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ELUSIVE EXAMPLES OF NON-METRIZABLE CONTINUA
WHICH ADMIT A WHITNEY MAP

IVAN LONČAR

Abstract. The main purpose of this paper is to prove that the class of near
locally connected continua contains no non-metrizable continuum X which
admits a Whitney map for C(X). In particular, each near locally connected
continuum X which admits a Whitney map for C(X) is metrizable.
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1. Introduction

The concept of Whitney maps is a very powerful tool in hyperspace theory
of metric compact spaces. It is very natural to consider this concept in the
settings of Hausdorff compact spaces. Unfortunately, in this case the existence
of the Whitney maps for 2X is equivalent to the metrizability of X [1, Theorem
1, pp. 305-306]. It remains to consider the Whitney maps for the hyperspace
C(X) since there exists a non-metrizable continuum which admits a Whitney
map for C(X) [1, p. 306]. However, one can observe that in the literature there
is only one example of such a continuum. It would be desirable to construct
such examples but we have not been able to do this. We will prove that in
some families of continua there are no such examples. A very large class of such
continua is the class of D-continua [7]. We will show that there exists a non
D-continuum which is metrizable if and only if it admits a Whitney map. The
main Theorems 3.2, 3.4 and 3.6 show why it is difficult to find non-metrizable
continua X for which there exists a Whitney map for C(X).

All spaces in this paper are compact Hausdorff and all mappings are conti-
nuous. The weight of a space X is denoted by w(X). The cardinality of a set
A is denoted by card(A).

A generalized arc is a Hausdorff continuum with exactly two non-separating
points (end points) x, y. Each separable arc is homeomorphic to the closed
interval I = [0, 1].

We say that a space X is arcwise connected if for every pair x, y of points of
X there exists a generalized arc L with end points x, y.

Let X be a space. We define its hyperspaces as the following sets:

2X = {F ⊆ X : F is closed and non-empty},
C(X) = {F ∈ 2X : F is connected},
C2(X) = C(C(X)),
X(n) = {F ∈ 2X : F has at most n points}, n ∈ N.
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For any finitely many subsets S1, . . . , Sn, let

〈S1, . . . , Sn〉 =

{
F ∈ 2X : F ⊂

n⋃
i=1

Si, and F ∩ Si 6= ∅, for each i

}
.

The topology on 2X is the Vietoris topology, i.e., the topology with a base
{< U1, . . . , Un >: Ui is an open subset of X for each i and each n < ∞ }, and
C(X), X(n) are subspaces of 2X . Moreover, X(1) is homeomorphic to X.

Let X and Y be two spaces and let f : X → Y be a mapping. Define
2f : 2X → 2Y by 2f (F ) = f(F ) for F ∈ 2X . By [9, Theorem 5.10, p. 170] 2f is
continuous and 2f (C(X)) ⊂ C(Y ), 2f (X(n)) ⊂ Y . The restriction 2f |C(X)
is denoted by C(f).

Let Λ be a subspace of 2X . By a Whitney map for Λ [10, (0.50), p. 24] we
will mean any mapping g : Λ → [0, +∞) satisfying the conditions

a) if A,B ∈ Λ such that A ⊂ B and A 6= B, then g(A) < g(B) and
b) g({x}) = 0 for each x ∈ X such that {x} ∈ Λ.
If X is a metric continuum, then there exists a Whitney map for 2X and C(X)

([10, pp. 24–26], [3, p. 106]). On the other hand, if X is non-metrizable, then it
admits no Whitney map for 2X [1]. It is known that there exist non-metrizable
continua which admit and ones which do not admit a Whitney map for C(X)
[1, p. 306].

The notion of an irreducible mapping was introduced by Whyburn [13, p.
162]. If X is a continuum, a surjection f : X → Y is irreducible provided no
proper subcontinuum of X maps onto all of Y under f . Some theorems for the
case where X is semi-locally-connected are given in [13, p. 163].

A mapping f : X → Y is said to be hereditarily irreducible [10, (1.212.3), p.
204] provided that for any given subcontinuum Z of X, no proper subcontinuum
of Z maps onto f(Z).

A mapping f : X → Y is light (zero-dimensional) if all fibers f−1(y)
are hereditarily disconnected (zero-dimensional or empty) [2, p. 450], i.e.,
if f−1(y) does not contain any connected subset of cardinality larger that one
(dim f−1(y) ≤ 0). Every zero-dimensional mapping is light, and in the realm
of mappings with compact fibers the two classes of mappings coincide. Ev-
ery hereditarily irreducible mapping is light. If f : X → Y is monotone and
hereditarily irreducible, then f is one-to-one.

Proposition 1 ([10, (1.212.3), p. 204]). A mapping f : X → Y is hereditarily
irreducible if and only if the mapping C(f) : C(X) → C(Y ) is light.

We will use the notion of a inverse system as in [2, pp. 135–142]. An inverse
system is denoted by X = {Xa, pab, A} and its limit is denoted by limX.

We say that an inverse system X = {Xa, pab, A} is σ-directed if for each
sequence a1, a2, . . . , ak, . . . of the members of A there is a ∈ A such that a ≥ ak

for each k ∈ N.
Let X = {Xa, pab, A} be an inverse system of compact spaces with natural

projections pa : limX → Xa, for a ∈ A. Then 2X = {2Xa , 2pab , A}, C(X) =
{C(Xa), C(pab), A} and X(n) = {Xa(n), 2pab| Xb(n), A} form inverse systems.
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Lemma 1.1. Let X = limX. Then 2X = lim 2X, C(X) = lim C(X) and
X(n) = limX(n).

The following theorem is an external characterization of non-metrizable con-
tinua which admit a Whitney map for C(X) [6, Theorem 2.3, p. 398].

Theorem 1.2. Let X be a non-metrizable continuum. Then X admits a
Whitney map for C(X) if and only if for each σ-directed inverse system X =
{Xa, pab, A} of continua which admit Whitney maps for C(Xa) and X = limX
there exists a cofinal subset B ⊂ A such that for every b ∈ B the projection
pb : limX → Xb is hereditarily irreducible.

In the sequel we will use the following result [11, Exercise 11.52, p. 226].

Lemma 1.3. If X is a continuum and if A and B are mutually disjoint
subcontinua of X, then there is a component K of X \(A∪B) such that Cl(K)∩
A 6= ∅ and Cl(K) ∩B 6= ∅.

We will use the notion of a network of a topological space.
A family N = {Ms : s ∈ S} of a subsets of a topological space X is a network

for X if for every point x ∈ X and any neighbourhood U of x there exists s ∈ S
such that x ∈ Ms ⊂ U [2, p. 170]. The network weight of a space X is defined
as the smallest cardinal number of the form card(N ), where N is a network for
X; this cardinal number is denoted by nw(X).

The following theorem is due to Arkhangelski (see [2, Theorem 3.1.19, pp.
171, 576]).

Theorem 1.4. For every compact space X we have nw(X) = w(X).

2. Hyperspace Cint(X)

Now we will consider the subspace Cint(X) of C(X) \ X(1) containing all
subcontinua of X with non-empty interior. It is clear that Cint(X) is non-empty
since X ∈ Cint(X).

Lemma 2.1. The hyperspace Cint(X) is arcwise connected.

Proof. Let K ∈ Cint(X). There exists an order arc α from K to X ∈ C(X) [10,
Theorem (1.12), p. 65] or [3, Theorem 14.9, p. 113]. It is clear that each L ∈ α
has a non-empty interior (in X) since K ⊂ L and K has a non-empty interior
in X. Thus, α ⊂ Cint(X). ¤

It is a question whether Cint(X) = C(X) \X(1). We say that a continuum
X is completely regular if each non-degenerate subcontinuum of X has a non-
empty interior in X [12, p. 45]. Let us note that each completely regular contin-
uum is the inverse limit of an inverse system of graphs with monotone bonding
surjections [12, Corollary 7.14, p. 54]. Each completely regular continuum is
hereditarily locally connected.

Lemma 2.2. If X is a continuum, then Cint(X) = C(X) \X(1) if and only
if X is completely regular.
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Theorem 2.3. If X is a continuum which admits a Whitney map for C(X),
then Cint(X) is a separable metric space.

Proof. If X is metrizable, then C(X) is metrizable and separable since w(X) =
w(2X) = ℵ0 [2, Problem 3.12.26 (a), p. 306]. Hence, Cint(X) is metrizable and
separable.

Suppose that X is non-metrizable. The remaining part of the proof is devided
into several steps.

Step 1. There exists a σ-directed directed inverse system X = {Xa, pab,
A} of metric compact spaces Xa such that X is homeomorphic to limX [6,
Theorem 1.8, p. 397].

Step 2. There exists a cofinal subset B ⊂ A such that for every b ∈ B
the projection pb : limX → Xb is hereditarily irreducible. This follows from
Theorem 1.2.

Step 3. For every pair C,D of disjoint non-degenerate subcontinua of limX
with non-empty interiors there exists a non-degenerate subcontinuum E ⊂ limX
such that C∩E 6= ∅ 6= D∩E and (C∪D)\E 6= ∅. It suffices to apply Lemma
1.3 to the union C ∪ D and obtain a component K of X \ (C ∪ D) such that
Cl(K) ∩ C 6= ∅ and Cl(K) ∩ D 6= ∅. Then E = Cl(K) is a continuum with
properties C ∩ E 6= ∅ 6= D ∩ E and (C ∪D) \ E 6= ∅ since IntX(C) ∩ E = ∅
or IntX(D) ∩ E = ∅.

Step 4. Every restriction

C(pb)|Cint(limX) : Cint(limX) → C(pb)(Cint(limX)) ⊂ C(Xa)

is one-to-one and closed. Consider the inverse system C(X) = {C(Xa), C(pab),
A} whose limit is C(limX) (Lemma 1.1). From Step 2 it follows that there
exists a subset B cofinal in A such that the projections pb are hereditarily
irreducible. This means that C(pb) is light for every b ∈ B (Proposition 1). Since
limX is homeomorphic to lim{Xb, pbc, B}, we may assume that B = A. Let
Ya = C(pa)(Cint(limX)). Furthermore, C(pa)

−1(Xa(1)) = X(1) since from the
hereditary irreducibility of pa it follows that no non-degenerate subcontinuum
of X maps under pa onto a point. We infer that

C(pa)
−1[Ya \Xa(1)] = Cint(limX)).

Let us prove that the restriction C(pa)|[Cint(limX))] is one-to-one. Suppose
that C(pa)|[Cint(limX))] is not one-to-one. Then there exists a continuum Ca

(in Xa) and two continua C,D with non-empty interior in limX such that
pa(C) = pa(D) = Ca. It is impossible that C ⊂ D or D ⊂ C since pa is
hereditarily irreducible. Otherwise, if C ∩ D 6= ∅, then for the continuum
Y = C ∪ D we would have that C and D are subcontinua of Y and pa(Y ) =
pa(C) = pa(D) = Ca, which is impossible since pa is hereditarily irreducible. We
infer that C ∩D = ∅. By Step 3 there exists a continuum E such that C ∩E 6=
∅ 6= D ∩ E and (C ∪D) \ E 6= ∅. Moreover, we may assume that E ∩ C 6= C
and E ∩ D 6= D. Now pa(E ∪ D) = pa(E), which is impossible since pa is
hereditarily irreducible. It follows that the restriction Pa = C(pa)|[Cint(limX)]
is one-to-one and closed [2, Proposition 2.1.4, p. 95].
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Step 5. Cint(limX)) is metrizable and w(Cint(limX)) ≤ ℵ0. From Step 4 it
follows that Pa is a homeomorphism and Cint(limX)) is metrizable. Moreover,
w(Cint(limX)) ≤ ℵ0 since Ya as a compact metrizable space is separable and,
consequently, second-countable [2, p. 320].

By step 5 the proof is completed. ¤

3. Main Theorems

It is well known that if X is a metric compact space, then there exists a
Whitney map for 2X and C(X). On the other hand, if X is non-metrizable,
then it admits no Whitney map for 2X [1, Corollary 2, p. 306]. It is known that
there exist non-metrizable continua which admit and ones which do not admit
a Whitney map for C(X) [1, p. 306]. The properties of continua which admit a
Whitney map are investigated in [5] where an external characterization of such
continua is obtained, see Theorem 1.2. The problem of an internal characteri-
zation of a continuum X which admits a Whitney map for C(X) (posed in [1,
Problem 4, p. 306]) is still open. The papers [6] and [8] contain further inves-
tigation of the existence of a Whitney map for some special continua. Finally,
the paper [7] contains a very general result which states that a D-continuum X
admits a Whitney map for C(X) if and only if it is metrizable. Let us note that
the class of all D-continua contains semi-aposyndetic continua (in particular,
locally connected continua) and arcwise connected continua.

In this section we will consider the class of nearly locally connected continua
which are not D-continua and we will prove that every continuum X in this
class admits a Whitney map for C(X) if and only if it is metrizable.

A continuum X is said to be near locally connected at a point x ∈ X provided
for every open set U containing x there is a continuum C such that x ∈ C ⊂ U
and Int(C) 6= ∅. A continuum is said to be a NLC-continuum provided it is
near locally connected at each of its point. Every locally connected continuum
is a NLC-continuum.

The concept of aposyndesis was introduced by Jones in [4]. A continuum
is said to be semi-aposyndetic [3, Definition 29.1, p. 238], if for every p 6= q
in X, there exists a subcontinuum M of X such that IntX(M) contains one
of the points p, q and X \M contains the other one. Every locally connected
continuum is semi-aposyndetic.

A continuum X is called a D-continuum if for any pair C, D of its disjoint
non-degenerate subcontinua there exists a subcontinuum E ⊂ X such that
C ∩ E 6= ∅ 6= D ∩ E and (C ∪D) \ E 6= ∅.

If X is a locally connected continuum, then X is a D-continuum [8, Lemma
2.4, p. 150]. Every arcwise connected continuum is a D-continuum.

Example. There exists a non-locally connected non-semi-aposyndetic NLC-
continuum X. Moreover, X is not a D-continuum. Let R2 be the Euclidean
plane endowed with the ordinary rectangular coordinate system Oxy. We define
the continuum X as a subcontinuum of R2 which is the union of the following
sets:
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a) [−1, 0]× [−1, 1],
b)

{
(x, sin 1

x
) : 0 < x ≤ 1

}
,

c)
{
(x, sin 1

2−x
) : 1 ≤ x < 2

}
,

d) [2, 3]× [−1, 1].
It is clear that X is not locally connected. Also, it is not semi-aposyndetic.

Namely, if (0, 1
3
) and (0, 1

2
) are two points of X, then each continuum with non-

empty interior containing (0, 1
3
) contains also (0, 1

2
). It is clear that X is locally

connected at each point of X \ ({0} × [−1, 1] ∪ {2} × [−1, 1]). Hence, X is a
NLC-continuum at each point of X \({0}× [−1, 1]∪{2}× [−1, 1]). On the other
hand, for every point A of {0} × [−1, 1] ∪ {2} × [−1, 1] and for every open set
containing A there exists a continuum K containing A such that Int(K) 6= ∅.
Hence X is a NLC-continuum.

Theorem 3.1. Let X be a NLC-continuum. Then w(Cint(X)) = ℵ0 if and
only if w(X) = ℵ0.

Proof. If w(X) = ℵ0, then w(C(X)) = ℵ0. Hence, w(Cint(X)) = ℵ0. Con-
versely, if w(Cint(X)) = ℵ0, then there exists a countable base B = {Bi : i ∈ N}
of Cint(X) \ X(1). For each Bi let Ci = ∪{x ∈ X : x ∈ B, B ∈ Bi}, i.e., the
union of all continua B contained in Bi.

Claim 1. The family {Ci : i ∈ N} is a network of X. Let X be a point
of X and let U be an open subset of X such that x ∈ U . There exists and
open set V such that x ∈ V ⊂ Cl(V ) ⊂ U . Let K be a component of Cl(V )
containing x. By the Boundary Bumping Theorem [11, Theorem 5.4, p. 73] K is
non-degenerate and, consequently, K ∈ Cint(X) since X is an NLC-continuum.
Now, 〈U〉∩ (Cint(X)) is a neighbourhood of K in Cint(X). It follows that there
exists Bi ∈ B such that K ∈ Bi ⊂ 〈U〉 ∩ (Cint(X)). It is clear that Ci ⊂ U and
x ∈ Ci since x ∈ K ⊂ U . Hence the family {Ci : i ∈ N} is a network of X.

Claim 2. nw(X) = ℵ0. Apply Claim 1 and the fact that B is countable.
Claim 3. w(X) = ℵ0. By Claim 1 we have nw(X) = ℵ0. Moreover, by

Theorem 1.4 w(X) = ℵ0. ¤
Now we will prove the main result of this paper.

Theorem 3.2. An NLC-continuum X admits a Whitney map for C(X) if
and only if it is metrizable.

Proof. By Theorem 2.3 if X is a continuum which admits a Whitney map for
C(X), then Cint(X) is a separable metric space. Now, by Theorem 3.1, X is
metrizable since X is an NLC-continuum. ¤

From the fact that every locally connected continuum is an NLC-continuum
and Theorem 3.2 we obtain the following result.

Corollary 3.3. A locally connected continuum X admits a Whitney map for
C(X) if and only if it is metrizable.

It is known [2, Corollary 3.1.20, p. 171] that if a compact space X is the
countable union of its subspaces Xn, n ∈ N, such that w(Xn) ≤ ℵ0, then
w(X) ≤ ℵ0. Using this fact and Theorem 3.2 we obtain the following theorem.
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Theorem 3.4. Let a continuum X be the countable union of its NLC-sub-
continua. Then X admits a Whitney map for C(X) if and only if it is metriz-
able.

Let X be a topological space. An arc-component of X is a maximal arcwise
connected subset of X. An arcwise connected continuum contains only one
arc-component. Some arc-components are points (degenerate arc-components).

Theorem 3.5. Let X be a continuum which is the countable union of its
a-triodic hereditarily unicoherent arc-components. Then X admits a Whitney
map for C(X) if and only if it is metrizable.

Proof. Let µ be a Whitney map for C(X). We will prove that each non-
degenerate arc-component of X is the countable union of metrizable arcs. Let
C be a non-degenerate arc-component of X. Let a1, b1 be a pair of distinct
points of C. There exists an arc L1 = [a1, b1] . If C = [a1, b1], then the proof
is completed. Suppose that C 6= L1. Let c be any point of [a1, b1] such that
c /∈ {a1, b1}. Let us recall that C is hereditarily unicoherent and a-triodic. This
means that for each arc [c, x] we have the following cases:

1. [c, x] ⊂ [c, b1] ,
2. [c, x] ⊃ [c, b1] ,
3. [c, x] ⊂ [c, a1] ,
4. [c, x] ⊃ [c, a1] .
Hence we may define two families of arcs. Let A be a family of all arcs [c, x]

such that either [c, x] ⊂ [c, a1] or [c, x] ⊃ [c, a1] . Similarly, let B be a family
of all arcs [c, x] such that either [c, x] ⊂ [c, b1] or [c, x] ⊃ [c, b1] . If L1, L2 is a
pair of arcs from A (B), then either L1 ⊆ L2 or L1 ⊇ L2 since X is hereditarily
unicoherent an a-triodic. Moreover, if L1 is an arc in A and L2 in B, then
L1 ∩ L2 = {c}. Consider a strictly increasing transfinite sequence

[c, a1] ⊂ [c, a2] ⊂ · · · ⊂ [c, aα] , . . .

of arcs in A. We may assume that this transfinite sequence is cofinal in A. We
will prove that this transfinite increasing sequence is countable. In the opposite
case we have an increasing transfinite sequence of real numbers µ([c, a1]) <
µ([c, a2]) < · · · < µ([c, aα]) < c . . . , α < ω1. This is impossible since w(R) = ℵ0.
Similarly, each strictly increasing transfinite sequence

[c, b1] ⊂ [c, b2] ⊂ · · · ⊂ [c, bα] , . . .

of arcs B is countable. This means that we may define a countable family of
arcs {Ln = [an, bn] : n ∈ N}. It is clear that C = ∪{Ln : n ∈ N}, i.e., C is the
countable union of arcs.

Let {Ci : i ∈ N} be a family of all arc-components of X. Now, X is the
countable union of metrizable arcs since every Ci is the countable union of
metrizable arcs. By virtue of Theorem 3.4, it follows that X is metrizable. ¤

A chain {U1, . . . , Un} is a finite collection of sets Ui such that Ui

⋂
Uj 6= ∅

if and only if |i − j| ≤ 1. A continuum X is said to be chainable or arc-like if
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each open covering of X can be refined by an open covering u = {U1, . . . , Un}
such that {U1, . . . , Un} is a chain.

Corollary 3.6. A chainable continuum X which is the union of countably
many arc-components admits a Whitney map for C(X) if and only if it is metriz-
able.

Proof. Every chainable continuum is hereditarily unicoherent [11, Theorem 12.2,
p. 230] and a-triodic [11, Theorem 12.4, p. 231]. So, we can apply Theorem 3.5.

¤
A continuum X is said to be a σ-rim-nlc continuum provided for every point

x ∈ X and every open set U which contains x there exists an open set V such
that x ∈ V ⊂ U and the boundary Bd(V ) is the countable union of NLC-
continua.

Theorem 3.7. A σ-rim-nlc continuum X admits a Whitney map for C(X)
if and only if it is metrizable.

Proof. It is known that if X is metrizable, then it admits a Whitney map for
C(X) [10, pp. 24-26], [3, p. 106]. Conversely, let X be a σ-rim-NLC continuum
which admits a Whitney map for C(X). We will prove that X is rim-metrizable.
Let x ∈ X be a point of X and let U be an open set containing x. There exists
an open set V such that x ∈ V ⊂ U and the boundary Bd(V ) = ∪{Ci : i ∈ N} of
NLC-continua Ci. If µ : C(X) → [0,∞) is a Whitney map, then the restriction
µ|C(Ci) is a Whitney map. From Theorem 3.2 it follows that every Ci is
metrizable since every Ci is a NLC-continuum. Using [2, Corollary 3.1.20, p.
171] we conclude that Bd(U) is metrizable. Finally, from [5, Theorem 11, p. 5]
it follows that X is metrizable. ¤
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