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ON SOME PROPERTIES OF SOLUTIONS OF
POLYHARMONIC EQUATION IN POLYHEDRAL ANGLES

ILIA TAVKHELIDZE

Abstract. For a higher order differential equation with the polyharmonic
operator, the Dirichlet and Riquier boundary value problems are studied in
some polyhedral angles. Uniqueness theorems for solutions with a bounded
“energy integral” of the corresponding BVPs are proved. Recurrent formu-
las are constructed for representation of fundamental solutions and Green’s
functions. The asymptotic behavior of solutions at infinity is studied.
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1. Introduction

The Dirichlet problem in a bounded domain for a polyharmonic equation
was studied by S. L. Sobolev [17]–[19]. Dirichlet, Neumann, Riquier and some
other BVPs were investigated by I.Vekua [23]–[24] in bounded and unbounded
domains for harmonic, biharmonic and metaharmonic functions. At various
times and by different methods, many authors studied analogous problems in
more general cases (see, e.g., [1]–[15], [20]–[21]. In the present paper, Dirichlet
and Riquier problems are studied in some unbounded domains for the higher
order elliptic differential equation

∆mu(x) = f(x) (f ∈ C∞
0 ) (1.1)

with the polyharmonic operator on the left-hand side (the first short report
about one special case can be found in [20]). In particular, the relation between
the asymptotic behavior of solutions of the corresponding BVPs and the right-
hand side of equations is investigated.

Throughout the paper the following notation is used:
N is the set of natural numbers and n is a space dimension;
∆m is the polyharmonic operator, where ∆ is the Laplace operator;
m ∈ N is the order of a polyharmonic operator;
the Greek letters α, β, . . . are multiindexes (e.g., α≡ (α1, α2, . . . , αn) where

every αi ∈ N
⋃{0} );

Diu(x) ≡ u,i(x) ≡ ∂u(x)
∂xi

, Diku(x) ≡ u,ik(x) ≡ ∂2u(x)
∂xi∂xk

for every i, k = 1, n;

Dα ≡ Dα1
1 . . . Dαn

n ;
|α| ≡ α1 + · · ·+ αn is the module of a multiindex α;
α! ≡ α1!α2! · · ·αn! is the factorial of a multiindex α;
the repeated indexes mean that summation is performed over them;
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<n
l ≡ {x ≡ (x1, x2, . . . , xn) ∈ <n : xi ≥ 0, i = n − l, n − l + 1, . . . , n}, l ∈

{0, 1, . . . , n− 1}, are polyhedral angles;
<n

0 ≡ <n
+ ≡ {x ≡ (x1, x2, . . . , xn) : xn > 0} is the half-space;

Em(u, v) ≡ ∑
|α|=m

m!
α!

DαvDαu for every nonnegative integer m and for all

functions u(x) and v(x);
Em(u) ≡ Em(u, u);

|x| ≡
√

x2
1 + x2

2 + . . . + x2
n

Qρ ≡ <n
l ∩ {x ∈ <n

l : |x| < ρ}; for l = 0, Qρ is a semiball of radius ρ centered
at the origin;

δ(x) is the Dirac function;
Λn|m(x) is a fundamental solution of the polyharmonic equation of order m,

n is a space dimension;
Gn|m(x, y) is the Green’s function for the Dirichlet problem for a polyhar-

monic equation of order m, n is a space dimension.
Let ω be an open set in <n

l and γ be a subset of its boundary γ ⊂ ∂ω. If ω is a
bounded domain, denote by H2(ω, γ) the Sobolev space obtained by completion
of the set of m times continuously differentiable functions u on ω that equal
zero in a neighborhood of γ with respect to the norm

‖u‖m ≡
[ ∫

ω

∑

|α|≤m

(Dαu)2dx

] 1
2

.

But if ω is an unbounded domain, then the definition of H2(ω, γ) applies with
u(x) = 0 also at the intersection of ω with some neighborhood of the point at
infinity.

Definition 1.1. We say that a function u(x) is a generalized solution of
the equation (1.1) in <n

l with homogeneous Dirichlet boundary conditions if
u ∈ Hm(<n

l ) and if it satisfies the integral identity

(−1)m

∫

Qρ

Em(u, v)dx =

∫

Qρ

f(x)v(x)dx (1.2)

for any ρ > 0 and any function v ∈ Hm(Qρ, ∂Qρ), where f ∈ L2(<n
l ).

In this paper we prove the uniqueness theorems based on the “generalized
Hardy’s inequality”. The formulation and proof of this inequality can be found,
e.g., in the paper by V. A. Kondratiev and O. A. Olĕınik [10].

Lemma 1.1 (Generalized Hardy’s inequality). Let the numbers j, n and p ∈
(0,∞) be such that j + n− p 6= 0. If for a sufficiently smooth function g(x) in
a cone V ⊂ <n with vertex at the origin, the following condition

∫

V

|xj|| 5 g(x)|pdx < ∞ (1.3)
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is fulfilled, where 5 ≡ ( ∂
∂x1

, . . . , ∂
∂xn

) is the gradient vector, then there exists
some constant M such that∫

V

|xj−p||g(x)−M |pdx < K

∫

V

|xj|| 5 g(x)|pdx , (1.4)

where the constant K is independent of the function g(x). If, in addition, g(0) =
0, then the constant M = 0.

2. On the Dirichlet and Riquier Problems for Biharmonic
Equation in the Half-Space

We consider, in the half-space <n
+ Sophie Germain’s equation (the particular

case of equation (1.1) when m = 2)

∆2u(x) = f(x) (f ∈ C∞
0 (<n

+)) (2.1)

with the homogeneous boundary conditions

u
∣∣
xn=0

= 0,
∂u

∂xn

∣∣∣∣
xn=0

= 0 (Dirichlet problem), (2.2)

or

u
∣∣
xn=0

= 0,
∂2u

∂x2
n

∣∣∣∣
xn=0

= 0 (Riquier problem). (2.3)

We assume that all solutions of both problems have a finite “energy integral”
(i.e., for all solutions of both BVPs the condition

∫

<n
+

E2(u)dx < ∞ (2.4)

holds and sometimes an additional condition∫

<n
+

E1(u)dx < ∞ (2.5)

is assumed to be fulfilled).

Remark 2.1. It is easy to check that every classical (smooth) solution of the
problem (2.1)–(2.2) is also a generalized solution. It is likewise easy to see that
the classical solution of the Riquier problem (2.1)–(2.3) satisfies the integral
identity (1.2) for any semiball Qρ and for any function v ∈ H2(Qρ, ∂Qρ).

We begin our discussion by proving the uniqueness theorems of solutions of
the corresponding BVPs.

Theorem 2.1 (Uniqueness of a Generalized solution of the Dirichlet BVP).
Let the function u(x) be a generalized solution of the homogeneous equation
(2.1) (i.e., f(x) ≡ 0) with the boundary conditions (2.2). Then u(x) ≡ 0 in <n

+

for any n > 2.
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Proof. Let us consider an auxiliary function

Θ(s) ≡





1, 0 < s < 1,

θ(s), 1 < s < 2, 0 < θ(s) < 1, Θ ∈ C∞
0 (0,∞),

0, s > 2

(2.6)

such that

|Θ′(s)|2 ≤ K0Θ(s), K0 = const > 0. (2.7)

For any R > 0 let

ΘR(x) ≡ Θ

( |x|
R

)
. (2.8)

Note that for any numbers i, k = 1, n the following relations hold:

ΘR,i(x) ≡ ∂ΘR(x)

∂xi

= Θ′(|x|) · xi

R|x| , (2.9)

ΘR,ik(x) = Θ′′(|x|) · xi · xk

R2|x|2 + Θ′(|x|) · |x|
2 · εik − xi · xk

R|x|3 , (2.10)

where εik is the Kronecker symbol.
Consider now v(x) ≡ u(x) · ΘR(x). Note that, by the boundary conditions

(2.2), due to (2.8) we have

v ∈ H2(Q2R, ∂Q2R).

Substituting this function into the integral identity (1.2), we obtain
∫

Q2R

u,iku,ikΘR(x)dx + 2

∫

Q2R\QR

u,iku,iΘR,k(x)dx +

∫

Q2R\QR

u,ikuΘR,ik(x)dx = 0.

According to our notation and formulas (2.7)–(2.10) this relation can be rewrit-
ten as∫

Q2R

E2(u) ·ΘR(x)dx =

∣∣∣∣2
∫

Q2R\QR

u,iku,i Θ
′(|x|) xk

R|x|dx +

∫

Q2R\QR

u,ikuΘR,ik(x)dx

∣∣∣∣.

Using a simple inequality

ab ≤ ε · a2

2
+

b2

2ε
(2.11)

which holds for every ε = const > 0 and for any numbers a, b ∈ <1, and taking
into account (2.7)–(2.10) we obtain

∫

Q2R

E2(u) ·ΘR(x)dx ≤ (ε + ε1)

∫

Q2R\QR

E2(u) ·ΘRdx

+
K1

ε

∫

Q2R\QR

u,iu,i

|x|2 dx +
K2

ε1

∫

Q2R\QR

u2

|x|4 dx , (2.12)
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here the constants K1 and K2 are independent of the function u(x) and of
radius R, while ε and ε1 are arbitrary constants from relation (2.11). Applying
Hardy’s inequality (1.4) to the third term on the right-hand side of (2.12) when
p = 2 and j = −2, we have
∫

Q2R

E2(u)·ΘR(x)dx ≤ (ε+ε1)

∫

Q2R\QR

E2(u)·ΘRdx+

[
K1

ε
+

K∗
2

ε1

] ∫

Q2R\QR

u,iu,i

|x|2 dx.

Applying Hardy’s inequality (1.4) to the second term on the right-hand side
implies the estimate

∫

Q2R

E2(u) ·ΘR(x)dx ≤ K̃

∫

Q2R\QR

E2(u)dx,

where the constant K̃ does not depend on the radius R and on the function
u(x). Consequently, for any positive number P > 0 and any radius R > P , due
to the last relation we obtain

∫

QP

E2(u)dx ≤ K̃

∫

Q2R\QR

E2(u)dx. (2.13)

Since u is a generalized solution, condition (2.4) is automatically fulfilled and
the right-hand side of (2.13) tends to zero as R −→∞. Note that the left-hand
side of (2.13) is independent of the radius R. Thus we have obtained

∫

QP

E2(u) dx ≡
∫

QP

u,iku,ikdx ≡ 0

for any positive number P . ¤

Remark 2.2. When n = 2 (half-plane) one can easily check that, due to (2.4),
condition (1.3) holds, and j +n−p = 0 (j = 0 and p = 2). Thus the generalized
Hardy’s inequality is not true. Hence in this paper the uniqueness theorem is
proved only for the case where a space dimension is n ≥ 3.

A similar reasoning leads to

Theorem 2.2 (Uniqueness of a solution of the Riquier BVP). Let the func-
tion u(x) be a classical solution of the homogeneous equation (2.1) (i.e., f(x) ≡
0) with the boundary conditions (2.3) in the half-space <n

+ and n > 2. If the

additional condition (2.4) is fulfilled, then u(x) = K̂xn in <n
+ with an arbitrary

constant K̂. But if, in addition, condition (2.5) is fulfilled too, then the solution
is unique and u(x) ≡ 0.

Proof. Consider now a function v(x) ≡ (u(x) − K̂xn) · ΘR(x), where ΘR(x) is
defined in (2.8). Substituting this function into the integral identity (1.2), as in
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the previous proof, we obtain
∫

Q2R

E2(u) ·ΘR(x)dx ≤ (ε + ε1)

∫

Q2R\QR

E2(u) ·ΘRdx

+
K1

ε

∫

Q2R\QR

(u− K̂xn),i(u− K̂xn),i

|x|2 dx +
K2

ε1

∫

Q2R\QR

(u− K̂xn)2

|x|4 dx.

Hence every second order derivative of the solution of the BVP (2.1)–(2.3) equals

zero. Therefore, from the boundary condition (2.3) it follows that u(x) = K̂xn.
It is easy to verify that if the additional condition (2.5) is fulfilled, then u(x) ≡
0. ¤

Remark 2.3. One can easily check that these theorems are true for any un-
bounded conical domain with vertex at the origin.

Now let as study the structure of solutions of the corresponding BVPs and
the relationship between the function on the right-hand side of equation (2.1)
and the character of the asymptotic behavior of these solutions.

Remark 2.4. It is well-known that in the half-space the Polyharmonic function
u(x) admits two different representations:

• I. Almazi’s representation (see, e.g., [23] or [1])

u(x) =
m∑

j=1

|x|2(m−j)vj(x), (2.14)

• II. The representation (see, e.g., [14] or [22])

u(x) =
m∑

j=1

x(m−j)
n wj(x), (2.15)

where vj(x) and wj(x) are harmonic functions for any j = 1,m.

We have generalized one proposition from [23] proved by I. Vekua in the
two-dimensional case.

Proposition 2.1. If Λn|1(x) is a fundamental solution of Laplace equation,
then

Λn|2(x) ≡ |x|2
2(4− n)

Λn|1(x) (2.16)

is a fundamental solution of the biharmonic equation except the case with n = 4.

Proof. By the theory of distributions (of generalized functions [16]),

∆∆(|x|2Λn|1(x)) = ∆[2nΛn|1(x) + |x|2∆Λn|1(x) + 4xkΛn|1,k(x)]

= 4n∆Λn|1(x) + |x|2∆∆Λn|1(x) + 8xk∆Λn|1,k(x) + 8xk,jΛn|1,kj(x).
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Recall that summation is assumed to be taken from 1 to n over the repeated
indexes. Therefore for every “basic” function (ϕ ∈ C∞

0 (<n)), in view of the
formulas (3.13) and (3.14) below, the following relation holds

〈∆∆(|x|2Λn|1(x))|ϕ(x)〉 = 2(4− n)〈δ(x)|ϕ(x)〉,
which proves the proposition. ¤

By our notation, Gn|1(x, y) is the classical Green’s function for the Dirichlet
problem for the Laplace equation in the half-space, i.e.,

Gn|1(x, y) =
1

σn(n− 2)

[
1

|x− y|n−2
− 1

|x− y|n−2

]
, (2.17)

where σn is the surface area of the n-dimensional ball of radius 1, and y ≡
(y1, . . . , yn−1,−yn) for y = (y1, . . . , yn).

Theorem 2.3. The generalized unique solution of the BVP (2.1), (2.2) in
the half-space <n

+ has the form

u(x) =

∫

<n
+

Gn|2(x, y)f(y)dy (2.18)

with

Gn|2(x, y) =





1

2(4− n)

[
|x− y|2Gn|1(x, y) +

2xnyn

σn|x− y|n−2

]
, n 6= 4,

c4

[
ln

1

|x− y| − ln
1

|x− y|
]
− 2c4x4y4

|x− y|2 , n = 4,

(2.19)

where c4 is a constant.

Proof. Firstly, note that the Green’s function (2.19) is a fundamental solution
of the biharmonic equation (2.1). Due to the structure of this function, for
any n the second term on the right-hand side of (2.19) is the first term of the
representation (2.15), and hence this term is a biharmonic function; for n 6= 4
the first term on the right-hand side of (2.19) is the first term of Almanzi’s
representation (2.15) and so this term is a fundamental solution, i.e.,

∆2Gn|2(x, y) = δ(x). (2.20)

If n = 4, then, as is easy to check by simple calculations, the second term on the
right-hand side of (2.19) is a fundamental solution, i.e., identity (2.20) holds.

Secondly, the Green’s function (2.19) satisfies the boundary conditions (2.2).
In that case, the boundary of the domain is the hyperspace x ∈ <n

+ : xn = 0
and hence in both cases the second term of (2.19) is zero. Note that

|x− y| = |x− y| when xn = 0. (2.21)
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and therefore the first Dirichlet condition (2.2) holds. It is easy to check that
if n 6= 4, then

∂Gn|2(x, y)

∂xn

=
(xn − yn)

4− n
Gn|1(x, y) + |x− y|2∂Gn|1(x, y)

∂xn

+
2yn

σn|x− y|(n−2)
+

2xnyn

σn

∂|x− y|(2−n)

∂xn

. (2.22)

If xn = 0, the first term on the right-hand side of (2.22) equals zero, since
Gn|1(x, y) is the Green’s function of the Dirichlet BVP for the Laplace equation.
It is evident that the fourth term on the right-hand side of (2.22) also equals
zero. Due to (2.17) simple calculations give

|x− y|2∂Gn|1(x, y)

∂xn

=
|x− y|2
(n− 2)

[−(n− 2)(xn − yn)

|x− y|n − −(n− 2)(xn + yn)

|x− y|n
]

.

Hence from (2.21) we have

|x− y|2 ∂Gn|1(x, y)

∂xn

= − 2yn

σn|x− y|(n−2)

and thus the second and the third term on the right-hand side of (2.22) vanish.
Therefore the second Dirichlet condition (2.2) is fulfilled. By simple calculations
it is easy to check that for n = 4 the function G4|2(x, y) also satisfies the second
boundary condition (2.2).

Thirdly, it is easy to see that for any i, k = 1, n the partial derivative ∂2u
∂xi∂xk

of the solution (2.18) has the order of decay |x|1−n at infinity. Therefore for the
solution (2.18) inequality (2.4) is fulfilled when n > 2. By uniqueness theorem
2.1 the solution (2.18) of the BVP (2.1), (2.2) is unique. ¤

A solution of the Riquier BVP is constructed similarly.

Theorem 2.4. The function

u(x) =

∫

<n
+

G∗
n|2(x, y)f(y)dy (2.23)

with

G∗
n|2(x, y)

=





|x− y|2
2(4− n)

Gn|1(x, y) +
2xnyn

σn(4− n)(2− n)|x− y|n−2
, n 6= 2 or 4,

|x− y|2
4

G2|1(x, y)− 4x2y2

π
ln

( 1

|x− y|
)
, n = 2,

c4

[
ln

1

|x− y| − ln
1

|x− y|
]
, n = 4,

(2.24)

is a classical unique solution of the BVP (2.1), (2.3) if n > 4 and conditions
(2.4) and (2.5) hold in the half-space <n

+; here c4 is a constant defined in (2.19).
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In the cases n = 3, 4 this solution is unique to within an additional term cxn,
where c is an arbitrary constant.

Proof. The proof of this theorem proceeds similarly to that of the previous one.
But note that in this case for any i = 1, n, the partial derivative ∂u

∂xi
of the

solution (2.18) has the order of decay |x|2−n at infinity. Therefore condition
(2.5) is fulfilled when n ≥ 5 and it is only in this case that by Theorem 2.1 the
solution (2.23) is unique. Also, by the second boundary condition in (2.3), we
do not have a unique solution for n = 3, 4. ¤

Remark 2.5. Neither of these theorems includes the case n = 2. For the
solutions (2.18) and (2.23) condition (2.4) does not take place and therefore
these solutions are not unique solutions of the corresponding BVPs.

Now let us consider the asymptotic behavior of these solutions.

Theorem 2.5. If u(x) (2.18) is a solution of the BVP (2.1), (2.2), then

u(x) = Mn

[ ∫

<n
+

y2
nf(y)dy

]
· x2

n

|x|n + O(|x|1−n), (2.25)

where Mn = 2
σn(4−n)

if n 6= 4 and M4 = 2c4 if n = 4, and c4 is defined in (2.19).

Proof. Note that for the solution (2.19) the coefficients of the first terms of
Taylor’s series in the neighborhood of y = 0 are

Gn|2(x, 0) =
∂Gn|2(x, y)

∂yk

∣∣∣∣
y=0

=
∂2Gn|2(x, y)

∂yk∂yj

∣∣∣∣
y=0

= 0

for every k = 1, n and j = 1, n− 1. But

∂2Gn|2(x, y)

∂y2
n

∣∣∣∣
y=0

= Mn · x2
n

|x|n . ¤

Corollary 2.1.

• I. Half-plane. If n = 2, then the BVP (2.1), (2.2) has a solution of the
form (2.18), but this function does not always tend to zero as x −→∞:

u(x1, x2) −→ 0 when x1 −→∞ and x2 = const,

u(x1, x2) −→ const, when x2 −→∞ and x1 = const.

• II. Half-space. If n > 2, then the BVP (2.1), (2.2) has a solution of
the form (2.18), this function always tends to zero as x −→ ∞, but the
order of its decay is greater than that of fundamental solutions at least
by 1:

u(x1, . . . , xn) = O(|x|−n) as |x| −→ ∞ and xn = const,

u(x1, . . . , xn) = O(|x|2−n) as xn −→∞.
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Theorem 2.6. If u(x) in (2.23) is a solution of the BVP (2.1), (2.3), then

u(x) = M∗
n

[ ∫

<n
+

ynf(y)dy

]
· xn

|x|n + O(|x|2−n), (2.26)

where M∗
n = 1

σn(2−n)
if n 6= 2, 4 and M∗

4 = 2c4 if n = 4, and c4 is defined in

(2.19).

Proof. Note that for the solution (2.23) the coefficients of the first terms of
Taylor’s series in the neighborhood of y = 0 are

G∗
n|2(x, 0) =

∂G∗
n|2(x, y)

∂yk

∣∣∣∣
y=0

= 0

for every k = 1, n− 1. But

∂G∗
n|2(x, y)

∂yn

∣∣∣∣
y=0

= M∗
n ·

xn

|x|n−2
. ¤

Corollary 2.2. The structure of the solution (2.23) is asymmetric, but then
the behavior of solutions coincides with that of fundamental solutions.

3. On Some Properties of Solutions of Dirichlet Problems for
Polyharmonic Equation in Polyhedral Angles

In the domain <n
l the Dirichlet problem

∂ju(x)

∂−→ν j

∣∣∣∣
∂<n

l

= 0, j = 0, . . . , m− 1, (3.1)

is considered for equation (1.1), where −→ν is a unit outer normal to ∂<n
l .

Remark 3.1. It is easy to check that a classical (smooth) solution of problem
(1.1)–(3.1) is also a generalized solution.

Recall that due to Definition 1.1 every solution of BVP (3.1) has a finite
“energy integral”. ∫

<n
l

Em(u)dx < ∞. (3.2)

Theorem 3.1 (Uniqueness of a Generalized solution of the Dirichlet BVP).
Let the function u(x) be a generalized solution of the homogeneous equation
(1.1) (i.e., f(x) ≡ 0) with the boundary conditions (3.1). Then u(x) ≡ 0 in <n

l .

Proof. It is easy to check that for the function ΘR defined in (2.8) and for any
multiindex α we have

|DαΘR(x)|2 ≤ KαΘ(|x|)
|x|2|α| , where R < |x| < 2R. (3.3)
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Here the constants Kα depend only on order α of a partial differential and R is
an arbitrary positive number. Note that v(x) ≡ u(x) ·ΘR(x) ∈ Hm(Q2R, ∂Q2R).
Substituting this function into the integral identity (1.2), we obtain

∫

Q2R

Em(u, uΘR)dx =

∫

Q2R

[ ∑

|α|=m

m!

α!
DαuDαu

]
ΘRdx

+

∫

Q2R\QR

∑

|α|=m

m!

α!
Dαu

[ ∑

β+ι=αι6=0

(|β|+ |ι|)!
β!ι!

DβuDιΘR

]
dx = 0.

Therefore∫

Q2R

Em(u)ΘRdx =

∣∣∣∣
∫

Q2R\QR

∑

|α|=m

m!

α!
Dαu[

∑

β+ι=αι6=0

(|β|+ |ι|)!
β!ι!

DβuDιΘR]dx

∣∣∣∣.

(2.11) and (3.3) imply that
∫

Q2R

Em(u)ΘR(x)dx ≤
∑

|α|=m

m!

α!
εα

∫

Q2R\QR

Em(u)ΘR(x)dx

+
∑

|α|=m

m!

α!
· Kα

εα

∫

Q2R\QR

[ m−1∑

|β|=0

E|β|(u) · 1

R2(m−|β|)

]
dx,

where the constants Kα are defined in (3.3) and εα are arbitrary positive num-
bers from (2.11).

Every domain <n
l is “conical” with the vertex at the origin. So, we apply

repeatedly the Hardy’s inequality (1.4) to the second term on right-hand side
of the latter inequality until the order of the partial differential achieves the
order m. Note that the generalized Hardy’s inequality holds if n ≥ 2, p = 2 and
j 6= 0. After an appropriate choice of εα we have

∫

Q2R

Em(u)ΘR(x)dx ≤ K̃

∫

Q2R\QR

Em(u)dx.

The constant K̃ does not depend on the radius R and the function u(x). For an
arbitrary real number P there exist a radius R > P and QP ⊂ QR. Therefore∫

QP

Em(u)dx ≤ K̃

∫

Q2R\QR

Em(u)dx. (3.4)

Note that by the condition (3.2), the right-hand side of (3.4) tends to zero as
R → 0. On the other hand, the left-hand side of (3.4) does not depend on R.
Hence for any positive number P the “energy integral” in the domain QP equals
zero, i.e., ∫

QP

Em(u)dx ≡
∫

QP

[ ∑

|α|=m

m!

α!
DαuDαu

]
dx ≡ 0.
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Therefore partial differentials of any order of solutions equal zero and due to
the structure of domains and the boundary conditions (3.1) we deduce that
u(x) ≡ 0 in <n

l . ¤
To construct the Green’s function for the corresponding problems let us con-

sider

Proposition 3.1. If Λn|m−1(x) is a fundamental solution of polyharmonic
equation

∆m−1Λn|m−1(x) = δ(x), (3.5)

then the function

Λn|m(x) =
|x|2

2(m− 1)(2m− n)
Λn|m−1(x) (3.6)

is a fundamental solution of the polyharmonic equation (1.1) except the case
where the order of the equation coincides with the space dimension (i.e., n =
2m). In this particular case, the fundamental solution is constructed separately.

Proof. For m = 2 this proposition holds, see (2.16). For any sufficiently smooth
functions V (x) and U(x)

∆(V (x)U(x)) = U(x)∆V (x) + V (x)∆U(x) + 2V,k(x)U,k(x). (3.7)

Substituting the function (3.6) multiplied by c−1
nm, where

cnm = [2(m− 1)(2m− n)]−1, n > 1, n 6= 2m, (3.8)

into equation (1.1) and using induction with respect to the order m of the
Laplace operator, we have

∆mc−1
nmΛn|m(x) ≡ ∆m−1[∆|x|2Λn|m−1(x)]

= ∆m−1[2nΛn|m−1(x) + |x|2∆Λn|m−1(x) + 4x,kΛn|m−1,k]

= 2nδ(x) + ∆m−1[|x2|∆Λn|m−1(x) + 4xkΛn|m−1,k(x)].

Next,

∆mc−1
nmΛn|m(x) = 2nδ(x) + ∆m−2[2n∆Λn|m−1(x) + |x|2∆2Λn|m−1(x)

+ 8xk∆Λn|m−1,k(x) + 8εjkΛn|m−1,jk(x)],

where εkj is the Kronecker symbol and hence

∆mc−1
nmΛn|m(x) = 2 · 2nδ(x) + ∆m−2(|x|2∆2Λn|m−1(x)

+ 2 · 4xk∆Λn|m−1,k(x)) + 8δ(x). (3.9)

In the general case, similarly,

∆mc−1
nmΛn|m(x) = ι · 2nδ(x)

+ ∆m−ι(|x|2∆ιΛn|m−1(x) + ι · 4xk∆
ι−kΛn|m−1,k(x)) + 8

[ ι−1∑
j=0

j

]
δ(x) (3.10)
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for each number ι = 1,m and if ι = m, then

∆mc−1
nmΛn|m(x) = m · 2nδ(x) + |x|2∆δ(x) + m · 4xkδ,k + 8

[ m−1∑
j=0

j

]
δ(x). (3.11)

According to the theory of generalized functions, for every “basic” function
φ ∈ C∞

0 (<n
l ) we have

〈|x|2 ·∆δ(x)|φ(x)〉 = 2n〈δ(x)|φ(x)〉 (3.12)

and 〈
xk · ∂δ(x)

∂xk

φ(x)

〉
= −n〈δ(x)|φ(x)〉. (3.13)

By (3.9)–(3.10) and (3.12)–(3.13) we rewrite relation (3.11) as

∆mc−1
nmΛn|m(x) = [2nm + 2n− 4mn + 4m(m− 1)]δ(x). (3.14)

By induction with respect to m, we deduce that Λn|m(x) is a fundamental
solution of polyharmonic equations. ¤

Due to the identity

∆[− ln |x|] =
2− n

|x|2
we have

Proposition 3.2. In the case where n = 2m,

Λn|n
2
(x) = −cn ln |x| (3.15)

is a fundamental solution of equation (1.1), where the constant cn depends only
on the space dimension.

Corollary 3.1. The fundamental solution Λn|m(x) can be represented by the
fundamental solution of Laplace equation as

Λn|m(x) =
|x|2(m−1)

2(m−1)(m− 1)!

1∏m
k=1(2k − n)

Λn|1(x) (3.16)

when:
a) the space dimension is an arbitrary odd number;
b) the space dimension is an even number, but it is greater than the order of

the equation (i.e., n > 2m).

Theorem 3.2. A generalized solution of the BVP (3.1) for equation (2.1) in
the half-space <n

+ is represented as

u(x) =

∫

<n
+

Gn|m(x, y)f(y)dy, (3.17)

where the Green’s function has the form

Gn|m(x, y) = cnm|x− y|2Gn|m−1(x, y)− κnmxm−1
n ym−1

n

|x− y|n−2
; (3.18)
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here k and cnm are constants, the latter being defined by (3.8) and Proposition
3.2 for n = 2m. This solution satisfies condition (3.2) and therefore it is unique.

Proof. By Almanzi’s representation (2.13) the first term on the right-hand side
of (3.18) is a fundamental solution. Also, by the representation (2.15) the second
term of (3.18) is the polyharmonic function

w1(x) =
κnmym−1

n

|x− y|n−2
.

Note that ∂
∂−→ν ≡ − ∂

∂xn
. So, for every j = 0, m− 2, the partial derivatives of

order j < m − 1 of both terms on the right-hand side of (3.18) equal zero on
the boundary. The constant κnm is chosen so that a partial derivative of the
function (3.18) of order m−1 vanishes for xn = 0. Therefore the solution (3.17)
satisfies the boundary conditions (3.1). By the construction of the Green’s
function (3.18), it is easy to check that the condition (3.2) takes place when the
space dimension is greater than 2m, the order of equation (1.1), and therefore
this solution is unique. ¤

To construct the Green’s function and to simplify the calculation of higher
order derivatives, let as use the following special notation: if y ≡ (y1, . . . , yn)
is a point in <n

l and ς ≡ (ς1, . . . , ςn) is a multiindex, where ςk equals 1 or 0 for
every k = 1, n, then

yς ≡ ((−1)ς1y1, . . . , (−1)ςnyn).

Using this notation, we have

|x− yς | ≡
[ n∑

k=1

(x− (−1)ςkyk)
2

] 1
2

and it is easy to check that

∂|x− yς |−k

∂xj

=
−k[xj − (−1)ςjyj]

|x− yς |k+2
, (3.19)

and

∂|x− yς |−k

∂yj

=
(−1)ςjk[xj − (−1)ςjyj]

|x− yς |k+2
. (3.20)

Theorem 3.3. If u(x) defined by (3.17) is a solution of the BVP (1.1), (3.1),
then

u(x) = cnm

[ ∫

<n
+

ym
n f(y)dy

]
· xm

n

|x|n + O(|x|m−n+1). (3.21)

Proof. Note that the coefficients of the first terms of the Taylor’s series in a
neighborhood of y = 0 of the solution (3.17) are

Gn|m(x, 0) =
∂Gn|m(x, y)

∂yk

∣∣∣∣
y=0

= DαGn|m(x, y)|y=0 = 0
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for every k = 1, n and |α| ≤ m, where αn 6= m. But

∂mGn|m(x, y)

∂ym
n

∣∣∣∣
y=0

= Mn|m · xm
n

|x|n . ¤
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