ON WIENER'S CRITERION FOR AN ELLIPTIC EQUATION WITH NONUNIFORM DEGENERATION

RABIL A. AMANOV AND FARMAN I. MAMEDOV

Abstract. For some class of nonuniformly degenerated elliptic equations of second order, a necessary and sufficient condition for boundary points to be regular is found. This condition is an analogue of Wiener's criterion for the Laplace equation.

2000 Mathematics Subject Classification: 35B65, 35J67. **Key words and phrases:** Wiener's criterion, boundary regularity conditions, elliptic equations, nonuniformly degenerated.

1. INTRODUCTION

Let E_n be an *n*-dimensional space of points $x = (x_1, x_2, \ldots, x_n), n \ge 2, D$ be the bounded domain in E_n with boundary $\partial D, 0 \in \partial D$. We will consider the equation

$$Lu = \sum_{i,j=1}^{n} \frac{\partial}{\partial x_i} \left(a_{ij}(x) \frac{\partial u}{\partial x_j} \right) = 0$$
(1.1)

in the domain D. The elements of the matrix $A = ||a_{ij}(x)||$ given in E_n are symmetrical, real, measurable and satisfy the condition

$$\mu \sum_{j=1}^{n} \rho(x)^{\alpha_j} \eta_j^2 \le \eta \cdot A\eta \le \mu^{-1} \sum_{j=1}^{n} \rho(x)^{\alpha_j} \eta_j^2, \tag{1.2}$$

where η is an arbitrary vector in E_n , $\mu = const \leq 1$. Here and in what follows the point denotes a usual scalar product in E_n , $\rho(x) = \max_{1 \leq i \leq n} |x_i|^{1/\sigma_i}$. With regard to the constants we also make the following assumptions:

$$\sigma_i = \frac{\alpha_i + \beta}{2} > 0, \quad |\alpha_i| < \sum_{j=1}^n \sigma_j, \quad \beta \ge 0, \tag{1.3}$$

where i = 1, 2, ..., n.

The aim of this paper is to prove a Wiener type criterion of the regularity of a boundary point (see [1] and [2]) in the case of the first boundary value problem for equation (1.1), which admits nonuniform power degeneration at the point 0. For equation (1.1) without degeneration ($\alpha_i = 0, i = 1, 2, ..., n$), the criterion of regularity of boundary points was obtained in the fundamental work [3] (for another proof see [4]). The corresponding results for nondivergent equations with Dini continuous coefficients (or with a ellipticity function) can be found

ISSN 1072-947X / \$8.00 / © Heldermann Verlag www.heldermann.de

in [5], [6] ([7]). With regard to equation (1.1) we also want to mention the important work [8] in the case of uniform degeneration of $\omega(x)$ (which replaces all $\rho(x)^{\alpha_i}$, i = 1, 2, ..., n, in condition (1.2)) satisfying the Muckenhoupt condition A_2 .

Note that in the case of equation (1.1) the question of internal regularity satisfying condition (1.2) is considered in [9]-[11].

2. Definitions, the Notation and Auxiliary Statements

We denote by $\nabla u = (u_{x_1}, u_{x_2}, \dots, u_{x_n})$ the gradient of the function u(x); $\rho^{\alpha} \nabla u$ is the vector $(\rho(x)^{\alpha_1} u_{x_1}, \rho(x)^{\alpha_2} u_{x_2}, \dots, \rho(x)^{\alpha_n} u_{x_n})$. $\|\rho(x)^{\alpha/2} \nabla u\|_{2,D}$ stands for the sum $\sum_{j=1}^{n} \|\rho(x)^{\alpha_j/2} \nabla u_{x_j}\|_{2,D}$, where $\|\cdot\|_{2,D}$ is a usual Lebesgue norm in $L_2(D)$.

We denote by $\operatorname{Lip}(D)$ the space of Lipshitz continuous functions having a continuous extension in \overline{D} , by $\operatorname{Lip}_0(D)$ a subspace of functions $\operatorname{Lip}(D)$ vanishing on ∂D . $W_{2,\alpha}^1(D)$ is the closure of the space $\operatorname{Lip}(D)$ with respect to the norm

$$||f|| = ||f||_{2,D} + ||\rho^{\alpha/2} \nabla u||_{2,D},$$

where $||f||_{2,D} = ||f||_{L_2(D)}$. $\overset{\circ}{W}^1_{2,\alpha}(D)$ is a subspace of $W^1_{2,\alpha}(D)$, in which the set of all functions $\operatorname{Lip}_0(D)$ is dense.

We denote by Q_R^x a quasiball $\{y \in E_n : \rho(y - x) < R\}$.

Definition 2.1. We say that a function $u(x) \in W_{2,\alpha}^1(D)$ is not greater (smaller) than the constant M on a set $E \subset \overline{D}$ in the sense of $W_{2,\alpha}^1(D)$ if there exists a sequence of functions $u_j \in \text{Lip}(D)$ such that 1) $u_j(x) \leq M$ ($u_j(x) \geq M$) on E and 2) $||u_j - u|| \to 0$ in the norm of the space $W_{2,\alpha}^1(D)$ as $j \to \infty$.

Definition 2.2. Any sequence $u_j(x) \in \text{Lip}(D)$ satisfying condition 2) is called approximating for a function $u(x) \in W_{2,\alpha}^1(D)$.

Definition 2.3. A function $u(x) \in W_{2,\alpha}^1(D)$ is said to be equal to M on a set $E \subset \overline{D}$ in the sense of $W_{2,\alpha}^1(D)$ if simultaneously $u(x) \ge M$ and $u(x) \le M$ on E in the sense of $W_{2,\alpha}^1(D)$.

Note that a function $u(x) \in W^1_{2,\alpha}(D)$ is equal to M if and only if there exists an approximating sequence $u_j(x)$ equal to M on the set E.

Let $k \in R$, $u(x) \in W^1_{2,\alpha}(D)$. Denote by $\{u\}_k = \max(u(x), k), \{u\}^k = \min(u(x), k)$ the sections of the function u(x).

Lemma 2.1. A section $\{u\}_k$ of a function $u(x) \in W^1_{2,\alpha}(D)$ belongs to this space and, if u_j approximates u(x), then sections $\{u_j\}_k$ will approximate $\{u\}_k$, $\|\{u_j\}_k - \{u\}_k\| \to 0$ in the norm $W^1_{2,\alpha}(D)$ as $j \to \infty$.

Proof. We extract from u_j an a.e. converging subsequence. Preserving for it the notation of the original sequence, we have

$$u_j \to u, \quad \nabla u_j \to \nabla u \quad \text{a.e.} \quad x \in D \quad \text{as} \quad j \to \infty.$$
 (2.1)

It is obvious that $\{u_j\}_k \in \text{Lip}(D), \{u\}_k = k + (u-k)\chi_{u>k}, \{u_j\}_k = k + (u_j - k)\chi_{u_j>k}$, where χ_E denotes the characteristic function of the set E. Therefore

$$\{u_j\}_k - \{u\}_k = (u_j - u)\chi_{u_j > k} + (u - k)(\chi_{u_j > k} - \chi_{u > k}).$$
(2.2)

By the Minkovski inequality, from (2.2) we have

$$\|\{u_j\}_k - \{u\}_k\|_{2,D} \le \|(u_j - u)\chi_{u_j > k}\|_{2,D} + \|(u - k)(\chi_{u_j > k} - \chi_{u > k})\|_{2,D} \to 0$$

as $j \to \infty$. Indeed, the first summand does not exceed $||u_j - u||_{2,D}$ which tends to zero, while the second summand tends to zero by virtue of Lebesgue's majorant theorem, since $\chi_{u_j>k} \to \chi_{u>k}$ a.e. for almost all $x \in D$. Furthermore, (2.2) readily implies that

$$\nabla \{u_j\}_k - \nabla \{u\}_k = \nabla (u_j - u)\chi_{u_j > k} + \nabla u(\chi_{u_j > k} - \chi_{u > k}).$$

Then

$$\begin{split} \left\| \rho^{\alpha/2} \nabla(\{u_j\}_k - \{u\}_k) \right\|_{2,D} &\leq \left\| \chi_{u_j > k} \cdot \rho^{\alpha/2} \nabla(u_j - u) \right\|_{2,D} \\ &+ \left\| (\chi_{u_j > k} - \chi_{u > k}) \rho^{\alpha/2} \nabla u \right\|_{2,D} \to 0, \end{split}$$

also by virtue of Lebesgue's theorem and the fact that $u_j(x)$ approximates u(x).

We have proved that

$$\|\{u_j\}_k - \{u\}_k\|_{2,D} \to 0 \quad \text{as} \quad j \to \infty$$

with respect to the norm $W_{2,\alpha}^1(D)$ for some subsequence u_j . If this relation is violated for some subsequence u_{j_n} , then, applying the above-given arguments to this subsequence, we come to a contradiction.

Note that in case of Sobolev space $W_p^1(D)$ the analogous statements in [12, Ch. 2, §3] and also [3, Lemma 1.1] are proved using other approaches.

Definition 2.4. A function $u(x) \in W^1_{2,\alpha}(D)$ is called a solution of equation (1.1) in the domain D if

$$\int_{D} \nabla u \cdot A(x) \nabla \varphi \, dx = 0, \quad \forall \varphi \in \operatorname{Lip}_{0}(D).$$
(2.3)

It is not difficult to verify that if $u(x) \in W^1_{2,\alpha}(D)$ is a solution of equation (1.1), then identity (2.3) is fulfilled for any test function $\varphi \in \overset{\circ}{W}^1_{2,\alpha}(D)$.

Definition 2.5. A function $u \in W_{2,\alpha}^1(D)$ satisfying the inequality

$$\int_{D} \nabla u \cdot A(x) \nabla \varphi \, dx \leq 0 \qquad (2.4)$$

for any $\varphi \in \operatorname{Lip}_0(D)$, $\varphi \geq 0$, is called a subsolution (supersolution) of the operator L in D.

Definition 2.6. Let $H \subset E_n$ be a compact subset. We say that the capacity of the compactum H is the number

$$\operatorname{cap}_{\alpha} H = \inf \int_{E_n} \rho^{\alpha}(x) \nabla u \cdot \nabla u \, dx, \qquad (2.5)$$

where the lower bound is taken over all admissible functions $u \in \text{Lip}_0(E_n)$, $u(x) \ge 1$ on H.

The next lemma is an analogue of the corresponding statement in [13].

Lemma 2.2 (Maximum Principle). Let $u(x) \in W_{2,\alpha}^1(D)$ be a solution of equation (1.1) in the domain D and $u(x) \leq M$ ($u(x) \geq M$) on the boundary ∂D of the domain D in the sense of $W_{2,\alpha}^1(D)$. Then $u(x) \leq M$ ($u(x) \geq M$) for almost all $x \in D$.

Proof. Let $\varepsilon > 0$ be an arbitrary integer. By virtue of Lemma 2.1 the function $\varphi = \{u\}_{M+\varepsilon} - (M+\varepsilon)$ belongs to $\overset{\circ}{W}^{1}_{2,\alpha}(D)$. Substituting this test function into identity (2.3), we have

$$\int_{D} \nabla \{u\}_{M+\varepsilon} \cdot A \nabla \{u\}_{M+\varepsilon} = 0,$$

from which, using the Sobolev–Gagliardo inequality and conditions (1.2), (1.3) we obtain

$$\begin{aligned} \|\{u\}_{M+\varepsilon} - (M+\varepsilon)\|_{\frac{n}{n-1},D} &\leq C \|\nabla\{u\}_{M+\varepsilon}\|_{1,D} \\ &\leq C \bigg(\int_{D} \sum_{j=1}^{n} \rho^{\alpha_{j}} |\nabla\{u\}_{M+\varepsilon}|^{2} dx \bigg)^{1/2} \bigg(\int_{D} \sum_{j=1}^{n} \rho^{-\alpha_{j}}(x) dx \bigg)^{1/2} \\ &\leq C \int_{D} \nabla\{u\}_{M+\varepsilon} \cdot A \nabla\{u\}_{M+\varepsilon} dx = 0, \quad C = C(n,\mu,\alpha,D). \end{aligned}$$

Then $\{u\}_{M+\varepsilon} \leq M + \varepsilon$ a.e. for almost all $x \in D$ and taking into account the arbitrariness of $\varepsilon > 0$, we find that $u(x) \leq M$ for almost all $x \in D$.

3. CAPACITY AND THE POTENTIAL

Let $H \subset Q$ be a compact subset of the quasiball Q. Following [3, §4], let us consider the variational problem

$$D(v) = \int_{Q} \nabla v \cdot A \nabla v \, dx \to \inf$$
(3.1)

in the class S of admissible functions, $v \in \operatorname{Lip}_0(Q)$, $v(x) \geq 1$ on H. The set $S \subset W^1_{2,\alpha}(Q)$ is convex, but not closed. Denote by \overline{S} the closure of S. Since the functional D(v) is continuous, the lower bound D(v) on \overline{S} coincides with

the lower bound on S. The functional is strongly convex in $W_{2,\alpha}^1(Q)$: for any $u, v \in W_{2,\alpha}^1(Q)$ we have

$$D\left(\frac{u+v}{2}\right) - \frac{1}{2}D(u) - \frac{1}{2}D(v) = -\frac{1}{4}D(u-v) \le -\frac{\mu}{4}\|u-v\|_{W^{1}_{2,\alpha}(Q)}^{2}.$$

Since the set \overline{S} is convex and closed, there exists a function v_H such that the functional D(v) attains its lower bound on \overline{S} . We will show that v_H is unique. Let $\inf D(f) = D(u) = D(v) = d$ simultaneously for two different functions $u, v \in W_{2,\alpha}^1(D)$. If $u = tv, t \in R$, then we have $d = D(v) = D(tv) = t^2 D(v) = t^2 d$, whence t = 1, i.e. u = v. If u, v are linearly independent, then the strict inequality

$$\left\| \int_{Q} \nabla v \cdot A \nabla u \, dx \right| < \sqrt{D(u) \cdot D(v)}$$

is valid. Therefore for $\frac{u+v}{2} \in \overline{S}$ we have

$$D\left(\frac{u+v}{2}\right) = \frac{1}{4}D(u) + \frac{1}{4}D(v) + \frac{1}{2}\int_{Q} \nabla u \cdot A\nabla v \, dx < d$$

which contradicts the condition $D(u) = \inf$.

Definition 3.1. Let $H \subset Q$ be a compactum, $v_H \in \overset{\circ}{W}{}^{1}_{2,\alpha}(Q)$ be a unique solution of the variational problem

$$D(f) \to \inf, \quad f \in \overline{S}.$$
 (3.2)

Then the function v_H is called the potential of the set H.

If $\{v_H\}^1$ is a section of the function v_H , then by virtue of Lemma 2.1 we have $\{v_H\}^1 \in \overline{S}$ and therefore $D(\{v_H\}^1) \leq D(v_H) = \inf$. Thus $v_H = 1$ on H in the sense of $\overset{\circ}{W}_{2,\alpha}^1(Q)$. For any $\varepsilon > 0$, $\psi \in \operatorname{Lip}_0(Q)$, $\psi \ge 0$ we have

$$D(v_H + \varepsilon \psi) \ge D(v_H)$$
 on H , (3.3)

whence, applying the well known variational technique, we obtain

$$\int_{Q} \nabla v_H \cdot A \nabla \psi \, dx \ge 0, \tag{3.4}$$

i.e. v_H is a supersolution of the operator L in Q. If in (3.3) we take an arbitrary ε , for any $\psi \in \operatorname{Lip}_0(Q \setminus H)$, then for v_H we obtain the identity $\int_Q \nabla v_H \cdot A \nabla \psi \, dx =$

0, i.e. v_H is a solution of equation (1.1) outside H. Finally, applying the maximum principle to the potential v_H , we obtain $0 \le v_H \le 1$. Thus we have proved the following statement.

Lemma 3.1. Let $H \subset Q$ be a compact subset. Then there exists a unique solution of problem (3.2) with the properties: the function v_H delivers inf to the functional D(f) and is a unique function in this sense; the function v_H is a

supersolution of the operator L in Q; v_H is a solution of equation (1.1) outside H; v_H satisfies the inequality $0 \le v_H(x) \le 1$ a.e. in Q; $v_H = 1$ for $x \in \text{int } H$.

Now let us consider the operator

$$L_1 v = \sum_{i=1}^n \frac{\partial}{\partial x_i} \left(\rho(x)^{\alpha_i} \frac{\partial v}{\partial x_i} \right).$$
(3.5)

All that has been said above refers to the functional

$$D_1(v) = \int_Q \rho(x)^{\alpha} \nabla v \cdot \nabla v \, dx, \qquad (3.6)$$

too, i.e. the following statement is true.

Lemma 3.2. For any compactum $H \subset Q$, the variational problem

$$D_1(v) \to \inf, \quad v \in \overline{S},$$

has a unique solution v_H . The number

$$\overline{\operatorname{cap}}_{\alpha}H = D_1(v_H) = \inf$$
(3.7)

is called the capacity of the compactum H with respect to the quasiball Q (if Q coincides with E_n , then we have the capacity from Definition 2.6). The function v_H is a solution of the equation $L_1 u = 0$ in $Q \setminus H$, a supersolution of the operator L_1 in Q, and also $0 \le v_H \le 1$, $v_H = 1$ on H in the sense of $W^1_{2,\alpha}(D)$.

The next two lemmas are the obvious formulas for a classical solution of problem (1.1).

Lemma 3.3. Let $H \subset E_n$ be a compact subset, $v \in \overset{\circ}{W}^{1}_{2,\alpha}(E_n)$ be its potential, and $v^{(k)}(x)$ approximate v(x) as $k \to \infty$, $G = E_n \setminus H$. Then for almost all $t \in (0, 1)$ we have the identity

$$t \int_{\partial \Gamma_t} \nabla v^{(k)} \cdot AN \, d\sigma = \int_{E_n \setminus \Gamma_t} \nabla v^{(k)} \cdot A \nabla v^{(k)} \, dx + \delta_k, \tag{3.8}$$

where $\delta_k \to 0$ as $k \to \infty$, $N = (N_1, N_2, \dots, N_m)$ is the inward normal vector to the domain boundary

$$\Gamma_t = \left\{ x \in E_n : v^{(k)}(x) > t \right\}$$

(depending also on k).

Proof. Let $\varphi = g_h(x)v^{(k)}(x)$, where $g_h(x) = \frac{t-v^{(k)}(x)}{h}$ for $x \in \Gamma_{t-h} \setminus \Gamma_t$, $g_h(x) = 1$ for $x \in E_n \setminus \Gamma_{t-h}$, $g_h(x) = 0$ for $x \in \Gamma_t$, $t \in (0, 1]$, h is sufficiently small. It is obvious that the function $\varphi \in \overset{\circ}{W}{}_{2,\alpha}^1(G)$, and since from the identity

$$\int\limits_{G} \nabla v \cdot A \nabla \varphi \, dx = 0$$

it follows that

$$\int_{G} \nabla v^{(k)} \cdot A \nabla \varphi \, dx = \delta_k \to 0 \quad \text{as} \quad k \to \infty,$$
(3.9)

after substituting the expression for φ into this identity we obtain

$$-\frac{1}{h} \int_{\Gamma_{t-h} \setminus \Gamma_t} v^{(k)} \nabla v^{(k)} \cdot A \nabla v^{(k)} \, dx + \int_{E_n \setminus \Gamma_t} g_h \nabla v^{(k)} \cdot A \nabla v^{(k)} \, dx = \delta_k.$$
(3.10)

Using Federer's formula [14, p. 40] and Lebesgue's theorem [15, §1, Ch. 1] for almost all $t \in (0, 1)$, we obtain for the first summand in (3.10)

$$\frac{1}{h} \int_{\Gamma_{t-h} \setminus \Gamma_{t}} v^{(k)} \nabla v^{(k)} \cdot A \nabla v^{(k)} \, dx = \frac{1}{h} \int_{t-h}^{t} s \, ds \left(\int_{\partial \Gamma_{s}} N \cdot A \nabla v^{(k)} \, d\sigma_{s} \right)$$
$$\to t \cdot \int_{\partial \Gamma_{t}} \nabla v^{(k)} \cdot AN \, d\sigma_{t} \quad (3.11)$$

as $h \to 0$, since $N = \nabla v^{(k)} / |\nabla v^{(k)}|$ on the surface $\partial \Gamma_s$. By virtue of Lebesgue's majorant theorem we have

$$\int_{E_n \setminus \Gamma_t} g_h \nabla v^{(k)} \cdot A \nabla v^{(k)} \, dx \to \int_{E_n \setminus \Gamma_t} \nabla v^{(k)} \cdot A \nabla v^{(k)} \, dx \quad \text{as} \quad h \to 0.$$
(3.12)

Passing to the limit as $h \to 0$ and taking into account (3.11), (3.12) we obtain (3.8).

Lemma 3.4. Let $H \subset E_n$ be a compactum, v(x), $v^{(k)}(x)$, Γ_t be the same as in Lemma 3.3. Then for a.e. for almost all 0 < s < t < 1 the identity

$$\int_{\partial \Gamma_s} \nabla v^{(k)} \cdot AN \, d\sigma_s = t \cdot \int_{\partial \Gamma_t} \nabla v^{(k)} \cdot AN \, d\sigma_t + \delta_k \tag{3.13}$$

is valid, where $\delta_k \to 0$ as $k \to \infty$, $d\sigma_s$ is an element of the (n-1)-dimensional Lebesgue measure on the surface $\partial \Gamma_s$ (depends on k).

The proof of this lemma is analogous to that of Lemma 3.3. In identity (3.9) we set the test function $\varphi = g_h(x)f_h(x)$, where $g_h(x)$ is the same as in Lemma 3.3, $f_h(x) = \frac{v^{(k)}(x)-s}{h}$ for $x \in \Gamma_s \setminus \Gamma_{s+h}$, $f_h(x) = 1$ for $x \in \Gamma_{s+h}$, $f_h(x) = 0$ for $x \in E_n \setminus \Gamma_s$. Then

$$-\frac{1}{h} \int_{\Gamma_s \setminus \Gamma_{s+h}} v^{(k)} \nabla v^{(k)} \cdot A \nabla v^{(k)} \, dx + \frac{1}{h} \int_{\Gamma_{t-h} \setminus \Gamma_t} v^{(k)} \nabla v^{(k)} \cdot A \nabla v^{(k)} \, dx = \delta_k \to 0$$

as $k \to \infty$. If $h \to 0$, then analogously to (3.11) we obtain (3.13).

4. The Harnack Inequality

Theorem 4.1. Let $G_R = Q_R^0 \setminus Q_{R/4}^0$, $u(x) \in W_{2,\alpha}^1(G_R)$ be a positive solution of equation (1.1) in G_R . Then there exists a constant $C = C(n, \mu, \alpha, \beta)$ such that

$$\operatorname{ess\,sup}_{\partial Q^0_{r/2}} u(x) \le C \operatorname{ess\,inf}_{\partial Q^0_{r/2}} u(x). \tag{4.1}$$

Proof. By definition, for any $\varphi \in W^1_{2,\alpha}(G_R)$

$$\int_{G_R} \nabla v \cdot A \nabla \varphi \, dx = 0. \tag{4.2}$$

Performing the change $x = R^{\sigma}\xi = (R^{\sigma_1}\xi_1, R^{\sigma_2}\xi_2, \dots, R^{\sigma_n}\xi_n)$, we obtain

$$\int_{T} \nabla_{\xi} v \cdot B \nabla_{\xi} \psi \, d\xi = 0, \tag{4.3}$$

where $T = Q_1^0 \setminus Q_{1/4}^0$ is the image of the set G_R ; $B = ||b_{ij}(\xi)||$, $b_{ij} = R^{\beta - \sigma_i - \sigma_j} \times a_{ij}(x(\xi)), i, j = 1, 2, ..., n$. $x(\xi) = R^{\sigma}\xi, \nabla_{\xi}v$ denotes the vector $(v_{\xi_1}, v_{\xi_2}, ..., v_{\xi_n})$, and $\psi(\xi) = \varphi(x(\xi))$ is an arbitrary function from the space $\hat{W}_2^1(T), v(\xi) = u(x(\xi))$.

The matrix B is uniformly elliptic on T. Indeed,

$$\mu \sum_{j=1}^{n} \rho(x(\xi))^{\alpha_j} R^{\beta - 2\sigma_j} \eta_j^2 \le \eta \cdot B\eta \le \mu^{-1} \sum_{j=1}^{n} \rho(x(\xi))^{\alpha_j} R^{\beta - 2\sigma_j} \eta_j^2.$$

Since $x \in G_R$ for $\xi \in T$, we have

$$\frac{R}{4} < \rho(x) < R, \tag{4.4}$$

and therefore

$$|\eta|^2 \frac{\mu}{4^{\alpha_0}} \le \eta \cdot B\eta \le \mu^{-1} 4^{\alpha_0} |\eta|^2 \quad \forall \eta \in E_n,$$
(4.5)

where $\alpha_0 = \max_{1 \le j \le n} |\alpha_j|$. The image of the points $x \in \partial Q_{r/2}^0$ belongs to $T' = \partial Q_{1/2}^0$.

It is obvious that $T' \subset T$ and a usual distance $\operatorname{dist}(T', \partial T) > 0$ does not depend on R. The function $v(\xi)$ belongs to $W_2^1(T)$, since $u(x) \in W_{2,\alpha}^1(G_R)$. Indeed, from (4.4) we have

$$\int_{G_R} \rho^{\alpha} \nabla u \cdot \nabla u \, dx = \sum_{j=1}^n R^{\sum_{i=1}^n \sigma_i} \int_T \rho(x(\xi))^{\alpha_j} R^{-2\sigma_j} u_{\xi_j}^2 \, d\xi \sim R^{\sum_{i=1}^n \sigma_i - \beta} \int_T |\nabla_{\xi} u|^2 \, d\xi.$$

Identity (4.3) implies that $v(\xi)$ is a positive solution of the equation

$$\sum_{i,j=1}^{n} \frac{\partial}{\partial \xi_i} \left(b_{ij}(\xi) \frac{\partial v}{\partial \xi_j} \right) = 0$$
(4.6)

from $W_2^1(T)$ on T. In view of (4.5), equation (4.6) is elliptic on T and therefore the Harnack inequality

$$\operatorname{ess\,sup}_{\xi\in T'} v(\xi) \le C \operatorname{ess\,inf}_{\xi\in T'} v(\xi) \tag{4.7}$$

is fulfilled for it (see [16]). Here the constant $C = C(n, \mu, \alpha, \beta)$. By the inverse transformation $\xi \to x$, from estimate (4.7) we derive (4.1).

5. Lemma on the Increase of Positive Solutions

Lemma 5.1. Let $D \subset Q_R^0$ be the domain having limiting points on the surface ∂Q_R^0 and a nonempty intersection with $Q_{R/4}^0$. Let $u \in W_{2,\alpha}^1(D)$ be a solution of equation (1.1) in D, $u(x) \leq 0$ on a part of the boundary Γ lying strictly inside Q_R^0 in the sense of $W_{2,\alpha}^1(D)$. Then there exists a constant $\eta_0 = \eta_0(n, \mu, \alpha, \beta)$ such that for any such function u(x) there holds

$$\operatorname{ess\,sup}_{x\in D} u(x) \ge \left(1 + \eta_0 R^{\beta - \sum\limits_{j=1}^n \sigma_j} \operatorname{cap}_{\alpha} H_R\right) \operatorname{ess\,sup}_{x\in D \cap Q^0_{R/4}} u(x), \tag{5.1}$$

where the set $H_R = Q_{R/4}^0 \setminus D$ and $\operatorname{cap}_{\alpha} H_R$ is its capacity.

Proof. Denote $M = \sup_{x \in D} u(x)$, $G = Q_R^0 \setminus H_R$ and let $U_H \in \overset{\circ}{W}{}_{2,\alpha}^1(Q_R^0)$ be the potential of the set H_R . Let $\phi \in \operatorname{Lip}_0(Q_R^0)$ be the function equal to 1 on H_R . Assume that $z = M(1 - U_H)$ in Q_R^0 . Then z is a solution of equation (1.1) in G, $z(x) \ge 0$, on H_R . Applying the maximum principle to the functions z(x), u(z) in the domain D, we have $z(x) \ge u(x)$ on $\Gamma \cup \partial Q_R^0$, since $z|_{\partial Q_R^0} = M \ge u(x)$ and, for $x \in \Gamma$ $u(x) = 0 \le z(x)$. Then by virtue of Lemma 2.2 for almost all $x \in D$ we obtain $z(x) \ge u(x)$. Since $\sup_{x \in D \cap Q_{R/2}^0} u(x) \le \sup_{x \in D \cap Q_{R/2}^0} z(x)$, we have

$$M \ge M \inf_{x \in D \cap Q_{R/2}^0} U_H + \sup_{x \in D \cap Q_{R/2}^0} u(x).$$
(5.2)

Let us estimate the expression $\inf_{x \in D \cap Q_{R/2}^0} U_H$ from below. To this end, we

obtain the uniform estimate (from below) of the numbers $a^{(k)} = \sup_{x \in Q^0_{R/2}} U^{(k)}_H$

with sufficiently large k for the corresponding approximating sequence $U_H^{(k)}$. Denote the k-dependent set $\Gamma_t = \{x \in Q_R^0 : U_H^{(k)}(x) > t\}$. Then, by virtue of Lemma 3.4, for an arbitrarily small $\varepsilon > 0$ and $a_1 \in (a^{(k)}, a^{(k)} + \varepsilon)$ we have

$$\int_{\partial\Gamma_{1-\varepsilon}} \nabla U_H^{(k)} \cdot AN \, d\sigma = \int_{\partial\Gamma_{a_1}} \nabla U_H^{(k)} \cdot AN \, d\sigma + \delta_k, \tag{5.3}$$

where $\delta_k \to 0$ as $k \to \infty$. Note that $\Gamma_{a_1} \subset Q^0_{R/2}$, $N = \nabla U^{(k)}_H / |\nabla U^{(k)}_H|$ on $\partial \Gamma_{1-\varepsilon}$. By virtue of Lemma 3.3, the left-hand side of (5.3) is estimated by the

expression

$$\int_{\partial\Gamma_{1-\varepsilon}} \nabla U_H^{(k)} \cdot AN \, d\sigma \ge \frac{1}{1-\varepsilon} \int_{Q_R^0 \setminus \Gamma_{1-\varepsilon}} \nabla U_H^{(k)} \cdot A \nabla U_H^{(k)} \, dx + \delta_k, \qquad (5.4)$$

which in its turn exceeds

$$\frac{\mu}{1-\varepsilon} \int_{Q_R^0 \setminus \Gamma_{1-\varepsilon}} \rho(x)^{\alpha} \nabla U_H^{(k)} \cdot \nabla U_H^{(k)} \, dx + \delta_k \ge \mu(1-\varepsilon) \overline{\operatorname{cap}}_{\alpha} \Gamma_{1-\varepsilon} + \delta_k$$

The set $H_R \subset \Gamma_{1-\varepsilon}$ and therefore the right-hand side of inequality (5.5) is not smaller than $\mu(1-\varepsilon)^2 \operatorname{cap}_{\alpha} H_T$. Then (5.4) implies

$$\int_{\partial \Gamma_{1-\varepsilon}} \nabla U_H^{(k)} \cdot AN \, d\sigma \ge \mu (1-\varepsilon) \overline{\operatorname{cap}}_{\alpha} H_R + \delta_k, \tag{5.5}$$

where $\overline{\operatorname{cap}}_{\alpha}H_R$ is a relative capacity H_R with respect to Q_R^0 .

By virtue of Lemma 3.3, for the right-hand part of (5.3) we obtain

$$\int_{\partial \Gamma_{a_1}} \nabla U_H^{(k)} \cdot AN \, d\sigma \le \frac{1}{a_1} \int_{Q_R^0 \setminus \Gamma_{a_1}} \nabla U_H^{(k)} \cdot A \nabla U_H^{(k)} \, dx + \delta_k.$$
(5.6)

Let $\varphi_{a_1} \in \overset{\circ}{W}{}^1_{2,\alpha}(Q^0_R)$ be the potential of the set $\overline{\Gamma}_{a_1}$ generated by functional (3.6). Then for this potential we have

$$\int_{Q_R^0} \rho^{\alpha} \nabla \varphi_{a_1} \cdot \nabla \varphi_{a_1} dx = \overline{\operatorname{cap}}_{\alpha} \overline{\Gamma}_{a_1}$$
(5.7)

(see (3.7)). Choosing the test function $\varphi = U_H^{(k)} - a_1 \varphi_{a_1}$ from equation (1.1), we obtain (since $\varphi \in \overset{\circ}{W}^1_{2,\alpha}(Q^0_R \setminus \overline{\Gamma}_{a_1}))$

$$\int_{Q_R^0 \setminus \Gamma_{a_1}} \nabla U_H^{(k)} \cdot A \nabla U_H^{(k)} \, dx = a_1 \int_{Q_R^0 \setminus \Gamma_{a_1}} \nabla U_H^{(k)} \cdot A \nabla \varphi_{a_1} \, dx + \delta_k$$
$$\leq a_1 \bigg(\int_{Q_R^0} \nabla U_H^{(k)} \cdot A \nabla U_H^{(k)} \, dx \bigg)^{1/2} \bigg(\int_{Q_R^0} \nabla \varphi_{a_1} \cdot A \nabla \varphi_{a_1} \, dx \bigg)^{1/2} + \delta_k.$$

Therefore

$$\int_{Q_R^0 \setminus \Gamma_{a_1}} \nabla U_H^{(k)} \cdot A \nabla U_H^{(k)} \, dx \leq \mu^{-1} a_1^2 \int_{Q_R^0 \setminus \Gamma_{a_1}} \nabla \varphi_{a_1} \cdot \nabla \varphi_{a_1} \, dx + \delta_k$$
$$= \mu^{-1} a_1^2 \operatorname{cap}_{\alpha} \overline{\Gamma}_{a_1} + \delta_k \leq \mu^{-1} a_1^2 \operatorname{cap}_{\alpha} Q_{R/2}^0 + \delta_k, \quad (5.8)$$

since $\Gamma_{a_1} \subset \Gamma_{a^{(k)}} \subset Q^0_{R/2}$ and (5.7) is fulfilled.

ON WIENER'S CRITERION

From (5.3), (5.5), (5.6), (5.8) it follows that

$$(1-\varepsilon)\mu^2 \overline{\operatorname{cap}}_{\alpha} H_R \le a_1 \overline{\operatorname{cap}}_{\alpha} Q_{R/2}^0 + \frac{\delta_k}{a_1} + \delta_k \,.$$
(5.9)

We replace here $\frac{\delta_k}{a_1}$ by δ_k , since $a_1 \in (a^{(k)}, a^{(k)} + \varepsilon)$ and, for sufficiently large k's, $\alpha^{(k)}$ is close to $\inf_{x \in Q_{R/2}^0} U_H$. Hence, taking into account the arbitrariness of ε , we have

$$a^{(k)} \ge \mu^2 \left(\frac{\overline{\operatorname{cap}}_{\alpha} H_R}{\overline{\operatorname{cap}}_{\alpha} Q_{R/2}^0} \right) + \delta_k \,. \tag{5.10}$$

It is obvious that

$$\overline{\operatorname{cap}}_{\alpha}H_R \ge \operatorname{cap}_{\alpha}H_R. \tag{5.11}$$

Let $\eta(x) = \prod_{j=1}^{n} \eta_0\left(\frac{x_j}{R^{\sigma_j}}\right), \ \eta_0(t)$ be an infinite times differentiable function on $(-\infty,\infty)$, with a compact support, $0 \le \eta(t) \le 1$, $|\eta'(t)| \le C_0$; $C_0 = C_0(n)$, $\eta(t) = 1$ for $t \in [0, \frac{1}{2}], \ \eta(t) = 0$ for $|t| \ge 1$. Then

$$\overline{\operatorname{cap}}_{\alpha}Q^{0}_{R/2} \leq \int_{Q^{0}_{R}} \rho^{\alpha} \nabla \eta \cdot \nabla \eta \, dx.$$
(5.12)

Therefore

$$\operatorname{cap}_{\alpha} Q_{R/2}^{0} \le C_{0} \sum_{j=1}^{n} R^{-2\sigma_{j}} \int_{Q_{R}^{0}} \rho(x)^{\alpha_{j}} \, dx \le C_{0} C_{1} R^{\sum_{i=1}^{n} \sigma_{i} - \beta},$$
(5.13)

 $C_1 = C_1(n, \alpha)$, since for condition (1.3) we have

$$\int_{Q_R^0} \rho(x)^{\alpha_j} \, dx \le C_1 R^{\sum_{i=1}^n \sigma_i + \alpha_j}.$$
(5.14)

By (5.11), (5.13) and (5.10) we obtain

$$a^{(k)} \ge CR^{\beta - \sum_{i=1}^{n} \sigma_i} \operatorname{cap}_{\alpha} H_R + \delta_k, \qquad (5.15)$$

where $C = C(n, \mu, \alpha, \beta), \ \delta_k \to 0$ as $k \to \infty$. If in estimate (5.15) we assume that $k \to \infty$ and apply Theorem 4.1, then we have

$$\inf_{x \in Q_{R/1}^0} U_H \ge \eta_0 R^{\beta - \sum_{i=1}^n \sigma_i} \operatorname{cap}_{\alpha} H_R,$$
(5.16)

where $\eta_0 = \eta_0(n, \mu, \alpha, \beta)$. Due to (5.16), from (5.2) we obtain (5.1) (keeping in mind that $\sup_{Q_{R/2}^0} u \ge \sup_{Q_{R/4}^0} u$ and using the maximum principle). \Box

R. A. AMANOV AND F. I. MAMEDOV

6. Regularity of a Boundary Point

Let D be a bounded domain and f a continuous function on ∂D . We will consider the Dirichlet problem

$$Lu = 0 \quad \text{in} \quad D, \quad u|_{\partial D} = f. \tag{6.1}$$

Assume that $\phi \in W^1_{2,\alpha}(D)$. Using the classical theory of a Hilbert space (or the variational method of §3), we easily prove the existence and uniqueness of a solution of the problem

$$Lu = 0 \quad \text{in} \quad D, \quad u - \phi \in \overset{\circ}{W}^{1}_{2,\alpha}(D).$$
(6.2)

Let us now proceed to constructing a solution of problem (6.1). There exists a sequence of smooth, for example, Lipschitz functions f_k approximating funiformly on ∂D . There also exists an extension ϕ_k of functions f_k from ∂D to all \overline{D} with the preservation of its Lipschitz property (see [15, p. 206]). Let u_k be a solution of problem (6.2) for $\phi = \phi_k$. Then u_k is a fundamental sequence in the uniform metric. Indeed, according to the maximum principle, we have

$$\operatorname{ess\,sup}_{\overline{D}} |u_k - u_m| \le \operatorname{sup}_{\partial D} |u_k - u_m| = \operatorname{sup}_{\partial D} |f_k - f_m| \to 0 \quad \text{as} \quad k, m \to \infty.$$

Therefore the sequence $u_k \to u_f$ uniformly in \overline{D} to some function $u_f(x)$. The function u_f is a solution of equation (1.1) in any strictly internal domain $D' \subset D$. Indeed, let $\xi \in \operatorname{Lip}_0(D)$ be equal to 1 in D' and to 0 outside D. Then we have $\int_D \nabla u_k \cdot A \nabla (u_k \xi^2) dx = 0$, whence it follows that $\int_D \nabla u_k \cdot A \nabla u_k \xi^2 dx \leq 4 \int_D \nabla \xi \cdot A \nabla \xi dx$. Therefore

$$\int_{D'} \rho^{\alpha} \nabla u_k \cdot \nabla u_k \, dx \le \mu^{-1} \int_{D'} \nabla u_k \cdot A \nabla u_k \, dx \le C(D'),$$

where C(D') does not depend on k. Then $u_{k_n} \to v$ weakly in $W_{2,\alpha}^1(D')$ for some subsequence u_{k_n} . Since, in addition, $u_k \to u_f$ uniformly, we have $v = u_f$. Thus the function u_f , which does not depend on the approximation technique, is a solution of equation (1.1) in D'. The function $u_f(x)$ is called a generalized solution of problem (6.1).

Definition 6.1. A point $x_0 \in \partial D$ is called regular if a generalized solution $u_f(x)$ of problem (6.1) is continuous at x_0 for any continuous function f on ∂D .

The behavior of the solution of the Dirichlet problem for equation (1.1) near a nonregular boundary point depends on the domain geometry in an immediate proximity of this point. Since for the boundary points $x_0 \neq 0$ equation (1.1) has no degeneration, the regularity criterion for these points coincides with Wiener's criterion for the Laplace equation (see [3]). Hence we show interest in boundary point 0. The main result of this work is **Theorem 6.1.** Let $D \subset E_n$ be a bounded domain, $0 \in \partial D$. Then for boundary point 0 to be regular for equation (1.1) it is necessary and sufficient that

$$\int_{0} R^{\beta - \sum_{i=1}^{n} \sigma_i} \operatorname{cap}_{\alpha} H_R \frac{dR}{R} = \infty,$$
(6.3)

or, which is the same,

$$\sum_{m=1}^{n} \gamma(4^{-m}) = \infty, \tag{6.4}$$

where the set $H_R = Q_R^0 \setminus D$ and $\operatorname{cap}_{\alpha} H_R$ is its capacity, $\gamma(t) = t^{\beta - \sum_{i=1}^n \sigma_i} \operatorname{cap}_{\alpha} H_t$.

Proof. Sufficiency. Because of the continuity of the function f, for any $\varepsilon > 0$, there exists $0 < \delta_1 < 1$ such that $|f(x) - f(0)| < \frac{\varepsilon}{2}$ for $|x| < \delta_1$, $x \in D$. We have $f_k \in \operatorname{Lip}(\partial D)$ for which $|f_k - f| < \frac{\varepsilon}{2}$ when $x \in \partial D$. Let u_k be a solution of the problem

$$Lu_k = 0 \text{ in } D, \quad u_k - \phi_k \in \overset{\circ}{W}{}^1_{2,\alpha}(D),$$
 (6.5)

where $\phi_k \in \operatorname{Lip}(D)$ is an extension of f_k with preservation of its Lipshitz property to all \overline{D} (for the existence of such an extension see [15, Ch. VI, p. 206]). The function $z = u_k - f(x_0) - \varepsilon$ is also a solution of the equation Lz = 0 in D for any $x \in \{|x| < \delta_1\} \cap D$. The function z(x) is continuous in D. Denote $D' = \{x \in D : z(x) > 0\}, \sigma_0 = \min_{1 \le k \le n} \{\sigma_k\}$. Let $m_0 \in N, 4^{-m_0\sigma_0} < \delta_1$. Then $Q_{4^{-m_0}}^0 \subset \{|x| < \delta_1\}$ and applying Lemma 5.1 to $Q_{4^{-m+1}}^0$ and assuming that $m = m_0 + 1, m_0 + 2, \ldots, l$, we have

$$M_{m-1} \ge (1 + \eta_0 \gamma_m) M_m, \tag{6.6}$$

where $\gamma_m = \gamma(4^{-m}), \ M_m = \sup_{Q_{4^{-m}}^0} z.$

Applying repeatedly estimate (6.6) we obtain

$$M_{m_0} \ge \prod_{j=m_0}^l (1+\eta_0 \gamma_j) M_l \ge M_l \exp\left(\sum_{j=m_0}^l \ln(1+\eta_0 \gamma_j)\right)$$
$$\ge M_l \exp\left(\eta_0 C_0 \sum_{j=m_0}^l \gamma_j\right),$$

where $C_0 = C_0(n)$. Hence

$$M_l \le M_{m_0} \exp\bigg(-\eta_0 C_0 \sum_{j=m_0}^l \gamma_j\bigg).$$
(6.7)

An analogous estimate holds for the function $z_1 = f(x_0) + \varepsilon - u_k$, too:

$$\mu_l \le \mu_{m_0} \exp\bigg(-\eta_0 C_0 \sum_{j=m_0}^l \gamma_j\bigg),\tag{6.8}$$

where $\mu_m = \sup_{x \in D \cap Q_{4^{-m}}^0} z_1(x)$. From (6.7) and (6.8) we obtain the estimate for $|u_k(x) - f(0)|$. Since $u_k \to u_f$ uniformly in \overline{D} , we have

$$\sup_{D \cap Q_{4^{-l}}^{0}} |u_f(x) - f(0)| \le \varepsilon + 2 \max_{\partial D \cap Q_{4^{-m}}^{0}} |f(x)| \exp\left(-\eta_0 C_0 \sum_{j=m_0}^{l} \gamma_j\right).$$
(6.9)

Choosing $l = l(\varepsilon) \in N$ so that the second summand is smaller than ε for $l > l(\varepsilon)$, we obtain $|u_k(x) - f(0)| < 2\varepsilon$ for $x \in Q^0_{\delta} \cap D$ ($\delta = \min(4^{-l(\varepsilon)}, \delta_1^{1/\sigma_0})$) and therefore for $|x| < \delta^{\sigma^0}$ ($\sigma^0 = \max_{1 \le i \le n} \sigma_i$), too. Applying an analogous reasoning to regular boundary point 0, the continuity modulus of the solution $u_f(x)$ is estimated through the continuity modulus of the function f and the sum of series (6.4).

Let $|f(x) - f(0)| < \theta(|x|)$, where $\theta(x) \downarrow 0$ is the continuity modulus. Then

$$|u_f(x) - f(0)| \le 2 \max_{\partial D} |f| \exp\left(-C_0 \int_{\rho(x)}^{\delta_1^{1/\sigma^0}} \tau^{\beta - \sum_{i=1}^n \sigma_i} \operatorname{cap}_{\alpha} H_{\tau} \frac{d\tau}{\tau}\right) + \theta(\delta)$$

for $\rho(x) \le \delta_1^{1/\sigma^0}$. (6.10)

Such estimates for equation (1.1) were obtained for the first time in [17].

To prove the necessity we need the following

Proposition 6.1. Let $H \subset Q_R^0 \setminus Q_{R/4}^0$ be the closed set, and $v_H \in \overset{\circ}{W}_{2,\alpha}^1(E_n)$ be the potential of the set H. Then

$$\sup_{x \in Q^0_{R/8}} v_H \le CR^{\beta - \sum_{j=1}^n \sigma_j} \operatorname{cap}_{\alpha} H, \quad C = C(n, \mu, \beta, \alpha).$$
(6.11)

To show estimate (6.11) for sufficiently large $k \in N$, we obtain the uniform

estimate for the approximating sequence $v_H^{(k)}(x)$. Let $t \in (0,1), \ \Gamma_t = \{x \in E_n : v_H^{(k)}(x) > t\}, \ b^{(k)} = \inf_{x \in Q_{R/8}^0} v_H^{(k)}(x)$. Then $Q^0_{R/8} \subset \Gamma_{b^{(k)}}$. Using Lemmas 3.3 and 3.4, for an arbitrary small $\varepsilon > 0$ and $b_1 \in (b^{(k)} - \varepsilon, b^{(k)})$ we obtain

$$\int_{E_{n}\setminus\overline{\Gamma}_{b_{1}}} \nabla v_{H}^{(k)} \cdot A \nabla v_{H}^{(k)} \, dx \leq b_{1} \int_{\partial\Gamma_{b_{1}}} \nabla v_{H} \cdot AN \, d\sigma + \delta_{k} \\
\leq \delta_{k} + b_{1} \int_{\partial\Gamma_{1-\varepsilon}} \nabla v_{H}^{(k)} \cdot AN \, dx \leq \frac{b_{1}}{1-\varepsilon} \int_{E_{n}\setminus\Gamma_{1-\varepsilon}} \nabla v_{H}^{(k)} \cdot A \nabla v_{H}^{(k)} \, dx + \delta_{k}, \quad (6.12)$$

ON WIENER'S CRITERION

where $\delta_k \to 0$ as $k \to \infty$. If $Q^0_{R/8} \subset \Gamma_{b_1}$, then we have

$$\int_{E_n \setminus \overline{\Gamma}_{b_1}} \nabla v_H^{(k)} \cdot A \nabla v_H^{(k)} \, dx \ge \mu \int_{E_n \setminus \Gamma_{b_1}} \rho^{\alpha} \nabla v_H^{(k)} \cdot \nabla v_H^{(k)} \, dx$$
$$\ge \mu b_1^2 \operatorname{cap}_{\alpha} \overline{\Gamma}_{b_1} \ge \mu b_1^2 \operatorname{cap}_{\alpha} Q_{R/8}^0. \tag{6.13}$$

Let us estimate $\operatorname{cap}_{\alpha} Q_{R/8}^0$ from below. Clearly, $\operatorname{cap}_{\alpha} Q_{R/8}^0 \geq \operatorname{cap}_{\alpha}(Q_{R/8}^0 \setminus Q_{R/16}^0)$. Denote $K = Q_{R/8}^0 \setminus Q_{R/16}^0$. Then $\operatorname{cap}_{\alpha} K = \inf_{E_n} \int_{E_n} \rho^{\alpha}(x) \nabla \varphi \cdot \nabla \varphi \, dx$, where the lower bound is taken over all $\varphi \in \operatorname{Lip}_0(E_n)$ equal to 1 on K. It is obvious that

$$\operatorname{cap}_{\alpha} K \sim \inf_{\{\varphi\}} \sum_{j=1}^{n} R^{\alpha_j} \int_{E_n} \varphi_{x_j}^2 \, dx.$$
(6.14)

If we make the change $x \to \xi$ by the formula $x = R^{\sigma}\xi = (R^{\sigma_1}\xi_1, R^{\sigma_2}\xi_2, \dots, R^{\sigma_n}\xi_n)$ in integral (6.14), then K transforms to $P = Q_{1/8}^0 \setminus Q_{1/16}^0$ and we have

$$\sum_{j=1}^{n} R^{\alpha_j} \int_{E_n} \varphi_{x_j}^2 \, dx = R^{\sum_{i=1}^{n} \sigma_i - \beta} \int_{E_n} |\nabla \psi|^2 \, d\xi, \tag{6.15}$$

where $\psi(\xi) = \varphi(x(\xi))$. Minimizing the right-hand side of (6.15) over all admissible functions ψ , we obtain

$$\sum_{j=1}^{n} R^{\alpha_j} \int_{E_n} \varphi_{x_j}^2 \, dx \ge C_1 R^{\sum_{i=1}^{n} \sigma_i - \beta}.$$
 (6.16)

Here the value $C_1 = C_1(n, \mu, \alpha, \beta)$ is equal to the Wiener capacity of the compactum P which exceeds some constant $C(n, \mu, \alpha, \beta)$. From (6.14), (6.15) and (6.16) we find

$$\operatorname{cap}_{\alpha} Q_{R/8}^{0} \ge CR^{\sum_{j=1}^{n} \sigma_{j} - \beta}, \quad C = C(n, \mu, \alpha, \beta).$$
(6.17)

Taking into account (6.13) and (6.17), we obtain

$$\int_{E_n \setminus \Gamma_{b_1}} \nabla v_H^{(k)} \cdot A \nabla v_H^{(k)} \, dx \ge C b_1^2 R^{\sum_{j=1}^n \sigma_j - \beta}.$$
(6.18)

Since $H \subset \Gamma_{1-\varepsilon}$, we have

$$\int_{E_n \setminus \Gamma_{1-\varepsilon}} \nabla v_H^{(k)} \cdot A \nabla v_H^{(k)} \, dx \le \int_{E_n \setminus H} \nabla v_H^{(k)} \cdot A \nabla v_H^{(k)} \, dx \le \mu^{-1} \operatorname{cap}_{\alpha} H.$$
(6.19)

From estimates (6.18), (6.19) and (6.12) we obtain the estimate for b_1 , whence by virtue of the arbitrariness of ε we have

$$b^{(k)} \le CR^{\beta - \sum_{j=1}^{n} \sigma_j} \operatorname{cap}_{\alpha} H.$$
(6.20)

Passing to the limit as $k \to \infty$, from (6.20) we obtain the estimate for $\inf_{x \in Q^0_{R/8}} v_H(x)$ and thus, applying Theorem 4.1, we have

$$\sup_{x \in Q^0_{R/8}} v_H(x) \le CR^{\beta - \sum_{j=1}^n \sigma_j} \operatorname{cap}_{\alpha} H,$$
(6.21)

 $C = C(n, \mu, \alpha, \beta)$. Estimate (6.11) is proved.

Necessity. Assume that condition (6.4) is not fulfilled. Let U(x) be the potential of the set $Q_{4-m_0}^0 \setminus D$, the integer $m_0 \in N$ will be chosen later. We will show that for any $\delta > 0$ there exists a point $x' \in Q_{\delta}^0$, $x' \neq 0$, $x' \in D$, for which $U(x') < \frac{1}{2}$. Since series (6.4) is convergent, there is an integer m_1 for which $4^{-m_1} < \delta$,

$$\gamma_{m_1-1} \le \frac{\mu^2}{8} \,. \tag{6.22}$$

Let us denote by $U_0(x) \in \overset{\circ}{W}^1_{2,\alpha}(E_n)$ the potential of the set $G_{m_1-1} = Q^0_{4^{-m_1+1}} \setminus D$ and show that

$$\inf_{x \in Q_4^0 - m_1 - 1} U_0 < \frac{1}{4} \, .$$

We again pass over to the approximating sequence $U_0^{(k)}(x)$. For this, we denote $a^{(k)} = \inf_{x \in Q_{4^{-m_1}}^0} U_0^{(k)}(x), \ \Gamma_t = \{x \in E_n : U_0^{(k)}(x) > t\}, \ t \in (0, 1).$ Then, taking into account that $Q_{4^{-m}}^0 \subset \Gamma_{a^{(k)}}$ and using Lemmas 3.3, 3.4, for arbitrarily small

 $\varepsilon > 0$ and $a_1 \in (a^{(k)} - \varepsilon, a^{(k)})$ we have

$$\mu C_1 4^{-mq} a_1^2 \leq \mu a_1^2 \operatorname{cap}_{\alpha} \overline{\Gamma}_{a_1} \leq \mu \int_{E_n \setminus \Gamma_{a_1}} \rho^{\alpha} \nabla U_0^{(k)} \cdot \nabla U_0^{(k)} dx$$

$$\leq \int_{E_n \setminus \Gamma_{a_1}} \nabla U_0^{(k)} \cdot A \nabla U_0^{(k)} dx = a_1 \int_{\partial \Gamma_{a_1}} \nabla U_0^{(k)} \cdot A N \, d\sigma + \delta_k$$

$$= a_1 \int_{\partial \Gamma_{1-\varepsilon}} \nabla U_0^{(k)} \cdot A N \, d\sigma = \frac{a_1}{1-\varepsilon} \int_{E_n \setminus \Gamma_{a_1}} \nabla U_0^{(k)} \cdot A \nabla U_0^{(k)} \, dx + \delta_k. \quad (6.23)$$

Let $\psi \in \overset{\circ}{W}_{2,\alpha}^1(E_n)$ be the potential of the set $\Gamma_{1-\varepsilon}$ generated by functional (3.6). Then $\varphi = u_0^{(k)} - (1-\varepsilon)\psi \in \overset{\circ}{W}_{2,\alpha}^1(E_n \setminus \Gamma_{1-\varepsilon})$ is the test function for (1.1) in $E_n \setminus \Gamma_{1-\varepsilon}$ and therefore

$$\int_{E_n \setminus \Gamma_{1-\varepsilon}} \nabla U_0^{(k)} \cdot A \nabla \varphi \, dx = \delta_k \to 0$$

or

$$\int_{E_n \setminus \Gamma_{1-\varepsilon}} \nabla U_0^{(k)} \cdot A \nabla U_0^{(k)} \, dx = (1-\varepsilon) \int_{E_n \setminus \Gamma_{1-\varepsilon}} \nabla U_0^{(k)} \cdot A \nabla \psi \, dx + \delta_k,$$

whence we find

$$\int_{E_n \setminus \Gamma_{1-\varepsilon}} \nabla u_0^{(k)} \cdot A \nabla u_0^{(k)} \, dx \leq (1-\varepsilon)^2 \int_{E_n \setminus \Gamma_{1-\varepsilon}} \nabla \psi \cdot A \nabla \psi \, dx + \delta_k$$
$$\leq \delta_k + \mu^{-1} (1-\varepsilon)^2 \int_{E_n \setminus \Gamma_{1-\varepsilon}} \rho^{\alpha}(x) \nabla \psi \cdot \nabla \psi \, dx$$
$$= \mu^{-1} (1-\varepsilon)^2 \operatorname{cap}_{\alpha} \overline{\Gamma}_{1-\varepsilon} + \delta_k. \tag{6.24}$$

Now, since $\varepsilon > 0$ is arbitrary, we conclude that the right-hand part of (6.24) does not exceed

$$\frac{3}{2}\mu^{-1}\operatorname{cap}_{\alpha}G_{m_1-1}.$$
(6.25)

Therefore (6.23) implies that

$$a^{(k)} \le \frac{3}{2} \mu^{-2} 4^{mq} \operatorname{cap}_{\alpha} G_{m_1-1} + \delta_k, \quad q = \sum_{i=1}^n \sigma_i - \beta_i$$

Making $k \to \infty$, from the latter inequality we obtain

$$\inf_{x \in Q_{4^{-m_1}}^0} U_0(x) < \frac{3}{16}$$

Then there exists a point $x' \in Q^0_{\delta}$ such that $U_0(x') < \frac{1}{4}$. We put

$$U = \sum_{m=m_0}^{m_1-2} U_m + U_0,$$

where $U_m \in \overset{\circ}{W}^1_{2,\alpha}(E_n)$ is the potential of the set $K_m = (\overline{Q}_{4^{-m}}^0 \setminus Q_{4^{-m-1}}^0) \setminus D$. Now, applying estimate (6.9) of Proposition 6.1 to this potential and assuming $m = m_0 + 1, m_0 + 2, \ldots, m_1 - 2$, we obtain

$$U_m(x') \le \sup_{x \in Q_{4^{-m-2}}^0} U_m(x) \le C4^{mq} \operatorname{cap}_{\alpha} K_m, \quad C = C(n, \mu, \alpha, \beta).$$

Therefore $U(x') \leq \frac{1}{4} + C \sum_{m=m_0}^{m_1-2} \gamma_m$.

Let us now choose m_0 so large that the latter sum be $<\frac{1}{4}$. Then $U(x') < \frac{1}{2}$ and the necessity is proved.

The approach to the construction of the potential U is analogous to that presented in [18, p. 43], while the proof of the sufficiency begins as described in [19, p. 50].

In the case of nondegenerated elliptic equations of second order we know the sufficient conditions for a boundary point which are of obvious geometric character, say, when the boundary points may have contact with the cone or funnel vertex lying outside the domain [18, pp. 44, 45]. In Proposition 6.2 below we give an analogous sufficient condition for the regularity of the boundary point at which the equation degenerates. **Condition K.** Let $g \subset Q_{h_0}^0$ be some set of positive Wiener capacity $(\operatorname{cap}_{\alpha} g \neq 0, \alpha = 0), 0 \in \partial g$, where h_0 is some integer.

Assume that for every $t \in (0, h_0)$, the transformation

$$y = (h_0/t)^{\sigma} x$$

brings the set $Q_t^0 \setminus D$ to g. Then we say that the domain D satisfies the condition K.

Proposition 6.2. Let $D \subset E_n$, $0 \in \partial D$. If the domain D satisfies the condition K, then the point 0 is regular.

Proof. It is sufficient to apply Theorem 6.1, i.e. to show the divergence of the integral in condition (6.3).

It is not difficult to show the estimate

$$\operatorname{cap}_{\alpha}(Q_t^0 \setminus D) \ge C_1 t^{\sum_{k=1}^n \sigma_k - \beta}, \tag{6.26}$$

 \square

where C_1 is the Wiener capacity of the set g.

Indeed, let u(x) be a test function for $Q_t^0 \setminus D$, i.e. $v \in C_0^\infty(E_n), v(x) \ge 1$ on $Q_t^0 \setminus D$. Then according to the condition K the change of the variables $x = (t/h_0)^{\sigma} y$ transforms the set $Q_t^0 \setminus D$ to g. Therefore

$$\int_{E_n} \rho^{\alpha}(x) \nabla v \cdot A \nabla v \, dx = t \sum_{k=1}^{\sum \atop k=1}^{n} \sigma_k - \beta \int_{E_n} (\nabla_y \widetilde{v})^2 \, dy, \qquad (6.27)$$

where $\tilde{v}(y) = v((t/h_0)^{\sigma}y)$. It is not difficult to verify that the function \tilde{v} in (6.27) is the test function for g, i.e. $\tilde{v}|_g \geq 1$, $\tilde{v} \in C_0^{\infty}(E_n)$, whence follows estimate (6.26). Using (6.26) in integral (6.3), we obtain its divergence.

The proposition is proved.

Let the set $K_1 \equiv K(h_0) \subset Q_{h_0}^0$, $0 \in \partial K_1$, $\operatorname{cap}_{\alpha} K_1 \neq 0$, $t \in (0, h_0)$, be such that the transformation

$$x = (t/h_0)^{\sigma} y$$

brings this set to the part lying in the ball Q_t^0 . We call such a set K_1 a metric cone with vertex at 0.

Proposition 6.3. If $0 \in \partial D$ and the point 0 can be contacted outside the domain by the vertex of some metric cone K_1 , then the point is regular.

Acknowledgement

The authors express their gratitude to the referee for his helpful comments and remarks that contributed to the elimination of some inaccuracies in the original version of the paper.

ON WIENER'S CRITERION

References

- 1. N. WIENER, The Dirichlet problem. Journ. of Math. Massachussetts 3(1924), 127–146.
- M. V. KELDYSH, On the solubility and the stability of Dirichlet's problem. (Russian) Uspekhi Mat. Nauk 8(1941), 171–231.
- 3. W. LITTMAN, G. STAMPACCHIA, and H. F. WEIBERGER, Regular points for elliptic equations with discontinuous coefficients. Ann. Scuola Norm. Sup. Pisa (3) 17(1963), 43–77; Russian transl.: Matematika 9(1966), No. 2, 72–97.
- V. G. MAZ'YA, The behavior near the boundary of the solution of the Dirichlet problem for an elliptic equation of the second order in divergence form. (Russian) Mat. Zametki 2(1967), 209–220.
- 5. N. V. KRYLOV, The first boundary value problem for elliptic equations of second order. (Russian) *Differencial'nye Uravnenija* **3**(1967), 315–326.
- A. A. NOVRUZOV, The regularity of boundary points for an elliptic equation with discontinuous coefficients. (Russian) Vestnik Moskov. Univ. Ser. I Mat. Meh. 26(1971), No. 6, 18–25.
- YU. A. ALKHUTOV, On the regularity of boundary points with respect to the Dirichlet problem for second-order elliptic equations. (Russian) Mat. Zametki 30(1981), No. 3, 333–342.
- 8. E. B. FABES, D. JERISON, and C. KENIG, The Wiener test for degenerate elliptic equations. Ann. Inst. Fourier (Grenoble) **32**(1982), No. 3, vi, 151–182.
- I. T. MAMEDOV and S. T. GUSEYNOV, Interior a priori estimate of the Hölder's norm for the solutions of non-uniformly degenerate second order elliptic equations. *Trans. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci.* 19(1999), No. 1-2, *Math. Mech.*, 108–121.
- I. T. MAMEDOV, On the interior smoothness of solutions of second order elliptic equations with nonuniform power degeneration. (Russian) Trudy IMM AN Azerb. III(XI)(1995), 8–22.
- 11. S. T. GUSEYNOV, Harnack type inequality for solution of nonuniformly degenerate equations of second order. (Russian) Dokl. Acad. Nauk Azerb. LV(1999), No. 3–4, 3–11.
- O. A. LADYZHENSKAYA and N. N. URAL'TSEVA, Linear and quasilinear elliptic equations. (Translated from the Russian) Academic Press, New York-London, 1968; Russian original: Nauka, Moscow, 1967.
- 13. G. STAMPACCHIA, Le probleme de Dirichlet pour les equations elliptiques du second ordre a coefficients discontinus. Ann. Inst. Fourier (Grenoble) 15(1965), fasc. 1, 189–258.
- 14. V. G. MAZ'YA, Sobolev spaces. (Russian) Leningrad. Univ., Leningrad, 1985; English transl.: Series in Soviet Mathematics. Springer-Verlag, Berlin, 1985.
- I. M. STEIN, Singular integral and differential properties of functions. (Translated into Russian) Mir, Moscow, 1973.
- J. MOSER, On Harnack's theorem for elliptic differential equations. Comm. Pure Appl. Math. 14(1961), 577–591.
- V. G. MAZ'YA, On the modulus of continuity of a solution of the Dirichlet problem near an irregular boundary. (Russian) Problems Math. Anal. Boundary Value Problems Integr. Equations (Russian) 45–58; Izdat. Leningrad. Univ., Leningrad, 1966.
- E. M. LANDIS, Second order equations of elliptic and parabolic type. (Russian) Nauka, Moscow, 1971.
- V. A. KONDRAT'EV and E. M. LANDIS, Qualitative theory of second-order linear partial differential equations. (Russian) Partial differential equations, 3 (Russian), 99–215, 220, Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1988.

(Received 13.04.2006; revised 24.11.2006)

Authors' address:

Institute of Mathematics and Mechanics of the National Academy of Sciences of Azerbaijan 9, F. Agayev St., Az 1141, Baku Azerbaijan E-mail: farman-m@mail.ru