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ON WIENER’S CRITERION FOR AN ELLIPTIC EQUATION
WITH NONUNIFORM DEGENERATION

RABIL A. AMANOV AND FARMAN I. MAMEDOV

Abstract. For some class of nonuniformly degenerated elliptic equations of
second order, a necessary and sufficient condition for boundary points to be
regular is found. This condition is an analogue of Wiener’s criterion for the
Laplace equation.
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1. Introduction

Let En be an n-dimensional space of points x = (x1, x2, . . . , xn), n ≥ 2, D be
the bounded domain in En with boundary ∂D, 0 ∈ ∂D. We will consider the
equation

Lu =
n∑

i,j=1

∂

∂xi

(
aij(x)

∂u

∂xj

)
= 0 (1.1)

in the domain D. The elements of the matrix A = ‖aij(x)‖ given in En are
symmetrical, real, measurable and satisfy the condition

µ

n∑
j=1

ρ(x)αjη2
j ≤ η · Aη ≤ µ−1

n∑
j=1

ρ(x)αjη2
j , (1.2)

where η is an arbitrary vector in En, µ = const ≤ 1. Here and in what follows
the point denotes a usual scalar product in En, ρ(x) = max

1≤i≤n
|xi|1/σi . With

regard to the constants we also make the following assumptions:

σi =
αi + β

2
> 0, |αi| <

n∑
j=1

σj, β ≥ 0, (1.3)

where i = 1, 2, . . . , n.
The aim of this paper is to prove a Wiener type criterion of the regularity of a

boundary point (see [1] and [2]) in the case of the first boundary value problem
for equation (1.1), which admits nonuniform power degeneration at the point 0.
For equation (1.1) without degeneration (αi = 0, i = 1, 2, . . . , n), the criterion
of regularity of boundary points was obtained in the fundamental work [3] (for
another proof see [4]). The corresponding results for nondivergent equations
with Dini continuous coefficients (or with a ellipticity function) can be found
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in [5], [6] ([7]). With regard to equation (1.1) we also want to mention the im-
portant work [8] in the case of uniform degeneration of ω(x) (which replaces all
ρ(x)αi , i = 1, 2, . . . , n, in condition (1.2)) satisfying the Muckenhoupt condition
A2.

Note that in the case of equation (1.1) the question of internal regularity
satisfying condition (1.2) is considered in [9]–[11].

2. Definitions, the Notation and Auxiliary Statements

We denote by ∇u = (ux1 , ux2 , . . . , uxn) the gradient of the function u(x);
ρα∇u is the vector

(
ρ(x)α1ux1 , ρ(x)α2ux2 , . . . , ρ(x)αnuxn

)
. ‖ρ(x)α/2∇u‖2,D

stands for the sum
n∑

j=1

∥∥ρ(x)αj/2∇uxj

∥∥
2,D

, where ‖ · ‖2,D is a usual Lebesgue

norm in L2(D).
We denote by Lip(D) the space of Lipshitz continuous functions having a

continuous extension in D, by Lip0(D) a subspace of functions Lip(D) vanishing
on ∂D. W 1

2,α(D) is the closure of the space Lip(D) with respect to the norm

‖f‖ = ‖f‖2,D + ‖ρα/2∇u‖2,D,

where ‖f‖2,D = ‖f‖L2(D).
◦

W 1
2,α(D) is a subspace of W 1

2,α(D), in which the set
of all functions Lip0(D) is dense.

We denote by Qx
R a quasiball {y ∈ En : ρ(y − x) < R}.

Definition 2.1. We say that a function u(x) ∈ W 1
2,α(D) is not greater

(smaller) than the constant M on a set E ⊂ D in the sense of W 1
2,α(D) if there

exists a sequence of functions uj ∈ Lip(D) such that 1) uj(x) ≤ M (uj(x) ≥ M)
on E and 2) ‖uj − u‖ → 0 in the norm of the space W 1

2,α(D) as j →∞.

Definition 2.2. Any sequence uj(x) ∈ Lip(D) satisfying condition 2) is
called approximating for a function u(x) ∈ W 1

2,α(D).

Definition 2.3. A function u(x) ∈ W 1
2,α(D) is said to be equal to M on a

set E ⊂ D in the sense of W 1
2,α(D) if simultaneously u(x) ≥ M and u(x) ≤ M

on E in the sense of W 1
2,α(D).

Note that a function u(x) ∈ W 1
2,α(D) is equal to M if and only if there exists

an approximating sequence uj(x) equal to M on the set E.
Let k ∈ R, u(x) ∈ W 1

2,α(D). Denote by {u}k = max(u(x), k), {u}k =
min(u(x), k) the sections of the function u(x).

Lemma 2.1. A section {u}k of a function u(x) ∈ W 1
2,α(D) belongs to this

space and, if uj approximates u(x), then sections {uj}k will approximate {u}k,
‖{uj}k − {u}k‖ → 0 in the norm W 1

2,α(D) as j →∞.

Proof. We extract from uj an a.e. converging subsequence. Preserving for it
the notation of the original sequence, we have

uj → u, ∇uj → ∇u a.e. x ∈ D as j →∞. (2.1)
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It is obvious that {uj}k ∈ Lip(D), {u}k = k + (u− k)χu>k, {uj}k = k + (uj −
k)χuj>k, where χE denotes the characteristic function of the set E. Therefore

{uj}k − {u}k = (uj − u)χuj>k + (u− k)(χuj>k − χu>k). (2.2)

By the Minkovski inequality, from (2.2) we have

‖{uj}k − {u}k‖2,D ≤
∥∥(uj − u)χuj>k

∥∥
2,D

+
∥∥(u− k)(χuj>k − χu>k)

∥∥
2,D

→ 0

as j → ∞. Indeed, the first summand does not exceed ‖uj − u‖2,D which
tends to zero, while the second summand tends to zero by virtue of Lebesgue’s
majorant theorem, since χuj>k → χu>k a.e. for almost all x ∈ D. Furthermore,
(2.2) readily implies that

∇{uj}k −∇{u}k = ∇(uj − u)χuj>k +∇u(χuj>k − χu>k).

Then
∥∥ρα/2∇({uj}k − {u}k)

∥∥
2,D

≤
∥∥χuj>k · ρα/2∇(uj − u)

∥∥
2,D

+
∥∥(χuj>k − χu>k)ρ

α/2∇u
∥∥

2,D
→ 0,

also by virtue of Lebesgue’s theorem and the fact that uj(x) approximates u(x).
We have proved that

‖{uj}k − {u}k‖2,D → 0 as j →∞
with respect to the norm W 1

2,α(D) for some subsequence uj. If this relation is
violated for some subsequence ujn , then, applying the above-given arguments
to this subsequence, we come to a contradiction. ¤

Note that in case of Sobolev space W 1
p (D) the analogous statements in [12,

Ch. 2, §3] and also [3, Lemma 1.1] are proved using other approaches.

Definition 2.4. A function u(x) ∈ W 1
2,α(D) is called a solution of equation

(1.1) in the domain D if
∫

D

∇u · A(x)∇ϕdx = 0, ∀ϕ ∈ Lip0(D). (2.3)

It is not difficult to verify that if u(x) ∈ W 1
2,α(D) is a solution of equation

(1.1), then identity (2.3) is fulfilled for any test function ϕ ∈
◦

W 1
2,α(D).

Definition 2.5. A function u ∈ W 1
2,α(D) satisfying the inequality

∫

D

∇u · A(x)∇ϕdx ≤
(≥)

0 (2.4)

for any ϕ ∈ Lip0(D), ϕ ≥ 0, is called a subsolution (supersolution) of the
operator L in D.
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Definition 2.6. Let H ⊂ En be a compact subset. We say that the capacity
of the compactum H is the number

capα H = inf

∫

En

ρα(x)∇u · ∇u dx, (2.5)

where the lower bound is taken over all admissible functions u ∈ Lip0(En),
u(x) ≥ 1 on H.

The next lemma is an analogue of the corresponding statement in [13].

Lemma 2.2 (Maximum Principle). Let u(x) ∈ W 1
2,α(D) be a solution of

equation (1.1) in the domain D and u(x) ≤ M (u(x) ≥ M) on the boundary
∂D of the domain D in the sense of W 1

2,α(D). Then u(x) ≤ M (u(x) ≥ M) for
almost all x ∈ D.

Proof. Let ε > 0 be an arbitrary integer. By virtue of Lemma 2.1 the function

ϕ = {u}M+ε− (M + ε) belongs to
◦

W 1
2,α(D). Substituting this test function into

identity (2.3), we have
∫

D

∇{u}M+ε · A∇{u}M+ε = 0,

from which, using the Sobolev–Gagliardo inequality and conditions (1.2), (1.3)
we obtain

‖{u}M+ε − (M + ε)‖ n
n−1

,D ≤ C‖∇{u}M+ε‖1,D

≤ C

( ∫

D

n∑
j=1

ραj |∇{u}M+ε|2dx

)1/2( ∫

D

n∑
j=1

ρ−αj(x) dx

)1/2

≤ C

∫

D

∇{u}M+ε · A∇{u}M+εdx = 0, C = C(n, µ, α, D).

Then {u}M+ε ≤ M + ε a.e. for almost all x ∈ D and taking into account the
arbitrariness of ε > 0, we find that u(x) ≤ M for almost all x ∈ D. ¤

3. Capacity and the Potential

Let H ⊂ Q be a compact subset of the quasiball Q. Following [3, §4], let us
consider the variational problem

D(v) =

∫

Q

∇v · A∇v dx → inf (3.1)

in the class S of admissible functions, v ∈ Lip0(Q), v(x) ≥ 1 on H. The set
S ⊂ W 1

2,α(Q) is convex, but not closed. Denote by S the closure of S. Since

the functional D(v) is continuous, the lower bound D(v) on S coincides with
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the lower bound on S. The functional is strongly convex in W 1
2,α(Q): for any

u, v ∈ W 1
2,α(Q) we have

D

(
u + v

2

)
− 1

2
D(u)− 1

2
D(v) = −1

4
D(u− v) ≤ −µ

4
‖u− v‖2

W 1
2,α(Q).

Since the set S is convex and closed, there exists a function vH such that the
functional D(v) attains its lower bound on S. We will show that vH is unique.
Let inf D(f) = D(u) = D(v) = d simultaneously for two different functions
u, v ∈ W 1

2,α(D). If u = tv, t ∈ R, then we have d = D(v) = D(tv) = t2D(v) =

t2d, whence t = 1, i.e. u = v. If u, v are linearly independent, then the strict
inequality ∥∥∥∥

∫

Q

∇v · A∇u dx

∣∣∣∣ <
√

D(u) ·D(v)

is valid. Therefore for u+v
2
∈ S we have

D

(
u + v

2

)
=

1

4
D(u) +

1

4
D(v) +

1

2

∫

Q

∇u · A∇v dx < d,

which contradicts the condition D(u) = inf.

Definition 3.1. Let H ⊂ Q be a compactum, vH ∈
◦

W 1
2,α(Q) be a unique

solution of the variational problem

D(f) → inf, f ∈ S. (3.2)

Then the function vH is called the potential of the set H.

If {vH}1 is a section of the function vH , then by virtue of Lemma 2.1 we have
{vH}1 ∈ S and therefore D({vH}1) ≤ D(vH) = inf. Thus vH = 1 on H in the

sense of
◦

W 1
2,α(Q). For any ε > 0, ψ ∈ Lip0(Q), ψ ≥ 0 we have

D(vH + εψ) ≥ D(vH) on H, (3.3)

whence, applying the well known variational technique, we obtain∫

Q

∇vH · A∇ψ dx ≥ 0, (3.4)

i.e. vH is a supersolution of the operator L in Q. If in (3.3) we take an arbitrary
ε, for any ψ ∈ Lip0(Q\H), then for vH we obtain the identity

∫
Q

∇vH ·A∇ψ dx =

0, i.e. vH is a solution of equation (1.1) outside H. Finally, applying the
maximum principle to the potential vH , we obtain 0 ≤ vH ≤ 1. Thus we have
proved the following statement.

Lemma 3.1. Let H ⊂ Q be a compact subset. Then there exists a unique
solution of problem (3.2) with the properties: the function vH delivers inf to the
functional D(f) and is a unique function in this sense; the function vH is a
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supersolution of the operator L in Q; vH is a solution of equation (1.1) outside
H; vH satisfies the inequality 0 ≤ vH(x) ≤ 1 a.e. in Q; vH = 1 for x ∈ int H.

Now let us consider the operator

L1v =
n∑

i=1

∂

∂xi

(
ρ(x)αi

∂v

∂xi

)
. (3.5)

All that has been said above refers to the functional

D1(v) =

∫

Q

ρ(x)α∇v · ∇v dx, (3.6)

too, i.e. the following statement is true.

Lemma 3.2. For any compactum H ⊂ Q, the variational problem

D1(v) → inf, v ∈ S,

has a unique solution vH . The number

capαH = D1(vH) = inf (3.7)

is called the capacity of the compactum H with respect to the quasiball Q (if Q
coincides with En, then we have the capacity from Definition 2.6). The function
vH is a solution of the equation L1u = 0 in Q\H, a supersolution of the operator
L1 in Q, and also 0 ≤ vH ≤ 1, vH = 1 on H in the sense of W 1

2,α(D).

The next two lemmas are the obvious formulas for a classical solution of
problem (1.1).

Lemma 3.3. Let H ⊂ En be a compact subset, v ∈
◦

W 1
2,α(En) be its potential,

and v(k)(x) approximate v(x) as k → ∞, G = En \ H. Then for almost all
t ∈ (0, 1) we have the identity

t

∫

∂Γt

∇v(k) · AN dσ =

∫

En\Γt

∇v(k) · A∇v(k) dx + δk, (3.8)

where δk → 0 as k →∞, N = (N1, N2, . . . , Nm) is the inward normal vector to
the domain boundary

Γt =
{
x ∈ En : v(k)(x) > t

}

(depending also on k).

Proof. Let ϕ = gh(x)v(k)(x), where gh(x) = t−v(k)(x)
h

for x ∈ Γt−h \Γt, gh(x) = 1
for x ∈ En \ Γt−h, gh(x) = 0 for x ∈ Γt, t ∈ (0, 1], h is sufficiently small. It is

obvious that the function ϕ ∈
◦

W 1
2,α(G), and since from the identity

∫

G

∇v · A∇ϕdx = 0
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it follows that ∫

G

∇v(k) · A∇ϕ dx = δk → 0 as k →∞, (3.9)

after substituting the expression for ϕ into this identity we obtain

−1

h

∫

Γt−h\Γt

v(k)∇v(k) · A∇v(k) dx +

∫

En\Γt

gh∇v(k) · A∇v(k) dx = δk. (3.10)

Using Federer’s formula [14, p. 40] and Lebesgue’s theorem [15, §1, Ch. 1]
for almost all t ∈ (0, 1), we obtain for the first summand in (3.10)

1

h

∫

Γt−h\Γt

v(k)∇v(k) · A∇v(k) dx =
1

h

t∫

t−h

s ds

( ∫

∂Γs

N · A∇v(k) dσs

)

→ t ·
∫

∂Γt

∇v(k) · AN dσt (3.11)

as h → 0, since N = ∇v(k)/|∇v(k)| on the surface ∂Γs. By virtue of Lebesgue’s
majorant theorem we have

∫

En\Γt

gh∇v(k) · A∇v(k) dx →
∫

En\Γt

∇v(k) · A∇v(k) dx as h → 0. (3.12)

Passing to the limit as h → 0 and taking into account (3.11), (3.12) we obtain
(3.8). ¤

Lemma 3.4. Let H ⊂ En be a compactum, v(x), v(k)(x), Γt be the same as
in Lemma 3.3. Then for a.e. for almost all 0 < s < t < 1 the identity

∫

∂Γs

∇v(k) · AN dσs = t ·
∫

∂Γt

∇v(k) · AN dσt + δk (3.13)

is valid, where δk → 0 as k →∞, dσs is an element of the (n− 1)-dimensional
Lebesgue measure on the surface ∂Γs (depends on k).

The proof of this lemma is analogous to that of Lemma 3.3. In identity (3.9)
we set the test function ϕ = gh(x)fh(x), where gh(x) is the same as in Lemma

3.3, fh(x) = v(k)(x)−s
h

for x ∈ Γs \ Γs+h, fh(x) = 1 for x ∈ Γs+h, fh(x) = 0 for
x ∈ En \ Γs. Then

−1

h

∫

Γs\Γs+h

v(k)∇v(k) · A∇v(k) dx +
1

h

∫

Γt−h\Γt

v(k)∇v(k) · A∇v(k) dx = δk → 0

as k →∞. If h → 0, then analogously to (3.11) we obtain (3.13).
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4. The Harnack Inequality

Theorem 4.1. Let GR = Q0
R \Q0

R/4, u(x) ∈ W 1
2,α(GR) be a positive solution

of equation (1.1) in GR. Then there exists a constant C = C(n, µ, α, β) such
that

ess sup
∂Q0

r/2

u(x) ≤ C ess inf
∂Q0

r/2

u(x). (4.1)

Proof. By definition, for any ϕ ∈ W 1
2,α(GR)

∫

GR

∇v · A∇ϕdx = 0. (4.2)

Performing the change x = Rσξ = (Rσ1ξ1, R
σ2ξ2, . . . , R

σnξn), we obtain
∫

T

∇ξv ·B∇ξψ dξ = 0, (4.3)

where T = Q0
1 \Q0

1/4 is the image of the set GR; B = ‖bij(ξ)‖, bij = Rβ−σi−σj ×
aij(x(ξ)), i, j =1, 2, . . . , n. x(ξ)=Rσξ, ∇ξv denotes the vector (vξ1 , vξ2 , . . . , vξn),

and ψ(ξ) = ϕ(x(ξ)) is an arbitrary function from the space
◦

W 1
2(T ), v(ξ) =

u(x(ξ)).
The matrix B is uniformly elliptic on T . Indeed,

µ

n∑
j=1

ρ(x(ξ))αjRβ−2σjη2
j ≤ η ·Bη ≤ µ−1

n∑
j=1

ρ(x(ξ))αjRβ−2σjη2
j .

Since x ∈ GR for ξ ∈ T , we have

R

4
< ρ(x) < R, (4.4)

and therefore

|η|2 µ

4α0
≤ η ·Bη ≤ µ−14α0|η|2 ∀η ∈ En, (4.5)

where α0 = max
1≤j≤n

|αj|. The image of the points x ∈ ∂Q0
r/2 belongs to T ′ = ∂Q0

1/2.

It is obvious that T ′ ⊂ T and a usual distance dist(T ′, ∂T ) > 0 does not
depend on R. The function v(ξ) belongs to W 1

2 (T ), since u(x) ∈ W 1
2,α(GR).

Indeed, from (4.4) we have

∫

GR

ρα∇u · ∇u dx =
n∑

j=1

R

nP
i=1

σi

∫

T

ρ(x(ξ))αjR−2σju2
ξj

dξ ∼ R

nP
i=1

σi−β
∫

T

|∇ξu|2 dξ.

Identity (4.3) implies that v(ξ) is a positive solution of the equation

n∑
i,j=1

∂

∂ξi

(
bij(ξ)

∂v

∂ξj

)
= 0 (4.6)
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from W 1
2 (T ) on T . In view of (4.5), equation (4.6) is elliptic on T and therefore

the Harnack inequality

ess sup
ξ∈T ′

v(ξ) ≤ C ess inf
ξ∈T ′

v(ξ) (4.7)

is fulfilled for it (see [16]). Here the constant C = C(n, µ, α, β). By the inverse
transformation ξ → x, from estimate (4.7) we derive (4.1). ¤

5. Lemma on the Increase of Positive Solutions

Lemma 5.1. Let D ⊂ Q0
R be the domain having limiting points on the surface

∂Q0
R and a nonempty intersection with Q0

R/4. Let u ∈ W 1
2,α(D) be a solution of

equation (1.1) in D, u(x) ≤ 0 on a part of the boundary Γ lying strictly inside
Q0

R in the sense of W 1
2,α(D). Then there exists a constant η0 = η0(n, µ, α, β)

such that for any such function u(x) there holds

ess sup
x∈D

u(x) ≥
(
1 + η0R

β−
nP

j=1
σj

capα HR

)
ess sup

x∈D∩Q0
R/4

u(x), (5.1)

where the set HR = Q0
R/4 \D and capα HR is its capacity.

Proof. Denote M = sup
x∈D

u(x), G = Q0
R \ HR and let UH ∈

◦
W 1

2,α(Q0
R) be the

potential of the set HR. Let φ ∈ Lip0(Q
0
R) be the function equal to 1 on HR.

Assume that z = M(1−UH) in Q0
R. Then z is a solution of equation (1.1) in G,

z(x) ≥ 0, on HR. Applying the maximum principle to the functions z(x), u(z)
in the domain D, we have z(x) ≥ u(x) on Γ ∪ ∂Q0

R, since z|∂Q0
R

= M ≥ u(x)

and, for x ∈ Γ u(x) = 0 ≤ z(x). Then by virtue of Lemma 2.2 for almost all
x ∈ D we obtain z(x) ≥ u(x). Since sup

x∈D∩Q0
R/2

u(x) ≤ sup
x∈D∩Q0

R/2

z(x), we have

M ≥ M inf
x∈D∩Q0

R/2

UH + sup
x∈D∩Q0

R/2

u(x). (5.2)

Let us estimate the expression inf
x∈D∩Q0

R/2

UH from below. To this end, we

obtain the uniform estimate (from below) of the numbers a(k) = sup
x∈Q0

R/2

U
(k)
H

with sufficiently large k for the corresponding approximating sequence U
(k)
H .

Denote the k-dependent set Γt = {x ∈ Q0
R : U

(k)
H (x) > t}. Then, by virtue of

Lemma 3.4, for an arbitrarily small ε > 0 and a1 ∈ (a(k), a(k) + ε) we have
∫

∂Γ1−ε

∇U
(k)
H · AN dσ =

∫

∂Γa1

∇U
(k)
H · AN dσ + δk, (5.3)

where δk → 0 as k → ∞. Note that Γa1 ⊂ Q0
R/2, N = ∇U

(k)
H /|∇U

(k)
H | on

∂Γ1−ε. By virtue of Lemma 3.3, the left-hand side of (5.3) is estimated by the
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expression
∫

∂Γ1−ε

∇U
(k)
H · AN dσ ≥ 1

1− ε

∫

Q0
R\Γ1−ε

∇U
(k)
H · A∇U

(k)
H dx + δk, (5.4)

which in its turn exceeds

µ

1− ε

∫

Q0
R\Γ1−ε

ρ(x)α∇U
(k)
H · ∇U

(k)
H dx + δk ≥ µ(1− ε)capαΓ1−ε + δk.

The set HR ⊂ Γ1−ε and therefore the right-hand side of inequality (5.5) is
not smaller than µ(1− ε)2 capα HT . Then (5.4) implies

∫

∂Γ1−ε

∇U
(k)
H · AN dσ ≥ µ(1− ε)capαHR + δk, (5.5)

where capαHR is a relative capacity HR with respect to Q0
R.

By virtue of Lemma 3.3, for the right-hand part of (5.3) we obtain
∫

∂Γa1

∇U
(k)
H · AN dσ ≤ 1

a1

∫

Q0
R\Γa1

∇U
(k)
H · A∇U

(k)
H dx + δk. (5.6)

Let ϕa1 ∈
◦

W 1
2,α(Q0

R) be the potential of the set Γa1 generated by functional
(3.6). Then for this potential we have

∫

Q0
R

ρα∇ϕa1 · ∇ϕa1dx = capαΓa1 (5.7)

(see (3.7)). Choosing the test function ϕ = U
(k)
H − a1ϕa1 from equation (1.1),

we obtain (since ϕ ∈
◦

W 1
2,α(Q0

R \ Γa1))

∫

Q0
R\Γa1

∇U
(k)
H · A∇U

(k)
H dx = a1

∫

Q0
R\Γa1

∇U
(k)
H · A∇ϕa1 dx + δk

≤ a1

( ∫

Q0
R

∇U
(k)
H · A∇U

(k)
H dx

)1/2( ∫

Q0
R

∇ϕa1 · A∇ϕa1 dx

)1/2

+ δk.

Therefore∫

Q0
R\Γa1

∇U
(k)
H · A∇U

(k)
H dx ≤ µ−1a2

1

∫

Q0
R\Γa1

∇ϕa1 · ∇ϕa1 dx + δk

= µ−1a2
1 capα Γa1 + δk ≤ µ−1a2

1 capα Q0
R/2 + δk, (5.8)

since Γa1 ⊂ Γa(k) ⊂ Q0
R/2 and (5.7) is fulfilled.
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From (5.3), (5.5) , (5.6), (5.8) it follows that

(1− ε)µ2 capαHR ≤ a1capαQ0
R/2 +

δk

a1

+ δk . (5.9)

We replace here δk

a1
by δk, since a1 ∈ (a(k), a(k) + ε) and, for sufficiently large

k’s, α(k) is close to inf
x∈Q0

R/2

UH . Hence, taking into account the arbitrariness of ε,

we have

a(k) ≥ µ2

(
capαHR

capαQ0
R/2

)
+ δk . (5.10)

It is obvious that

capαHR ≥ capα HR. (5.11)

Let η(x) =
n∏

j=1

η0

( xj

Rσj

)
, η0(t) be an infinite times differentiable function on

(−∞,∞), with a compact support, 0 ≤ η(t) ≤ 1, |η′(t)| ≤ C0; C0 = C0(n),
η(t) = 1 for t ∈ [

0, 1
2

]
, η(t) = 0 for |t| ≥ 1. Then

capαQ0
R/2 ≤

∫

Q0
R

ρα∇η · ∇η dx. (5.12)

Therefore

capα Q0
R/2 ≤ C0

n∑
j=1

R−2σj

∫

Q0
R

ρ(x)αj dx ≤ C0C1R

nP
i=1

σi−β
, (5.13)

C1 = C1(n, α), since for condition (1.3) we have

∫

Q0
R

ρ(x)αj dx ≤ C1R

nP
i=1

σi+αj

. (5.14)

By (5.11), (5.13) and (5.10) we obtain

a(k) ≥ CR
β−

nP
i=1

σi

capα HR + δk, (5.15)

where C = C(n, µ, α, β), δk → 0 as k → ∞. If in estimate (5.15) we assume
that k →∞ and apply Theorem 4.1, then we have

inf
x∈Q0

R/1

UH ≥ η0R
β−

nP
i=1

σi

capα HR, (5.16)

where η0 = η0(n, µ, α, β). Due to (5.16), from (5.2) we obtain (5.1) (keeping in
mind that sup

Q0
R/2

u ≥ sup
Q0

R/4

u and using the maximum principle). ¤
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6. Regularity of a Boundary Point

Let D be a bounded domain and f a continuous function on ∂D. We will
consider the Dirichlet problem

Lu = 0 in D, u|∂D = f. (6.1)

Assume that φ ∈ W 1
2,α(D). Using the classical theory of a Hilbert space (or

the variational method of §3), we easily prove the existence and uniqueness of
a solution of the problem

Lu = 0 in D, u− φ ∈
◦

W 1
2,α(D). (6.2)

Let us now proceed to constructing a solution of problem (6.1). There exists
a sequence of smooth, for example, Lipschitz functions fk approximating f
uniformly on ∂D. There also exists an extension φk of functions fk from ∂D to
all D with the preservation of its Lipschitz property (see [15, p. 206]). Let uk

be a solution of problem (6.2) for φ = φk. Then uk is a fundamental sequence
in the uniform metric. Indeed, according to the maximum principle, we have

ess sup
D

|uk − um| ≤ sup
∂D

|uk − um| = sup
∂D

|fk − fm| → 0 as k,m →∞.

Therefore the sequence uk → uf uniformly in D to some function uf (x). The
function uf is a solution of equation (1.1) in any strictly internal domain D′ ⊂
D. Indeed, let ξ ∈ Lip0(D) be equal to 1 in D′ and to 0 outside D. Then we
have

∫
D

∇uk · A∇(ukξ
2) dx = 0, whence it follows that

∫
D

∇uk · A∇ukξ
2 dx ≤

4
∫
D

∇ξ · A∇ξ dx. Therefore

∫

D′

ρα∇uk · ∇uk dx ≤ µ−1

∫

D′

∇uk · A∇uk dx ≤ C(D′),

where C(D′) does not depend on k. Then ukn → v weakly in W 1
2,α(D′) for

some subsequence ukn . Since, in addition, uk → uf uniformly, we have v = uf .
Thus the function uf , which does not depend on the approximation technique,
is a solution of equation (1.1) in D′. The function uf (x) is called a generalized
solution of problem (6.1).

Definition 6.1. A point x0 ∈ ∂D is called regular if a generalized solution
uf (x) of problem (6.1) is continuous at x0 for any continuous function f on ∂D.

The behavior of the solution of the Dirichlet problem for equation (1.1) near
a nonregular boundary point depends on the domain geometry in an immediate
proximity of this point. Since for the boundary points x0 6= 0 equation (1.1) has
no degeneration, the regularity criterion for these points coincides with Wiener’s
criterion for the Laplace equation (see [3]). Hence we show interest in boundary
point 0. The main result of this work is
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Theorem 6.1. Let D ⊂ En be a bounded domain, 0 ∈ ∂D. Then for bound-
ary point 0 to be regular for equation (1.1) it is necessary and sufficient that

∫

0

R
β−

nP
i=1

σi

capα HR
dR

R
= ∞, (6.3)

or, which is the same,
n∑

m=1

γ(4−m) = ∞, (6.4)

where the set HR = Q0
R \D and capα HR is its capacity, γ(t) = t

β−
nP

i=1
σi

capα Ht.

Proof. Sufficiency. Because of the continuity of the function f , for any ε > 0,
there exists 0 < δ1 < 1 such that |f(x) − f(0)| < ε

2
for |x| < δ1, x ∈ D. We

have fk ∈ Lip(∂D) for which |fk − f | < ε
2

when x ∈ ∂D. Let uk be a solution
of the problem

Luk = 0 in D, uk − φk ∈
◦

W 1
2,α(D), (6.5)

where φk ∈ Lip(D) is an extension of fk with preservation of its Lipshitz prop-
erty to all D (for the existence of such an extension see [15, Ch. VI, p. 206]).
The function z = uk − f(x0) − ε is also a solution of the equation Lz = 0 in
D for any x ∈ {|x| < δ1} ∩ D. The function z(x) is continuous in D. Denote
D′ = {x ∈ D : z(x) > 0}, σ0 = min

1≤k≤n
{σk}. Let m0 ∈ N , 4−m0σ0 < δ1. Then

Q0
4−m0

⊂ {|x| < δ1} and applying Lemma 5.1 to Q0
4−m+1 and Q0

4−m and assuming
that m = m0 + 1, m0 + 2, . . . , l, we have

Mm−1 ≥ (1 + η0γm)Mm, (6.6)

where γm = γ(4−m), Mm = sup
Q0

4−m

z.

Applying repeatedly estimate (6.6) we obtain

Mm0 ≥
l∏

j=m0

(1 + η0γj)Ml ≥ Ml exp

( l∑
j=m0

ln(1 + η0γj)

)

≥ Ml exp

(
η0C0

l∑
j=m0

γj

)
,

where C0 = C0(n). Hence

Ml ≤ Mm0 exp

(
− η0C0

l∑
j=m0

γj

)
. (6.7)

An analogous estimate holds for the function z1 = f(x0) + ε− uk, too:

µl ≤ µm0 exp

(
− η0C0

l∑
j=m0

γj

)
, (6.8)
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where µm = sup
x∈D∩Q0

4−m

z1(x). From (6.7) and (6.8) we obtain the estimate for

|uk(x)− f(0)|. Since uk → uf uniformly in D, we have

sup
D∩Q0

4−l

|uf (x)− f(0)| ≤ ε + 2 max
∂D∩Q0

4−m

|f(x)| exp

(
− η0C0

l∑
j=m0

γj

)
. (6.9)

Choosing l = l(ε) ∈ N so that the second summand is smaller than ε for

l > l(ε), we obtain |uk(x)−f(0)| < 2ε for x ∈ Q0
δ∩D (δ = min(4−l(ε), δ

1/σ0

1 )) and

therefore for |x| < δσ0
(σ0 = max

1≤i≤n
σi), too. Applying an analogous reasoning

to regular boundary point 0, the continuity modulus of the solution uf (x) is
estimated through the continuity modulus of the function f and the sum of
series (6.4).

Let |f(x)− f(0)| < θ(|x|), where θ(x) ↓ 0 is the continuity modulus. Then

|uf (x)− f(0)| ≤ 2 max
∂D

|f | exp

(
− C0

δ
1/σ0

1∫

ρ(x)

τ
β−

nP
i=1

σi

capα Hτ
dτ

τ

)
+ θ(δ)

for ρ(x) ≤ δ
1/σ0

1 . (6.10)

Such estimates for equation (1.1) were obtained for the first time in [17].
To prove the necessity we need the following

Proposition 6.1. Let H ⊂ Q0
R \Q0

R/4 be the closed set, and vH ∈
◦

W 1
2,α(En)

be the potential of the set H. Then

sup
x∈Q0

R/8

vH ≤ CR
β−

nP
j=1

σj

capα H, C = C(n, µ, β, α). (6.11)

To show estimate (6.11) for sufficiently large k ∈ N , we obtain the uniform

estimate for the approximating sequence v
(k)
H (x).

Let t ∈ (0, 1), Γt = {x ∈ En : v
(k)
H (x) > t}, b(k) = inf

x∈Q0
R/8

v
(k)
H (x). Then

Q0
R/8 ⊂ Γb(k) . Using Lemmas 3.3 and 3.4, for an arbitrary small ε > 0 and

b1 ∈ (b(k) − ε, b(k)) we obtain

∫

En\Γb1

∇v
(k)
H · A∇v

(k)
H dx ≤ b1

∫

∂Γb1

∇vH · AN dσ + δk

≤ δk + b1

∫

∂Γ1−ε

∇v
(k)
H · AN dx ≤ b1

1− ε

∫

En\Γ1−ε

∇v
(k)
H · A∇v

(k)
H dx + δk, (6.12)
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where δk → 0 as k →∞. If Q0
R/8 ⊂ Γb1 , then we have

∫

En\Γb1

∇v
(k)
H · A∇v

(k)
H dx ≥ µ

∫

En\Γb1

ρα∇v
(k)
H · ∇v

(k)
H dx

≥ µb2
1 capα Γb1 ≥ µb2

1 capα Q0
R/8. (6.13)

Let us estimate capα Q0
R/8 from below. Clearly, capα Q0

R/8 ≥ capα(Q0
R/8 \

Q0
R/16). Denote K = Q0

R/8 \ Q0
R/16. Then capα K = inf

∫
En

ρα(x)∇ϕ · ∇ϕdx,

where the lower bound is taken over all ϕ ∈ Lip0(En) equal to 1 on K. It is
obvious that

capα K ∼ inf
{ϕ}

n∑
j=1

Rαj

∫

En

ϕ2
xj

dx. (6.14)

If we make the change x → ξ by the formula x=Rσξ = (Rσ1ξ1, R
σ2ξ2, . . . , R

σnξn)
in integral (6.14), then K transforms to P = Q0

1/8 \Q0
1/16 and we have

n∑
j=1

Rαj

∫

En

ϕ2
xj

dx = R

nP
i=1

σi−β
∫

En

|∇ψ|2 dξ, (6.15)

where ψ(ξ) = ϕ(x(ξ)). Minimizing the right-hand side of (6.15) over all admis-
sible functions ψ, we obtain

n∑
j=1

Rαj

∫

En

ϕ2
xj

dx ≥ C1R

nP
i=1

σi−β
. (6.16)

Here the value C1 = C1(n, µ, α, β) is equal to the Wiener capacity of the com-
pactum P which exceeds some constant C(n, µ, α, β). From (6.14), (6.15) and
(6.16) we find

capα Q0
R/8 ≥ CR

nP
j=1

σj−β

, C = C(n, µ, α, β). (6.17)

Taking into account (6.13) and (6.17), we obtain

∫

En\Γb1

∇v
(k)
H · A∇v

(k)
H dx ≥ Cb2

1R

nP
j=1

σj−β

. (6.18)

Since H ⊂ Γ1−ε, we have∫

En\Γ1−ε

∇v
(k)
H · A∇v

(k)
H dx ≤

∫

En\H

∇v
(k)
H · A∇v

(k)
H dx ≤ µ−1 capα H. (6.19)

From estimates (6.18), (6.19) and (6.12) we obtain the estimate for b1, whence
by virtue of the arbitrariness of ε we have

b(k) ≤ CR
β−

nP
j=1

σj

capα H. (6.20)
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Passing to the limit as k → ∞, from (6.20) we obtain the estimate for
inf

x∈Q0
R/8

vH(x) and thus, applying Theorem 4.1, we have

sup
x∈Q0

R/8

vH(x) ≤ CR
β−

nP
j=1

σj

capα H, (6.21)

C = C(n, µ, α, β). Estimate (6.11) is proved.
Necessity. Assume that condition (6.4) is not fulfilled. Let U(x) be the

potential of the set Q0
4−m0

\D, the integer m0 ∈ N will be chosen later. We will
show that for any δ > 0 there exists a point x′ ∈ Q0

δ , x′ 6= 0, x′ ∈ D, for which
U(x′) < 1

2
. Since series (6.4) is convergent, there is an integer m1 for which

4−m1 < δ,

γm1−1 ≤ µ2

8
. (6.22)

Let us denote by U0(x) ∈
◦

W 1
2,α(En) the potential of the set Gm1−1 = Q0

4−m1+1\
D and show that

inf
x∈Q0

4−m1−1

U0 <
1

4
.

We again pass over to the approximating sequence U
(k)
0 (x). For this,we denote

a(k) = inf
x∈Q0

4−m1

U
(k)
0 (x), Γt = {x ∈ En : U

(k)
0 (x) > t}, t ∈ (0, 1). Then, taking

into account that Q0
4−m ⊂ Γa(k) and using Lemmas 3.3, 3.4, for arbitrarily small

ε > 0 and a1 ∈ (a(k) − ε, a(k)) we have

µC14
−mqa2

1 ≤ µa2
1 capα Γa1 ≤ µ

∫

En\Γa1

ρα∇U
(k)
0 · ∇U

(k)
0 dx

≤
∫

En\Γa1

∇U
(k)
0 · A∇U

(k)
0 dx = a1

∫

∂Γa1

∇U
(k)
0 · AN dσ + δk

= a1

∫

∂Γ1−ε

∇U
(k)
0 · AN dσ =

a1

1− ε

∫

En\Γa1

∇U
(k)
0 · A∇U

(k)
0 dx + δk. (6.23)

Let ψ ∈
◦

W 1
2,α(En) be the potential of the set Γ1−ε generated by functional

(3.6). Then ϕ = u
(k)
0 − (1− ε)ψ ∈

◦
W 1

2,α(En \ Γ1−ε) is the test function for (1.1)
in En \ Γ1−ε and therefore∫

En\Γ1−ε

∇U
(k)
0 · A∇ϕdx = δk → 0

or ∫

En\Γ1−ε

∇U
(k)
0 · A∇U

(k)
0 dx = (1− ε)

∫

En\Γ1−ε

∇U
(k)
0 · A∇ψ dx + δk,
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whence we find∫

En\Γ1−ε

∇u
(k)
0 · A∇u

(k)
0 dx ≤ (1− ε)2

∫

En\Γ1−ε

∇ψ · A∇ψ dx + δk

≤ δk + µ−1(1− ε)2

∫

En\Γ1−ε

ρα(x)∇ψ · ∇ψ dx

= µ−1(1− ε)2 capα Γ1−ε + δk. (6.24)

Now, since ε > 0 is arbitrary, we conclude that the right-hand part of (6.24)
does not exceed

3

2
µ−1 capα Gm1−1. (6.25)

Therefore (6.23) implies that

a(k) ≤ 3

2
µ−24mq capα Gm1−1 + δk, q =

n∑
i=1

σi − β.

Making k →∞, from the latter inequality we obtain

inf
x∈Q0

4−m1

U0(x) <
3

16
.

Then there exists a point x′ ∈ Q0
δ such that U0(x

′) < 1
4
. We put

U =

m1−2∑
m=m0

Um + U0,

where Um ∈
◦

W 1
2,α(En) is the potential of the set Km = (Q 0

4−m \ Q0
4−m−1) \ D.

Now, applying estimate (6.9) of Proposition 6.1 to this potential and assuming
m = m0 + 1,m0 + 2, . . . , m1 − 2, we obtain

Um(x′) ≤ sup
x∈Q0

4−m−2

Um(x) ≤ C4mq capα Km, C = C(n, µ, α, β).

Therefore U(x′) ≤ 1
4

+ C
m1−2∑
m=m0

γm.

Let us now choose m0 so large that the latter sum be < 1
4
. Then U(x′) < 1

2
and the necessity is proved. ¤

The approach to the construction of the potential U is analogous to that
presented in [18, p. 43], while the proof of the sufficiency begins as described
in [19, p. 50].

In the case of nondegenerated elliptic equations of second order we know
the sufficient conditions for a boundary point which are of obvious geometric
character, say, when the boundary points may have contact with the cone or
funnel vertex lying outside the domain [18, pp. 44, 45]. In Proposition 6.2 below
we give an analogous sufficient condition for the regularity of the boundary point
at which the equation degenerates.



624 R. A. AMANOV AND F. I. MAMEDOV

Condition K. Let g ⊂ Q0
h0

be some set of positive Wiener capacity (capα g 6=
0, α = 0), 0 ∈ ∂g, where h0 is some integer.

Assume that for every t ∈ (0, h0), the transformation

y = (h0/t)
σx

brings the set Q0
t \ D to g. Then we say that the domain D satisfies the con-

dition K.

Proposition 6.2. Let D ⊂ En, 0 ∈ ∂D. If the domain D satisfies the
condition K. then the point 0 is regular.

Proof. It is sufficient to apply Theorem 6.1, i.e. to show the divergence of the
integral in condition (6.3).

It is not difficult to show the estimate

capα(Q0
t \D) ≥ C1t

nP
k=1

σk−β
, (6.26)

where C1 is the Wiener capacity of the set g.
Indeed, let u(x) be a test function for Q0

t \ D, i.e. v ∈ C∞
0 (En), v(x) ≥ 1

on Q0
t \ D. Then according to the condition K the change of the variables

x = (t/h0)
σy transforms the set Q0

t \D to g. Therefore

∫

En

ρα(x)∇v · A∇v dx = t

nP
k=1

σk−β
∫

En

(∇yṽ)2 dy, (6.27)

where ṽ(y) = v((t/h0)
σy). It is not difficult to verify that the function ṽ in

(6.27) is the test function for g, i.e. ṽ|g ≥ 1, ṽ ∈ C∞
0 (En), whence follows

estimate (6.26). Using (6.26) in integral (6.3), we obtain its divergence.
The proposition is proved. ¤

Let the set K1 ≡ K(h0) ⊂ Q0
h0

, 0 ∈ ∂K1, capα K1 6= 0, t ∈ (0, h0), be such
that the transformation

x = (t/h0)
σy

brings this set to the part lying in the ball Q0
t . We call such a set K1 a metric

cone with vertex at 0.

Proposition 6.3. If 0 ∈ ∂D and the point 0 can be contacted outside the
domain by the vertex of some metric cone K1, then the point is regular.
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