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VECTOR MEASURES ON TOPOLOGICAL SPACES

SURJIT SINGH KHURANA

Abstract. Let X be a completely regular Hausdorff space, E a quasi-com-
plete locally convex space, C(X) (resp. Cb(X)) the space of all (resp. all,
bounded), scalar-valued continuous functions on X, and B(X) and B0(X) be
the classes of Borel and Baire subsets of X. We study the spaces Mt(X, E),
Mτ (X, E), Mσ(X, E) of tight, τ -smooth, σ-smooth, E-valued Borel and
Baire measures on X. Using strict topologies, we prove some measure repre-
sentation theorems of linear operators between Cb(X) and E and then prove
some convergence theorems about integrable functions. Also, the Alexan-
drov’s theorem is extended to the vector case and a representation theorem
about the order-bounded, scalar-valued, linear maps from C(X) is general-
ized to the vector-valued linear maps.
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1. Introduction and Notation

In this paper R stands for the set of real numbers, K denotes the field of real or
complex numbers (we call them scalars) and X a completely regular Hausdorff
space and E a quasi-complete locally convex space space over K with topology
generated by an increasing family of semi-norms ‖.‖p, p ∈ P ; E ′ denotes the
topological dual of E. For a p ∈ P , Vp = {x ∈ E : ‖x‖p ≤ 1}; polars are taken
in the duality 〈E, E ′〉. We denote by C(X) the space of all K-valued continuous
functions on X, and by Cb(X) the space of all bounded elements of C(X). The
zero-sets of X are the elements of {f−1(0) : f ∈ Cb(X)}; the positive-sets of X
are sets of the form X \Z where Z is a zero-set. For locally convex spaces, the
notation and results of [9] will be used. For a vector space F , F ∗ will denote
its algebraic dual. N will denote the set of natural numbers. For topological
measure theory the notation and results of ([10], [11], [5], [12]) will be used. All
locally convex spaces are assumed to be Hausdorff and over K. The elements
of the smallest σ-algebra, on X, relative to which all functions in Cb(X) are
measurable, are called Baire sets and the elements of the σ-algebra generated
by open sets are called Borel sets. B(X) and B0(X) are the classes of Borel and
Baire subsets of X. X̃ will denote the Stone–Cech compactification of X and
υX the real-compactification. Mσ(X), Mτ (X), Mt(X) denote the spaces of σ-
additive, τ -smooth and tight Baire measures on X([12], [11]), respectively. The
elements of Mσ(X) are scalar-valued, countably additive measures on B0(X).
An element µ ∈ Mσ(X) is called τ -smooth if for any decreasing net {fα} ⊂
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688 S. S. KHURANA

Cb(X), fα ↓ 0, we have µ(fα) → 0. Every τ -smooth measure has a unique
extension to a Borel measure which is inner regular by closed subsets and outer
regular by open subsets of X; an element µ ∈ Mσ(X) is called tight if for
any uniformly bounded net {fα} ⊂ Cb(X), fα → 0, uniformly on the compact
subsets of X, we have µ(fα) → 0. Every tight measure has a unique extension to
a Borel measure which is inner regular by compact subsets and outer regular by
open subsets of X ([12], [11]). Also, the so-called strict topologies βz, z = σ, τ, t
are defined on Cb(X), with the result that (Cb(X), βz)

′ = Mz(X) (see [11])
(notation like β1, β, β0 is also used for these topologies in [10]). The topology
βt is the finest locally convex one on Cb(X), agreeing with the topology of
uniform convergence on the compact subsets of X, on the norm bounded subsets
of Cb(X). To define the topology βσ, take a zero-set in X̃, Z ⊂ X̃ \ X. The
topology βt on Cb(X̃\Z) is denoted by βZ . Evidently, Cb(X̃\Z) can be identified
with Cb(X) (there is a natural one-to-one, onto, norm-preserving mapping) and
so βZ can be considered a locally convex topology on Cb(X). The topology βσ

is defined as
∧{βZ : Z a zero-set in X̃, Z ⊂ X̃ \X}. Similarly, βτ is defined as∧{βC : C a compact set in X̃, C ⊂ X̃ \X}.

With norm topology on Cb(X), the dual of Cb(X) is denoted by M(X); M(X)
can also be interpreted as the space of bounded finitely additive measures on
the algebra generated by zero-sets of X, which are inner regular by zero-sets
and outer regular by the positive-sets of X (Alexandrov Theorem [12], [11]).

For a function f ∈ Cb(X), f̃ denotes its unique continuous extension to X̃ .
It can be easily verified that B(X̃) ∩X = B(X) and B0(X̃) ∩X = B0(X).

Now we come to vector-valued measures; the integrability of scalar-valued
functions is taken in the sense of ([7]). If A is a σ-algebra of subsets of a set
Y , µ : A → E a countably additive vector measure and p ∈ P , we denote
the p-semi-variation of µ by µ̄p, µ̄p(A) = sup{|g ◦ µ|(A) : g ∈ V 0

p } (here V 0
p

is the polar of Vp in the duality 〈E, E ′〉) [7]; we also consider the submeasure
µ̇p : A → R+, µ̇p(A) = sup{‖µ(B)‖p : B ∈ A, B ⊂ A} ([5], [3]). It is easy
to verify that µ̇p is countably sub-additive [3] and µ̇p ≤ µ̄p ≤ 4µ̇p. Also, there
is a control measure for µ̄p to be denoted by λp; this control measure can be
chosen in the closed convex hull of {|g ◦ µ| : g ∈ V 0

p }, with norm topology
on measures ([7], p. 20, the proof of Theorem 1). This control measure also
has the following properties: (i) |f ◦ µ| ¿ λp for every f ∈ E ′ with ‖f‖p ≤ 1
(note that ‖f‖p = sup{|f(x)| : x ∈ Vp}); (ii) if λp(A) = 0, then µ̄p(A) = 0;
(iii) limλp(A)→0 µ̄p(A) = 0; (iv) λp ≤ µ̄p. We also establish that if f : Y → K is
a measurable function, B ∈ A and |f | ≤ c on B, then ‖ ∫

B
fdµ‖p ≤ cµ̄p(B).

L1(µ) denotes the space of µ-integrable functions ([7]). For any f ∈ L1(µ),
we take µ̄p(f) = sup{|g ◦ µ|(|f |) : g ∈ V 0

p } ([7], Lemma 2, p. 23).
If F is an algebra of subsets of a set Y and µ : F → E a finitely additive

measure, then µ is called exhaustive if for any disjoint sequence {An} ⊂ F , we
have µ(An) → 0; exhaustive measures are called strongly bounded measures in
[2]; for quasi-complete E, a finitely additive µ is exhaustive if and only if µ(F)
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is relatively weakly compact in E (for Banach spaces, it is proved in [2] and can
be easily extended to quasi-complete locally convex spaces).

If X is a compact Hausdorff space then there is a one-to-one correspondence
between regular Borel E-valued measures µ and linear weakly compact opera-
tors T : C(X) → E such that T (f) =

∫
fdµ, ∀f ∈ C(X) ([8], Theorem 3.1, p.

163); regularity means that for any Borel B ⊂ X, p ∈ P , and c > 0, there exist
a compact C and an open V, C ⊂ B ⊂ V such that µ̄p(V \C) < c. In that case,
for p ∈ P , the control measure λp is a positive regular Borel measure in X.

In this paper, by taking the strict topologies on Cb(X) we get similar repre-
sentation theorems for weakly compact and continuous linear maps from Cb(X)
into E. Some convergence type theorems having relevance to topology are also
proved. With a norm topology on Cb(X), the celebrated Alexandrov’s theorem
says that the dual of Cb(X) is M(X); we extend this result to weakly compact
and continuous linear µ : Cb(X) → E. Another very well-known result in the
scalar case is that a linear µ : C(X) → R, which maps order bounded subsets
into bounded sets, comes from a countably additive µ ∈ Mσ(X), whose support
is in υX; this result is also extended to linear maps µ : C(X) → E.

First we consider X to be a compact Hausdorff space and prove some proper-
ties of E-valued regular Borel measures on it; then we extend these properties
to completely regular Hausdorff spaces.

2. Representation Theorems

Theorem 1. Let X be a compact Hausdorff space and µ an E-valued regular
Borel measure on X.

(i) Suppose {fα} is an increasing net of non-negative, lower semi-continuous
functions in L1(µ), converging to f ∈ L1(µ), pointwise on X. Then lim µ̄p(f −
fα) = 0; in particular lim

∫
fαdµ =

∫
fdµ.

(ii) Given a p ∈ P , there exists the largest open set Up ⊂ X such that µ̄p(Up) =
0; this X \ Up is called the support of µ̄p and has the property that for any
f ∈ Cb(X), f ≥ 0, and f not identically 0 on X \ Up, one has µ̄p(f) > 0.

Proof. (i) Fix a p ∈ P and let λp be the corresponding control measure. Since λp

is in the norm-closed, absolutely convex hull of {|g ◦ µ| : g ∈ E ′, ‖g‖p ≤ 1} , it
follows that f is λp-integrable. As λp is a regular Borel measure, lim

∫
fαdλp =∫

fdλp. This means there are an increasing sequence {fα(n)} and a Borel B ⊂ X
such that λp(X \ B) = 0 and fα(n) → f pointwise on B. Using the fact
fα(n) ≤ f, ∀n, by ([7], Theorem 1, p. 20), µ̄p(f − fα(n)) → 0. This proves this
result.

(ii) Fix a p ∈ P and let V = {U ⊂ X : U open and µ̄p(U) = 0}. By the sub-
additivity of µ̄p, for any finite collection {Ui (1 ≤ i ≤ n)} ⊂ V , µ̄p(∪Ui) = 0.
From (i) µ̄p(∪{U : U ∈ V}) = 0. The other statement is easy to prove. ¤

Now assume that X is a completely regular Hausdorff space and B(X) and
B0(X) be the classes of Borel and Baire subsets of X ([11]). If it is not necessary
to specify the space X, we will also denote them by B and B0. Let Mσ(X, E) =
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{(µ : B0 → E) : g ◦ µ ∈ Mσ(X), ∀g ∈ E ′}. This implies that every µ ∈
Mσ(X, E) is countably additive in the original topology of E.

Theorem 2. Suppose X is a completely regular Hausdorff space and µ ∈
Mσ(X, E) is a countably additive Baire measure. Then

(i) µ is inner regular by zero-sets and outer regular by positive sets;
(ii) the linear mapping µ : (Cb(X), βσ) → E is continuous and bounded sets

are mapped into relatively weakly compact sets.
Conversely, if a linear mapping µ : (Cb(X), βσ) → E is continuous and

maps bounded sets into relatively weakly compact sets, then there exists a unique
countably additive Baire measure ν : B0 → E such that

∫
fdν = µ(f), ∀f ∈

Cb(X).

Proof. (i) Note B0(X̃)∩X = B0(X). Define µ̃ : B0(X̃) → E, µ̃(B) = µ(B∩X).
This means µ̃(B) = 0 when B ∩X = ∅. Take a p ∈ P , c > 0 and a Baire set
B ⊂ X. Select a Baire B̃ ⊂ X̃ such that B̃ ∩ X = B. Since a Baire measure
on a compact Hausdorff space is regular ([5]), there exists a zero-set Z and a
positive set V in X̃ such that Z ⊂ B̃ ⊂ V and ¯̃µp(V \ Z) ≤ c. From this it
follows that µ̄p(V ∩X \ Z ∩X) ≤ c. This proves the regularity of µ.

(ii) Since the range of a countably additive E-valued measure is a relatively
weakly compact subset of E, the unit ball of Cb(X) is mapped into a relatively
weakly compact subset of E under the mapping µ : (Cb(X), βσ) → E. Also
βσ-bounded sets are norm-bounded ([11]) and so the bounded sets are mapped
into a relatively weakly compact subset of E.

Now for every g ∈ E ′, g ◦ µ ∈ Mσ(X) and so, with weak topology on E, the
mapping µ : (Cb(X), βσ) → E is continuous. Since βσ is Mackey ([11]), the
mapping is also continuous with the original topology on E ([9], 7.4, p. 149).

Conversely, suppose that µ : (Cb(X), βσ) → E is a linear and continuous
mapping and the bounded sets are mapped into a relatively weakly compact
subset of E. With sup-norm topology on C(X̃), the mapping µ̃ : C(X̃) → E,
µ̃(f) = µ(f|X), ∀f ∈ C(X̃), is linear and weakly compact and so µ̃ can be

considered a regular Baire measure on X̃. If Z ⊂ X̃ \ X is a zero-set, there
exists a sequence {fn} ⊂ C(X̃) such that fn ↓ χZ . This means, in (Cb(X), βσ),
fn|X → 0. Thus for every zero-set Z ⊂ X̃ \ X, µ̃(Z) = 0, and so, for every

p ∈ P, ¯̃µp(B) = 0, for all Baire sets B ⊂ X̃ \ X. For any Baire set A ⊂ X,

define ν(A) = µ̃(B), B being any Baire subset of X̃, with B ∩ X = A. It is
a routine verification that ν is well-defined, is countably additive and for the
integration of any f ∈ Cb(X),

∫
fdν =

∫
fdµ. Also if there is another Baire

measure ν1, on X, such that
∫

fdν =
∫

fdν1 for every f ∈ Cb(X), then we have
ν(Z) = ν1(Z) for every zero-set Z ⊂ X ; by regularity, this will imply ν = ν1.
So the uniqueness is established. ¤

A Baire measure µ : B0 → E is called τ -smooth if for every g ∈ E ′, g ◦ µ ∈
Mτ (X). The set of all E-valued τ -smooth measures is denoted by Mτ (X, E).

Theorem 3. Suppose X is a completely regular Hausdorff space and µ :
B0 → E is a τ -smooth measure. Then
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(i) µ can be extended to a Borel measure which is inner regular by closed sets
and outer regular by open sets (we call this extension a regular Borel Measure);

(ii) the linear mapping µ : (Cb(X), βτ ) → E is continuous and bounded sets
are mapped into relatively weakly compact sets;

(iii) considering µ a Borel measure, suppose {fα} is an increasing net of non-
negative, lower semi-continuous functions in L1(µ), converging pointwise to an
f ∈ L1(µ). Then lim µ̄p(f − fα) = 0; in particular lim

∫
fαdµ =

∫
fdµ.

(iv) Given a p ∈ P , there exists the largest open set Up ⊂ X such that
µ̄p(Up) = 0; this X \Up is called the support of µ̄p and has the property that for
any f ∈ Cb(X), f ≥ 0, and f not identically 0 on X \ Up, one has µ̄p(f) > 0.

(v) The Borel regular extension of µ, satisfying the condition that, for an
increasing net {Vα} of open subsets of X with ∪Vα = V , we have lim µ(Vα) =
µ(V ), is unique.

Conversely, if a linear mapping µ : (Cb(X), βτ ) → E is continuous and maps
bounded sets into relatively weakly compact sets, then there exists a unique τ -
smooth measure ν : B0 → E such that

∫
fdν = µ(f), ∀f ∈ Cb(X).

Proof. (i). We have B(X̃) ∩ X = B(X). As Cb(X) ⊂ L1(µ), we get a linear
continuous µ̃ : C(X̃) → E, µ̃(f) = µ(f|X), ∀f ∈ C(X̃). Thus µ̃ can be

considered as a regular Borel measure on X̃. Take a closed set C ⊂ X̃ \ X;
there exists a net {fα} ⊂ C(X̃) such that fα ↓ χC . This means, in (Cb(X), βτ ),
fα|X → 0. Thus for every closed set C ⊂ X̃ \X, µ̃(C) = 0, and so, by regularity,

for every p ∈ P , ¯̃µp(B) = 0, for all Borel sets B ⊂ X̃ \ X. For any Borel set

A ⊂ X, define ν(A) = µ̃(B), B being any Borel subset of X̃, with B∩X = A. It
is a routine verification that ν is well-defined, is countably additive and for the
integration of any f ∈ Cb(X) we have

∫
fdν =

∫
fdµ. Also by the regularity

of µ̃ it can be easily verified that µ is inner regular by closed sets and outer
regular by open sets.

(ii) To prove the continuity of µ : (Cb(X), βτ ) → E, we get µ̃ : C(X̃) → E as
done above. Fix a p ∈ P , put M = ¯̃µp(X̃), and fix an n ∈ N . Take a compact

C ⊂ X̃ \X. Now the topology βC is identical with the topology βt on Cb(X̃ \C),
if we identify Cb(X) with Cb(X̃ \ C) ([11]). Thus it is enough to prove that
µ̃ : (Cb(X̃ \C), βt) → E is continuous. We will use the fact that βt is the finest
locally convex topology agreeing with the compact-open topology on norm-
bounded sets. Take a compact K ⊂ X̃ \C such that ¯̃µp((X̃ \C)\K) ≤ 1

3n
. Since

µ̃p(C) = 0, we have ¯̃µp(X̃ \K) ≤ 1
3n

. Take an f ∈ Cb(X), |f | ≤ n, |f̃ | ≤ 1
2nM

on K. Now
∫

f̃dµ̃ =
∫

K
f̃dµ̃ +

∫
X̃\K f̃dµ̃. Taking the ‖.‖p-norm on both sides,

we get ‖µ(f)‖p ≤ 1
2nM

M + 1
3n

n ≤ 1. This proves the continuity of µ.
(iii) Since g ◦ µ ∈ Mτ (X), ∀g ∈ E ′, we get that the control measure λp ∈

Mτ (X). As in Theorem 1, this means lim
∫

fαdλp =
∫

fdλp. So we get an
increasing sequence fα(n) and a Borel B ⊂ X such that λp(X \ B) = 0 and
fα(n) → f pointwise on B. Using the fact fα(n) ≤ f, ∀n, by ([7], Theorem 1, p.
20), µ̄p(f − fα(n)) → 0. This proves the result.

(iv) The proof is identical to the one given in Theorem 1 (ii).
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(v) Suppose ν1 and ν2 are two regular Borel extensions of ν, satisfying the
given condition. Fix an open set V ⊂ X and take an increasing net {Uα}
of positive-sets in X such that Uα ↑ V . By (iii) ν1(V ) = ν2(V ) and so, by
regularity, ν1 = ν2.

Conversely, suppose that µ : (Cb(X), βτ ) → E is a linear and continuous
mapping and the bounded sets are mapped into relatively weakly compact sub-
set of E. Proceeding as in Theorem 2, we get a unique countably additive Baire
measure ν on X such that

∫
fdν = µ(f), for every f ∈ Cb(X). Now for every

g ∈ E ′, g ◦ µ : (Cb(X), βτ ) → K is a linear and continuous and g ◦ µ ∈ Mτ (X).
This means ν is τ -smooth. ¤

A countably additive Baire measure µ : B0 → E is called tight if for every
g ∈ E ′, g ◦ µ ∈ Mt(X). The set of all E-valued tight measures will be denoted
by Mt(X, E). It is a trivial verification that a tight measure µ : B0 → E is also
τ -smooth.

Theorem 4. Suppose X is a completely regular Hausdorff space and µ :
B0 → E is a tight measure. Then

(i) µ can be extended to a Borel measure which is inner regular by compact
sets and outer regular by open sets;

(ii) the linear mapping µ : (Cb(X), βt) → E is continuous and bounded sets
are mapped into relatively weakly compact sets;

(iii) considering µ a Borel measure, suppose {fα} is an increasing net of non-
negative, lower semi-continuous functions in L1(µ), converging pointwise to an
f ∈ L1(µ), pointwise on X. Then lim µ̄p(f − fα) = 0, ∀p ∈ P ; in particular
lim

∫
fαdµ =

∫
fdµ;

(iv) the regular Borel extension of µ, satisfying condition (i), is unique.
Conversely, if a linear mapping µ : (Cb(X), βt) → E is continuous and maps

bounded sets into relatively weakly compact sets, then there exists a unique tight
measure ν : B0 → E such that

∫
fdν = µ(f), ∀f ∈ Cb(X).

Proof. (i). Since the measure is τ -smooth, using Theorem 3, it can be uniquely
extended to a Borel measure, satisfying condition (iii) of Theorem 3. Now
considering this a Borel measure and using the fact for every g ∈ E ′, g ◦ µ ∈
Mt(X), we get that µ is regular in the weak topology on E. By ([8], Theorem
1.6, p. 159), µ is inner regular by compact subsets of X; it is a simple verification
that this implies that µ is outer regular by open subsets of X.

(ii) To prove the continuity of µ : (Cb(X), βt) → E, we will use the fact that
βt is the finest locally convex topology agreeing with the compact-open topology
on norm-bounded sets. Fix a p ∈ P , an n ∈ N and a c > 0. Take an M > 0 such
that µ̄p(X) ≤ M . Take a compact C ⊂ X such that µ̄p(X \ C) ≤ 1

2n
. Now for

any f ∈ Cb(X), ‖f‖ ≤ n and |f | ≤ 1
2M

on C we have µ(f) =
∫

C
fdµ+

∫
X\C fdµ.

Taking the ‖·‖p-norm on both sides, we get ‖µ(f)‖p ≤ ‖ ∫
C

fdµ‖p +‖ ∫
X\C ‖p ≤

1
2M

M + n 1
2n

< 1.
Since βt is the finest locally convex topology, agreeing with the compact-

open topology on bounded sets, we prove that µ is continuous. Also, since
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µ is countably additive, the bounded sets are mapped into relatively weakly
compact subsets of E.

(iii) Since the measure µ is τ -smooth, this follows from (iii) of Theorem 3.
(iv) Let µi (i=1, 2) be two Borel extensions of µ, satisfying (i). Take an open

V and a compact C in X. There is a zero-set Z in X, C ⊂ Z ⊂ V . Since
µ1 = µ2 on zero-sets, we get µ1(V ) = µ2(V ). By regularity, µ1 = µ2.

Conversely, suppose that µ : (Cb(X), βt) → E is a linear and continuous map-
ping and the bounded sets are mapped into relatively weakly compact subsets
of E. Proceeding as in Theorem 2, we get a unique countably additive Baire
measure ν on X such that

∫
fdν = µ(f) for every f ∈ Cb(X). Now for every

g ∈ E ′, g◦µ : (Cb(X), βt) → K is a linear and continuous and so g◦µ ∈ Mt(X).
This means ν is tight. ¤

3. Alexandrov’s Theorem

In this section, we extend the celebrated Alexandrov representation theorem
to the vector-valued measures. In the scalar case, in a simple form, this theorem
says:

Suppose X is a completely regular Hausdorff space, F the algebra generated
by zero-sets and µ : Cb(X) → K a continuous linear mapping. Then there
exists a unique, finitely additive measure ν : F → R such that

(i) ν is inner regular by zero-sets and outer regular by positive-sets;
(ii)

∫
fdν = µ(f), ∀f ∈ Cb(X). ([12], Theorem 6, p. 163; [11], ). Note Cb(X)

is contained in the uniform closure of F -simple functions on X in the space of
all bounded functions on X and so each f ∈ Cb(X) is ν-integrable.

We state and prove the following extension. Our proof is obtained by the
regularity properties of the corresponding regular Borel measure on X̃ and is
very different from that given in [11]. We start with a lemma.

Lemma 5. If Z1 and Z2 are zero-sets in X, then Z1 ∩ Z2 = Z1 ∩ Z2 (for a
subset A ⊂ X, A denotes the closure of A in X̃). Hence if Z1 ∩ Z2 = ∅, then
Z1 ∩ Z2 = ∅.

Proof. Suppose this is not true. Take a point a ∈ Z1∩Z2\Z1 ∩ Z2 (note Z1∩Z2

can be empty). Take an f ∈ Cb(X), 0 ≤ f ≤ 1, such that f̃(a) = 1 and f = 0
on Z1∩Z2. For i = 1, 2, take hi ∈ Cb(X) such that 0 ≤ hi ≤ 1 and Zi = h−1

i (0).

Define fi(x) = f(x) hi(x)
h1(x)+h2(x)

, for x /∈ Z1∩Z2, and 0 otherwise. These functions

are continuous and f = f1 + f2. Thus f̃ = f̃1 + f̃2. Since fi = 0 on Zi, f̃i = 0
on Zi and so f̃1 + f̃2 = 0 on Z1 ∩Z2. This means f̃(a) = 0, a contradiction. ¤

Now we come to the main theorem.

Theorem 6. Suppose X is a completely regular Hausdorff space and µ :
Cb(X) → E a weakly compact linear mapping. Then there exists a unique
finitely additive, exhaustive measure ν : F → E such that

(i) ν is inner regular by zero-sets and outer regular by positive-sets;
(ii)

∫
fdν = µ(f), ∀f ∈ Cb(X).
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Proof. Considering µ̃ : C(X̃) → E, we get an E-valued regular Borel measure
µ̃ : B(X̃) → E. If A is a subset of X or X̃, A will denote the closure of A in
X̃. We prove this theorem in several steps.

I. Let Z = {A : A a zero-set in X}. Then for every Q ∈ Z and c > 0, there
exists W ∈ Z such that W ⊂ X̃ \Q and ¯̃µp((X̃ \Q) \W ) < c.

Proof. Using the inner regularity of ¯̃µp and Urysohn’s lemma, we can take a

positive set V ⊂ X̃ \Q having the property that ¯̃µp((X̃ \Q) \ V ) < c
2
. Take a

g ∈ C(X̃), 0 ≤ g ≤ 1, such that V = g−1(0, 1]. Put Vn = {x ∈ X̃ : g(x) > 1
n
}

and Zn = {x ∈ X̃ : g(x) ≥ 1
n
}. Now, using the fact that X is dense in X̃, we

have Vn ⊂ (Vn ∩X) ⊂ (Zn ∩X) ⊂ Zn ⊂ Vn+1 By choosing n sufficiently large

we can assume ¯̃µp(V \ Vn) < c
2
. Taking W = (Zn+1 ∩X), we get the result.

II. Let A be the algebra, in X̃, generated by Z and denote by A0 the elements
of A which have the property that these elements and their complements are
inner regular by the elements of Z. Then A0 = A.

Proof. We use I to prove. By I, A0 ⊃ Z. By definition, A0 is closed under
complements. Also, using Lemma 5, it is a routine verification that if A and B
are in A0, then A ∪B and A ∩B are also in A0. This proves the result.

III. Let F be the algebra, in X, generated by zero-sets in X. Then it is a
simple verification that A ∩ X ⊃ F . Also if A ∈ A and A ∩ X = ∅, then
¯̃µp(A) = 0. To prove this, take any Z ∈ Z, Z being a zero-set in X, such
that Z ⊂ A. This means Z is empty and so ¯̃µp(A) = 0. Now we can define
a ν : F → E, ν(B) = µ̃(A), A being any element in A with B = A ∩ X; it
is a trivial verification that ν is well-defined, is finitely additive and it is inner
regular by zero-sets in X and outer regular by positive-sets in X. We also have
ν(Z) = µ̃(Z) for any zero-set Z ⊂ X. Since ν(F) is relatively weakly compact
in E, ν is exhaustive (≡strongly additive) ([2], Corollary 3, p. 28; this is proved
for Banach space E, but easily extends to the quasi-complete locally convex
space E). Also, for any B ∈ F , ν̄p(B) ≤ ¯̃µp(A), where A is any element in A
such that B = A ∩X.

IV. For any f ∈ Cb(X), µ(f) =
∫

fdν.
Proof. Assume ¯̃µp(X) ≤ 1. Fix a c > 0 and take an f ∈ Cb(X), 0 ≤ f ≤ 1.

Then there is a non-negative, F -simple function
∑n

i=1 aiχBi
such that Bi’s are

mutually disjoint, their union is X and |f − ∑n
i=1 aiχBi

| < c on X. Take
mutually disjoint {Ai} ⊂ A such that Bi = Ai ∩ X for every i. Also take
mutually disjoint zero-sets {Zi} ⊂ X such that ¯̃µp(Ai \Zi) < c

n
, for each i. Now

‖
∫

fdν −
∑

aiν(Zi)‖p ≤ ‖
∫

fdν −
∑

aiν(Bi)‖p + ‖
∑

aiν(Bi \ Zi)‖p

≤ c + ‖
∑

aiµ̃(Ai \ Zi)‖p ≤ c + n
c

n
= 2c.

Also, |f −∑n
i=1 aiχBi

| ≤ c implies that |f̃ −∑n
i=1 aiχ(Zi)

| ≤ c on ∪(Zi) (note Zi

are also mutually disjoint by Lemma 5). So ‖ ∫
f̃dµ̃−∑

aiν(Zi)‖p = ‖ ∫
f̃dµ̃−
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∑
aiµ̃(Zi)‖p ≤ c + ‖∑

aiµ̃(Ai \ Zi)‖p ≤ c + n. c
n

= 2c. This prove that µ(f) =
ν(f).

V. Uniqueness.
Proof. Let ν : F → E be a finitely additive regular (inner regular by zero-

sets in X and outer regular by positive-sets in X) measure, having a relatively
weakly compact range, such that

∫
fdν = 0, ∀f ∈ Cb(X). This means ν is

exhaustive and so ν̄p(X) < ∞, ∀p ∈ P . If ν 6= 0, then there is p ∈ P , a
zero-set Z ⊂ X, and a c > 0 such that ‖ν(Z)‖p = 2c. Take a a positive-set
U ⊃ Z such that ν̄p(U \ Z) < c. Then take an f ∈ Cb(X), 0 ≤ f ≤ 1,
f(Z) = {1}, f(X \ U) = {0}. We get 0 =

∫
fdν =

∫
Z

fdν +
∫

U\Z fdν. This

means ν(Z) = − ∫
U\Z fdν and so 2c ≤ 1.ν̄p(U \ Z) < c. This contradiction

proves the uniqueness. ¤
We denote by M(X,E) the set of all exhaustive, finitely additive ν : F → E

which are inner regular by zero-sets in X and outer regular by positive-sets
in X; they are the collection of all weakly compact, continuous linear maps
ν : Cb(X) → E.

4. Representation Theorem for C(X) with a Completely
Regular X

In this section we assume that K = R. A subset B ⊂ C(X) will be called
order-bounded if there are elements f and g in C(X) such that f ≤ b ≤ g, ∀b ∈
B. It is well-known that a linear map µ : C(X) → R, which maps order-
bounded sets into bounded sets, gives a unique ν ∈ Mσ(X) such that C(X) ⊂
L1(ν) and µ(f) =

∫
fdν ([12], Theorem 23; [4] ).

We will extend this fact to the vector case.

Theorem 7. Let µ : C(X) → E be a linear map such that order-bounded
subsets are mapped into relatively weakly compact subsets of E. Then

(i) There is a unique ν ∈ Mσ(X, E) such that C(X) ⊂ L1(ν) and µ(f) =∫
fdν;
(ii) for every p ∈ P there is compact C ⊂ υX (the real-compactification of

X), depending on p, such that ¯̃νp(X̃ \ C) = 0 ([4]).

Proof. (i) We will use the fact that, when E = R, the result is known. First
restrict µ to Cb(X); this means µ is a weakly compact linear operator and
∀h ∈ E ′, h ◦ µ ∈ Mσ(X) (here we are using the fact that, for E = R, the result
is known). So there exists a ν ∈ Mσ(X, E) such that µ(f) =

∫
fdν, ∀f ∈ Cb(X)

and C(X) ⊂ L1(|h ◦ ν|) for every h ∈ E ′ and h ◦ µ(f) =
∫

fd(h ◦ ν), for every
f ∈ C(X).

Now we will prove that C(X) ⊂ L1(ν). Let S be the closed unit ball of
Cb(X). Fix an f ∈ C(X), f ≥ 0, and A ∈ B0. Take a net {gα} ⊂ S such that∫ |gα − χA|d|λ| → 0, for every λ ∈ Mσ(X). Now {gαf} is order-bounded in
C(X) and so {µ(gαf)} in relatively weakly compact in E. By taking subsets,
if necessary, assume µ(gαf) → x ∈ E weakly. Fix an h ∈ E ′. We have
h ◦ µ(gαf) → h(x) and so

∫
(gαf)d(h ◦ ν) → h(x). Now since f is integrable
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with respect to |h ◦ ν|, we get
∫

(gαf)d(h ◦ ν) → ∫
A

fd(h ◦ ν). From this we get
that

∫
A

fd(h ◦ ν) = h(x), ∀h ∈ E ′. This implies that f ∈ L1(ν). Now, from∫
fd(h ◦ ν) = h ◦ µ(f), ∀h ∈ E ′, it follows that

∫
fdν = µ(f). We denote ν by

µ.
(ii). Fix a p ∈ P . By the mapping x → {f(x)}f∈C(X), X can be imbedded

in RC(X), with product topology. Denoting [−∞,∞] by R̄, we get that X is
embedded in the compact Hausdorff space R̄C(X) (with product topology). The
closure of X, in RC(X), is the real-compactification of X and will be denoted
by υX; the closure of X, in R̄C(X), is the Stone–Cech compactification and
will be denote by X̃. Every f ∈ C(X) extends continuously to υX (it will be
real-valued; just the component-wise values); it also extends continuously to X̃
(can have values ±∞; just the component-wise values).

We will complete the proof (ii) in several steps:
I. For an f ∈ C(X), there is a c ≥ 0 such that if U = {x ∈ X : |f(x)| > c}

then µ̄p(U) = 0.
Proof. The result will be proved if we prove under the assumption that f ≥ 0.

Suppose µ̄p(Wn) > 0, ∀n ∈ N , where Wn = {x ∈ X : |f(x) > n}. Then there
are sequences {an} and {bn} of positive real numbers such that, for every n,
an < bn < an+1, lim an → ∞ and µ̄p(Un) = cn > 0, where Un = f−1(an, bn).
Take a sequence {hn} ⊂ E ′ such that |hn(Vp)| ≤ 1 and |hn ◦ µ|(Un) > cn, ∀n.
Choose {gn} ⊂ Cb(X), 0 ≤ gn ≤ χUn such that |hn ◦ µ(gn)| > cn, ∀n. Let
f0 =

∑
n
cn

gnf . Then f0 ∈ C(X) and |hn ◦ µ|(f0) ≥ n
cn
|hn ◦ µ(gn)| ≥ n, ∀n.

Since f0 ∈ L1(ν), this is a contradiction. The smallest such c (which will exist
because of countable additivity) will be denoted by cf .

II. Let µ̃ be the regular Borel measure on X̃ associated with µ ∈ Mσ(X, E).
For an f ∈ C(X), let Af = {x ∈ X : |f(x)| ≤ cf} ( cf is defined in I). Then
¯̃µp(X̃ \ Af ) = 0.

Proof. Suppose this is not true. Then there is an h ∈ E ′ with |h(Vp| ≤ 1,

and a g ∈ C(X̃) such that |g| ≤ χX̃\Af
and |(h ◦ µ̃)(g)| > 0. This means

|g||X ≤ χX\Af
and |(h ◦ µ)(g)| > 0 which is a contradiction by I.

III. For an f ∈ C(X) let f̄ be its extension to υX. Let Af̄ = {x ∈ υX :

|f̄(x)| ≤ cf}. Then ¯̃µp(X̃\Af̄ ) = 0. Consequently, ¯̃µp(X̃\∩{Af̄ : f ∈ C(X)}) =
0.

Proof. Since Af̄ ⊃ Af , the result follows by II.

IV. ∩{Af̄ : f ∈ C(X)} = ∩{Af̄ : f ∈ C(X)}.
Proof. To prove this, take a y ∈ ∩{Af̄ : f ∈ C(X)}. Fix an f ∈ C(X).

Suppose y /∈ Af̄ ; then y /∈ υX. Take a g ∈ C(X) such that ḡ(y) = ∞. This

means y /∈ ∩Aḡ.This contradiction proves the result.
V. If C = ∩{Af̄ : f ∈ C(X), then C is a compact subset of υX and

¯̃µp(X̃ \ C)=0.

Proof. It follows from IV that C is compact in υX. Now, from III, ¯̃µp(X̃\C)=
0. This proves the result. ¤



VECTOR MEASURES ON TOPOLOGICAL SPACES 697

In the following corollary we take E to be an order complete locally convex
vector lattice such that if a bounded net {xα} order converges to x then xα → x
in E; these assumptions imply that E is an ideal in E ′′ and order intervals in E
are σ(E,E ′)-compact ([1], Theorem 11.13, p. 170). By ([9], 7.5, Corollary 1),
if E is an order complete vector lattice whose order is regular and of minimal
type, then E with order topology ([9], Sec. 6, p. 230) has the above property
(examples of these spaces are given in [9], p. 240).

Corollary 8. Let E be an order complete locally convex vector lattice with
the property if a bounded net {xα} order converges to x then xα → x in E. Let
µ : C(X) → E be a positive linear map. Then

(i) There is a unique ν ∈ Mσ(X,E) such that C(X) ⊂ L1(ν), ν ≥ 0 (this
means f ∈ C(X), f ≥ 0 implies ν(f) ≥ 0) and µ(f) =

∫
fdν, ∀f ∈ C(X);

(ii) for every p ∈ P there is compact C ⊂ υX (the real-compactification of
X), depending on p, such that ¯̃νp(X̃ \ C) = 0.

Proof. The assumptions on µ and E imply that order bounded sets are mapped
into relatively σ(E, E ′)-compact subsets E. The result follows from Theo-
rem 7. ¤

Let Mc(X, E) = {µ ∈ M(X, E) : supp(¯̃µp) ⊂ υX, ∀p ∈ P}. It is easy to see
that Mc(X,E) ⊂ Mσ(X,E): Take a µ ∈ Mc(X,E) and a bounded sequence
{fn} ⊂ Cb(X), fn → 0, pointwise to 0 in X; this means fn → 0, pointwise on

υX (well-known result). Now µ(fn) = µ̃ (f̃n) → 0 implies that µ ∈ Mσ(X, E).
The following corollary is somewhat converse to Theorem 7; it says that mea-

sures in Mc(X, E) map order-bounded subsets of C(X) into relatively weakly
compact subsets of E.

Corollary 9. Let µ ∈ Mc(X,E). Then C(X) ⊂ L1(µ) and in the linear
map µ : C(X) → E, order-bounded subsets are mapped into relatively weakly
compact subsets of E.

Proof. Take an f ∈ C(X), f ≥ 0. Fix a p ∈ P and let C = supp(¯̃µp. Put

M = sup f̃(C). U = {x ∈ X̃ : f̃(x) > M} is an open Baire set in X̃ and is
disjoint from C so that ¯̃µp(U) = 0. From this it easily follows that µ̄p(U∩X) = 0
(note U ∩ X is a Baire set in X). Also, f ≤ M a.e.[λp]. Since the constant
functions are in L1(µ), by ([7], Theorem 2, p. 30), f ∈ L1(µ).

Putting h = inf(f,M), we have f = h a.e.[λp]. Let K be an absolutely
convex, weakly compact subset of E such that µ(S) ⊂ K (S being the closed
unit ball of Cb(X)). This means µ(h) ∈ MK. Since f = h a.e.[λp], we have
µ(f) ∈ MK. This proves that order-bounded sets are mapped into relatively
weakly compact sets. ¤
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