypersurface
V . For all x ∈ Ω we have giα(x)gjα(x) = δi

j, where δi
j is the Kronecker symbol.

The matrix formed by the components of the tensor gij(x) is inverse to the
matrix G(x). Since the function g(x) is continuous and, moreover, g(x) > 0 for
all x ∈ Ω, the functions gij belong to the class W 1

p,loc(Ω).

The Christoffel symbols Γi
jk of the hypersurface V are defined as it is done

for surfaces satisfying the standard requirements of differential geometry for
regularity. Namely,

Γi
jk =

1

2
giα

{
∂gjα

∂xk
+

∂gkα

∂xj
− ∂gjk

∂xα

}
,

where the derivatives are understood in the Sobolev sense. As follows from the
previous assumptions, the functions Γi

jk belong to the class Lp,loc(Ω).

We further assume bij =
〈

∂2r
∂xi∂xj , n

〉
. The tensor bij thus defined is called the

second fundamental tensor of the hypersurface V . The equalities

∂ri

∂xj
= Γα

ijrα + bijn,
∂n

∂xi
= −bα

i rα (6.1)

are valid. We call them derivational formulas for the hypersurface V .
Using the notation introduced above, equations (6.1) can be rewritten as

∂R

∂xj

(x) = Aj(x)R(x), (6.2)
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where Aj(x) an n + 1)× (n + 1)-matrix,

Aj(x) =




Γ1
1j . . . Γn

1j b1j
...

. . .
...

...
Γ1

nj . . . Γn
nj bnj

−bi
j . . . −bn

j 0


 . (6.3)

Lemma 2. Let a mapping r : Ω → Rn+1 define the hypersurface V of the
class W 2

p in the space Rn+1. Assume that the matrices Ai(x), i = 1, 2, . . . , n,
and Rr(x) are defined by r as described above. Then for any i, j = 1, 2, . . . , n,
the relation (Peterson–Codazzi identity)

∂Ai

∂xj
(x)− ∂Aj

∂xi
(x) = Ai(x)Aj(x)− Aj(x)Ai(x) (6.4)

is fulfilled, where the derivatives are understood in the sense of the theory of
generalized functions. This means that the equality∫

Ω×Rn

{
∂ϕ

∂xi
Aj − ∂ϕ

∂xj
Ai

}
dx =

∫

Ω×Rn

ϕ[AiAj − AjAi] dx (6.5)

holds for any function ϕ ∈ C∞0 (Ω).

Remark. For the case n = 2 the validity of this assertion was established by
I. Ya. Bakel’man in [9], where equality (6.4) is treated in a manner different
from that indicated in the lemma formulation. However the treatment in [9] is
equivalent to the one discussed here, but the paper [9] deals with a more general
case, namely, it is assumed that the function r belongs to the class W 1

2 and its
derivatives ri = ∂r

∂xi
, i = 1, 2, are continuous and linearly independent at each

point x ∈ Ω.

Proof of Lemma 2. In the case, where r satisfies the standard requirements of
differential geometry for regularity, equalities (6.4) are the well-known Peterson–
Codazzi equations. The form in which these equations are written here can
be found, for instance, in [12], where surfaces are considered in the three-
dimensional Euclidean space. For the classical version of Peterson–Codazzi
equations see, for instance, the monograph [13]. Here we give the proof of
relations (6.4) for the regular case.

Let r : Ω → Rn+1 be a surface of the class C∞. We have the equalities

∂R

∂xj
(x) = Aj(x)R(x),

∂R

∂xi

(x) = Ai(x)R(x).

Differentiating the first of these equalities termwise with respect to xi and the
second with respect to xj, and subtracting the resulting equalities we see that
the relation{

∂Ai

∂xj
(x)− ∂Aj

∂xi
(x)− [Ai(x)Aj(x)− Aj(x)Ai(x)]

}
R(x) = 0
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is valid for all x ∈ Ω.
Since det R(x) 6= 0 for all x ∈ Ω, it follows that

∂Ai

∂xj
(x)− ∂Aj

∂xi
(x)− [Ai(x)Aj(x)− Aj(x)Ai(x)] = 0 (6.6)

for all x ∈ Ω. The general case can be reduced to the case considered here if
the vector function r is approximated by the corresponding Sobolev averaged
function rh and if we pass to the limit as h → 0. We do not give the relevant
details because of obviousness (see also [8]). ¤

The next assertion is valid. We omit its proof.

Theorem 3 (Yu. E. Borovskĭı [9]). Let Ω be a simply connected domain in the
space Rn; gij and bij be the tensor fields defined in the domain Ω; gij ∈ W 1

p (Ω),

for all x ∈ Ω gij(x)ξiξj is positively defined, bij ∈ Lp(Ω), where p > n. Let the
matrix functions Ai(x), i = 1, 2, . . . , n, be defined by the functions gij and bij
by equalities (6.3). In that case, if equalities (6.4) are fulfilled for the matrix
functions Ai(x), then there exists a hypersurface r : Ω → Rn+1 of the class
W 2

p (Ω), for which gij is the first and bij is the second fundamental tensor.

This assertion is a simple corollary of Borovskĭı’s theorem on the solvability
of linear, completely integrable equations (see [6], [7]). Conditions (6.4) imply
that the system of equations

∂z

∂xi

(x) = Ai(x)z(x), i = 1, 2, . . . , n,

is completely integrable. Along with system, we define a completely integrable
system of equations with respect to matrix functions. By choosing an appro-
priate solution of the matrix system it is not difficult to show that it defines
some moving frame of the surface sought for. This second half of the proof is
carried out by the arguments repeating word for word the arguments usually
given manuals on differential geometry. The vector function r is recovered by
the moving frame of integration.

Let the hypersurfaces r : Ω → Rn+1 and r : Ω → Rn+1 of a class W 2
p , p > n, be

given in the space Rn+1, gij; gij be the metric functions of these hypersurfaces.
Assume that there exists a constant γ > 0 such that the discriminant of each
of these tensors is bounded from below by the number γ2 at each point of the
domain Ω. Let bij and bij be the second fundamental tensors of the considered
hypersurfaces. We assume

∆p(r, r) =
∑

1≤i,j≤n

‖gij − gij‖W 1
p (Ω) +

∑
1≤i,j≤n

‖bij − bij‖Lp(Ω).

The value characterizes an extent of the closeness of the fundamental tensors
of the surfaces. Let Ai(x) and Ai(x), i = 1, 2, . . . , n, be the matrix functions
defined for these surfaces by equalities (6.3). The following estimate is valid:

δp(A, A) ≤ C∆p(r, r), (6.7)

where C is a constant,
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We will further need the following elementary proposition.

Lemma 3. Let {u1,u2, . . . ,un}, {v1,v2, . . . ,vn} be two arbitrary frames of
the space Rn. Assume that gij = 〈ui,uj〉 and hij = 〈vi,vj〉. Let α > 0 and
β > 0 be such that

αgijξ
iξj ≤ hijξ

iξj ≤ βgijξ
iξj

for any ξ = (ξ1, ξ2, . . . , ξn) ∈ Rn. Then there exists an orthogonal transforma-
tion Φ of the space Rn such that the inequality

|Φ(ui)− vi| <
(√

β

α
− 1

)
|ui|

is fulfilled for any i = 1, 2, . . . , n.

Proof. Let F be a linear mapping of the space Rn onto such that F (ui) = vi

for each i = 1, 2, . . . , n. Let x be a vector in Rn, and ξi be its coordinates
with respect to the basis {u1,u2, . . . ,un}. We have x = uiξ

i, F [x] = viξ
i,

|x|2 = gijξ
iξj, |F (x)| = hijξ

iξj.
Hence it follows that the inequalities

√
α ≤ |F (x)|

|x| ≤
√

β (6.8)

hold for any nonzero vector x.
Let S be the sphere of unit radius with center at point 0 and E = F [S]. The set

E is an ellipsoid. By virtue of inequality (6.8), the inequalities
√

α ≤ |y| ≤ √
β

are fulfilled for any point y ∈ E.
Let {w1,w2, . . . ,wn} be an orthonormal frame in Rn chosen so that in the

system of coordinates with this frame the ellipsoid E is given by the equation

x2
1

r2
1

+
x2

2

r2
2

+ · · ·+ x2
n

r2
n

= 1.

Here r1, r2, . . . , rn are the semi-axes of the ellipsoid E. We have
√

α ≤ ri ≤
√

β
for each i = 1, 2, . . . , n.

Let H be the linear transformation which in the system of coordinates with

with basis w = {w1,w2, . . . ,wn} is given by the formula H(x) =
n∑

i=1

xi

ri
ci. Here

x1, x2, . . . , xn are the coordinates of the vector x with respect to the basis w,
while yi = xi

ri
are the coordinates with to the same basis of the vector y = H(x).

If x ∈ E, then H(x) belongs to the unit sphere S.
The mapping Φ = H ◦ F transforms the sphere S into and therefore is an

orthogonal transformation. For any vector x =
n∑

i=1

xiwi we have the equality

|H(x)− x| =
√√√√

n∑
i=1

(
1

ri

− 1

)2

x2
i ≤

(
1√
α
− 1√

β

)
|x|.
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Assuming here that x = F [ui] and taking into account that |vi| ≤
√

β|ui|, we
obtain the desired inequality. ¤

Theorem 4. Let Ω ⊂ Rn be a star-shaped domain in the space Rn with respect
to a ball B(a, r), and the functions r : Ω → Rn+1 and r : Ω → Rn+1 give some
hypersurfaces of the class W 2

p , p > n. Let g(x) and g(x) be the discriminants
of the first fundamental tensors gij and gij of these surfaces. Assume that there
exists a constant δ > 0 such that g(x) > δ and g(x) > δ for all x ∈ Ω. Then
there are constants ε0 > 0 and C < ∞ such that if ∆p(r, r) < ε, then there
exists a motion Φ of the space Rn+1 such that

‖Φ ◦ r− r‖W 2
p (Ω) < C∆p(r, r).

Proof. For the sake of brevity, we introduce the notation ρ = ∆p(r, r). Then
‖gij − gij‖W 1

p
≤ ρ. By virtue of the embedding theorem, hence it follows that

|gij(a)− gij(a)| < Cρ, where a is the center of the ball B(a, r), with respect to
which the domain Ω is star-shaped.

Let τ be an arbitrary motion of the space Rn that makes the point r(a) coin-
cide with the point r(a) and the vector n(a) with the vector n(a). To simplify
the notation, we use the same symbol r(a) to denote the surface obtained as a
result of displacement of the surface r(a). Note that the vectors vi = ri(a) lie
in the same n-dimensional plane as the vectors ui = ri(a). We have

|gij(a)ξiξj − gij(a)ξiξj| ≤ Cρ

(
n∑

i=1

|ξi|
)2

≤ Cρ
√

n|x|2 ≤ C1ρgij(a)ξiξj.

Assume that ε0 = 1
2C1

. Then for ρ < ε0 we have the inequalities

(1− C1ρ)gij(a)ξiξj ≤ gij(a)ξiξj ≤ (1 + C1ρ)gij(a)ξiξj.

By virtue of Lemma 3 we now see that by rotating the surface V about the
normal at the point r(a) we can succeed in fulfilling the inequalities

|ri(a)− ri(a)| < η,

where η =
(√

1+C1ρ
1−C1ρ

− 1
)

max
1≤i≤n

|ri(a)|. Taking into account that C1ρ < 1
2
, after

simple calculations we obtain η < C1ρ.
From what has been proved above it follows that there exists a motion Φ of

the space Rn+1 such that for the vector function z = Φ[r] the conditions

z(a) = r(a),

|zi(a)− ri(a)| < C1ρ

are fulfilled and the normals of the surfaces z and r coincide at the point z(a) =
r(a). The first fundamental tensor of the surface z is gij, while its second

fundamental tensor is bij.
Let U(x) be the matrix presentation of the moving frame of the surface z =

Φ(r). Theorem 2 allows us to estimate the difference R(x)− U(x).
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Theorem 2 is a certain assertion about vector-functions, while Peterson–
Codazzi equations concern matrix functions. To consider the case of vector
functions we should proceed as follows. Let zi be the i-th column of the matrix
R(x) and ui be the i-th column of the matrix U(x). Then by virtue of the
Peterson–Codazzi theorem the following equalities are valid:

∂zi

∂xj

(x) = Aj(x)z(x),

∂ui

∂xj

(x) = Aj(x)z(x), j = 1, 2, . . . , n.

We have |R(a)− U(a)| ≤ C2ρ and therefore |zi(a)− ui(a)| < C2ρ. By virtue of
Theorem 2 hence it follows that there exists ε0 > 0 such that if δp(Ai, Ai) < ε0,
then the inequality |zi(a)− ui(a)|W 1

p (Ω) ≤ Cρ is fulfilled for any i = 1, 2, . . . , n.

This, in view of inequality (6.7) means that there is ε1 > 0 such that for
∆p(r, r) < ε1 the estimate (6.7) holds for any i = 1, 2, . . . , n. Thus we conclude
that under this condition we have ‖R−U‖W 1

p
< Cρ, which in particular implies

that the inequalities
‖zi − ui‖W 1

p
< Cρ = ∆p(r, r)

are fulfilled for the derivatives of the vector functions r and r. From these
inequalities we obtain the desired estimate ‖Φ ◦ r− r‖W 2

p (Ω) ≤ C∆p(r, r).
The theorem is proved. ¤
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6. Ju. E. Borovskĭı, Completely integrable Pfaffian systems. (Russian) Izv. Vysš. Učebn.
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