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STABILITY OF FINITE DIFFERENCE SCHEMES ON
IRREGULAR MESHES FOR VON FOERSTER-TYPE 1-D

EQUATIONS
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Abstract. We consider a generalized von Foerster equation in one dimen-
sional spatial variable and construct finite difference schemes for the initial
value problem. The stability of finite difference schemes on irregular meshes
generated by characteristics is studied.
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1. Introduction

Suppose that c : E → R and λ : E × R2
+ → R, where E = [0, a] × R+, R+ =

[0, +∞), a > 0. Consider the initial value problem generalizing the classical von
Foerster model of mathematical biology (see [1]–[3])

∂tu(t, x) + c (t, x) ∂xu(t, x) = u(t, x)λ
(
t, x, u(t, x), z(t)

)
, (1)

where

z(t) = z[u(t, ·)] =

∞∫

0

u(t, x) dx, t ∈ [0, a], (2)

with the initial condition

u(0, x) = v(x), x ∈ R+, (3)

where v : R+ → R+ is a given continuous and integrable function. The well-
posedness of problem (1)–(3) demands the condition c (t, 0) ≤ 0, t ∈ [0, a], that
is: the characteristics either go out of the set E through the lateral boundary
or meet the boundary and remain there.

There is rich literature concerning models describing the evolution of age-
dependent populations [2], [4]–[6]. In these papers, nonlinear initial boundary
value problems with non-local boundary conditions are examined. Such bound-
ary conditions (renewal equations) describe a birth process, e.g., a number of
newborn inhabitants at a given time.

In papers [1], [7] there are considered models with the right-hand side of char-
acteristic equation dependent on t, x and z, which describes the total number
of inhabitants. Since the renewal equation is not considered, the function c on
the lateral boundary is assumed to be nonpositive.
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Due to [7] the above models can be generalized in the following ways: (i) in-
cluding many species and many space variables, (ii) taking into consideration
past densities and past total sizes of species.

The main tools used to prove the existence and uniqueness of solutions are the
characteristics method and fixed point theorems. We refer the reader interested
in models of mathematical biology to [8]–[10].

In the known literature the authors consider methods of approximation of
solutions to von Foerster-type equations, in particular various methods of dis-
cretization are presented. In [11], [12] finite difference schemes are examined
for initial value problems on bounded domains with non-local boundary condi-
tions. A convergence theorem concerning Euler schemes in unbounded domains
is given in [13], assuming that all characteristics flow in one direction. The proof
is based on the Lax-Richtmyer equivalence theorem, which states that conver-
gence of a finite difference scheme is equivalent to its stability and consistency.
In [14], the stability of Euler schemes is proved in unbounded domains without
the assumption that the sign of the function c is constant in the whole domain.

According to [15], problem (1)–(3) is transformed to the following system of
ordinary differential equations:

ϕ′(t) = c(t, ϕ(t)), ϕ(0) = x, x ∈ R+, (4)

ζ ′(t) = ζ(t)λ(t, ϕ(t), ζ(t), z(t)), ζ(0) = v(ϕ(0)). (5)

By y(·; x) denote the unique solution of (4), by u(·; x) denote the unique solution
of (5) along y(·; x) provided that system (4),(5) is uniquely solvable. A change

of variables µ = y(t; x) in the formula z(t) =
∞∫
0

u(t, µ) dµ yields

z(t) =

∞∫

0

u (t, y (t; x))
∂

∂x
y(t; x) dx, t ∈ [0, a].

The purpose of the paper is to present finite difference schemes for (1)–(3)
using the method of characteristics, see [16]. In this approach a mesh is obtained
by numerical integration of (4). The proposed method significantly differs from
the generalized Euler method, since the mesh generated by characteristics is
irregular. Moreover, there is no need to assume the Courant–Friedrich–Levy
condition, cf. [13], [14], [17].

Note that the function z is the non-local term defined on an unbounded do-
main. To apply the classical theory concerning numerical integration rules we
truncate the set E to some bounded domain. A general theory concerning fi-
nite difference schemes for first order ordinary differential equations is applied.
Approximate solutions of (4) determine the mesh in the domain E. To ob-
tain better approximation of the characteristic curves, a second order method
is applied. We emphasize that using the second order method is essential for
our difference scheme. Solutions of (5) along discrete characteristics are com-
puted by the Euler method. The function z is approximated by an irregular
rectangle quadrature whose knots are determined by discrete characteristics.
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Similarly to [13]–[15] we apply recurrent inequalities to prove our stability the-
orem. The presented theory is illustrated by numerical experiments in R3. Due
to the biological interpretation of the considered problem, we investigate only
its nonnegative solutions.

2. Discretization of the Differential Problem

Since only a finite number of terms can be involved in practical computations,
we truncate the domain E and the initial set E0 = R+ to some bounded domains
determined by a respective characteristic. The irregular mesh in these domains

is defined as follows. For a given number N ∈ N put h =
a

N
and choose Nh ∈ N

such that hNh →∞ as h → 0. Let y(0,j), j = 0, 1, . . . , Nh, be nodal points on the
initial set E0 such that the conditions: (i) y(0,0) = 0, (ii) C0h ≤ y(0,j+1)−y(0,j) ≤
C1h, j = 0, 1, . . . , Nh − 1, with some positive constants C0, C1 are satisfied.
Note that the initial set E0 is truncated to the interval

[
0, y(0,Nh)

]
. Denote

E0.h =
{
y(0,j), j = 0, 1, . . . , Nh

}
. If C0 = C1, then the mesh E0.h is regular. By(

t(i), y(i,j)
)

denote the knots of the mesh, where t(i) = ih, i = 0, 1, . . . , N. The

number y(i,j) stands for the value of the discrete characteristic at the point t =
t(i) which starts at the point y(0,j) ∈ E0.h. For i = 0, . . . , N − 1, j = 0, 1, . . . , Nh

the mesh points
(
t(i+1), y(i+1,j)

)
are determined by the improved Euler formula

(the Heun method)

y(i+1,j) = y(i,j) +
h

2

[
c
(
t(i), y(i,j)

)
+ c

(
t(i+1), y(i,j) + hc

(
t(i), y(i,j)

)) ]
. (6)

For i = 0, 1, . . . , N define the numbers Si in the following way: S0 = 0,
Si = min

{
j = 0, 1, . . . , Nh : y(i,j) ≥ 0

}
, i = 1, . . . , N. The motivation for the

definition of the number Si is the following. Let j = 0, 1, . . . , Nh. Since the
condition c(t, 0) ≤ 0, t ∈ [0, a], is satisfied it is possible that y(i,j) < 0 for some
i, i = 1, . . . , N. Defining the number Si we exclude computation outside the
set E.

Denote Eh =
{ (

t(i), y(i,j)
)

: i = 0, 1, . . . , N, j = Si, . . . , Nh,
}
, E

(i)
h =

{
y(i,j) :

j = Si, . . . , Nh

}
, i = 0, 1, . . . , N. For a function u : Eh → R write u(i,j) =

u
(
t(i), y(i,j)

)
. Solutions of (5) along the j-th characteristic, j = 0, . . . , Nh, on

Eh are approximated by the Euler formula

u(i+1,j) = u(i,j) + h u(i,j)λ
(
t(i), y(i,j), u(i,j), z(i)

)
, u(0,j) = v

(
y(0,j)

)
(7)

for i = 0, . . . , N − 1, where

z(i) =

Nh−1∑
j=Si

u(i,j)
(
y(i,j+1) − y(i,j)

)
(8)

for i = 0, . . . , N. Formula (8) defines a discrete operator Qh which is a finite
one-dimensional quadrature. Note that the number Nh can be chosen in such
a way that Si < Nh − 1 for i = 1, . . . , N. This property holds if the function c
is bounded.
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Remark 1. The condition hNh → +∞ as h → 0 is satisfied for Nh given by
the formula

Nh =

[
1

hk
log

1

hk

]
, k ≥ 1,

where [x] denotes the entire part of x. Notice that the greater k is, the faster
Nh increases as h → 0.

Denote respectively by L∞ (R+) and L1 (R+) the classes of all essentially
bounded measurable functions and Lebesgue integrable functions defined on
R+. For any metric space X we denote by C(X,R) the class of all continuous
functions u : X → R. Let us define the following class of integrable functions.
Suppose that f : R+ → R. The function f ∈ L1

M if and only if there exists a
decreasing function g : R+ → R+ such that g ∈ L1(R+) and |f(x)| ≤ g(x) for
a.e. x ∈ R+.

The following normed spaces are introduced. In the space l∞ of all bounded
sequences ψ = (ψj)j∈N we have the natural supremum norm

‖ψ‖∞ = sup
j=0,1,...

|ψj| for (ψj) ∈ l∞.

The space l1, of all summable sequences ψ = (ψj)j∈N , is equipped with the
norm

‖ψ‖1 = h

+∞∑
j=0

|ψj| for (ψj) ∈ l1.

Since the difference problem is considered on the bounded mesh, we define
counterparts of the norms ‖·‖∞ , ‖·‖1 for a finite sequence (ψj) ∈ l∞, (ψj) ∈ l1

as follows. By Ph denote a finite, irregular mesh on R+ whose knots satisfy the
conditions: (i) x(j) < x(j+1), j = 0, 1, . . . , Nh − 1, (ii) C0h ≤ x(j+1) − x(j) ≤
C1h, j = 0, 1, . . . , Nh − 1, with some positive constants C0, C1, a discretization
parameter h > 0 and a positive number Nh. Consider the function φ : N → R
such that (φj) ∈ l∞ ∩ l1 and φj = 0 for x(j) /∈ Ph, and define

‖φ‖∞.h = sup
j=0,1,...,Nh

|φj|, ‖φ‖1.h = h

Nh∑
j=0

|φj|.

Note that the above definition is also valid for a regular mesh, i.e. x(j) = hj,
j = 0, 1, . . . , Nh.

Suppose that Rh denotes an unbounded irregular mesh on R+ whose knots
satisfy the conditions: (i) x(j) < x(j+1), j = 0, 1, . . . , (ii) C0h ≤ x(j+1) − x(j) ≤
C1h, j = 0, 1, . . . , with some positive constants C0, C1 and a discretization
parameter h > 0. Let fh denote the restriction of the function f : R+ → R to
the set Rh.

Lemma 1. Suppose that f : R+ → R and f ∈ L1
M. Then ‖fh‖1 < ∞.

Proof. By virtue of the definition of the class L1
M there exists a nonnegative,

Lebesgue integrable function g : R+ → R+ such that |f(x)| ≤ g(x) for a.e.
x ∈ R+. Define a step function w : R+ → R+ by the formula w(x) = g(x(j))
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for x ∈ [
x(j−1), x(j)

)
, j = 1, . . . . Since the function g is integrable and the

inequality 0 ≤ w(x) ≤ g(x) holds for x ∈ R+, we obtain
∫
R+

w(x) dx < ∞. The

condition (ii) of the definition of the set Rh implies the estimate

C0h

p∑
j=1

g
(
x(j)

) ≤
p∑

j=1

g
(
x(j)

) (
x(j) − x(j−1)

)
=

p∫

0

w(x) dx.

Letting p → +∞, we obtain ‖gh‖1 < ∞. The desired assertion follows from
the inequality |f(x)| ≤ g(x). ¤

Remark 2. The assertion of Lemma 1 remains true if Rh is a regular mesh
generated by a positive discretization parameter h, e.g., Rh =

{
x(j) : x(j) =

hj, j = 0, 1, . . .
}
.

We adopt the main regularity assumptions on the given functions:

Assumption [V ]. The initial function v : R+ → R is nonnegative, bounded,
continuous and v ∈ L1

M.

Assumption [C]. Suppose that c : E → R is continuous, bounded and there
is a constant Lc > 0 such that

|c (t, x)− c (t, x̄)| ≤ Lc |x− x̄|
for (t, x), (t, x̄) ∈ E.

Assumption [Λ]. Suppose that λ : E × R2 → R is continuous and there are
constants Lx, Lλ, Lz > 0 such that

|λ(t, x, p, q)− λ(t, x̄, p̄, q̄)| ≤ Lx |x− x̄|+ Lλ |p− p̄|+ Lz |q − q̄|
for (t, x), (t, x̄) ∈ E, p, q, p̄, q̄ ∈ R.

Assumption [Λ0]. Suppose that there is a constant L > 0 such that the
function λ : E×R2 → R satisfies the condition λ(t, x, p, q) ≤ L for (t, x, p, r) ∈
E × R2.

Assumption [N ]. Suppose that λ : E×R2 → R and the discretization param-
eter h satisfies the inequality

1 + hλ(t, x, p, q) ≥ 0

for (t, x, p, r) ∈ E × R2
+.

Note that if the function λ is bounded, then Assumption [N] holds for a
sufficiently small parameter h.

Lemma 2. If Assumption [C] is satisfied and hΓ < 1, Γ = Lc

(
1 + hLc

2

)
,

then for i = 0, 1, . . . , N, j = Si, . . . , Nh − 1 the following estimate holds:

y(i,j) < y(i,j+1).
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Proof. The proof is carried out by induction on i. Let y(i,j) ∈ E
(i)
h , i =

0, 1, . . . , N. From the condition C0h ≤ y(0,j+1)−y(0,j) ≤ C1h, j = 0, 1, . . . , Nh−1,
it follows that y(0,j+1)− y(0,j) > 0, j = 0, 1, . . . , Nh− 1. Suppose that the asser-
tion holds for some i, i = 0, 1, . . . , N − 1. Due to Assumption [C] we have

y(i+1,j+1) − y(i+1,j) ≥ (
y(i,j+1) − y(i,j)

)
(1− hΓ) .

Since y(i,j+1) − y(i,j) > 0 and 1− hΓ > 0 we obtain the desired assertion. ¤
Remark 3. By virtue of Lemma 2, the operator Qh given by (8) is well-defined.

Lemma 3. Suppose that Assumptions [V ], [C], [N ] are satisfied and hΓ < 1.
Then the discrete function u : Eh → R determined by (7) is nonnegative. More-
over, if Assumption [Λ0] is satisfied, then the nonnegative function u : Eh → R
is bounded.

Proof. By induction, we show the nonnegativeness of the function u. Since the
initial function v is nonnegative, the assertion holds for i = 0. Suppose that the
values of the function u are nonnegative for

(
t(i), x(j)

) ∈ Eh, i = 0, . . . , N − 1.
Applying Assumption [N] to formula (7) we conclude that the assertion follows
for

(
t(i+1), x(j)

) ∈ Eh.

Assumptions [N], [Λ0] applied to (7) yield the recurrence inequality u(i+1,j) ≤
(1 + hL) u(i,j), which gives the recurrence relation∥∥u(i+1,·)∥∥

h.∞ ≤
∥∥u(i,·)∥∥

h.∞ (1 + hL)

with the initial condition
∥∥u(0,·)∥∥

h.∞ ≤ ‖v‖∞ = sup {v(x) : x ∈ R+} . Hence

we obtain the estimate
∥∥u(i,·)∥∥

h.∞ ≤ U∞, where U∞ = ‖v‖∞ eaL. ¤
Since the initial function v : R+ → R+ belongs to the class L1

M, there exists a
nonnegative, integrable and decreasing function V : R+ → R+ such that v(x) ≤
V (x) for a.e. x ∈ R+. By Vh denote the restriction of the function V to the set
E0.h. By virtue of Lemma 1 there exists a positive number V̄ , independent of
Nh, such that ‖Vh‖h.1 < V̄ .

Lemma 4. Suppose that Assumptions [C], [N ], [V ], [Λ0] are satisfied and
hΓ < 1. Then there holds an estimate

∥∥u(i,·)∥∥
h.1

≤ U1 for i = 0, 1, . . . , N, where

U1 = V̄ eaL.

Proof. Applying Assumptions [N], [Λ0] to (7), we obtain the inequality u(i+1,j) ≤
(1 + hL) u(i,j), which yields the recurrence inequality∥∥u(i+1,·)∥∥

h.1
≤ (1 + hL)

∥∥u(i,·)∥∥
h.1

with the initial condition
∥∥u(0,·)∥∥

h.1
≤ V̄ . Hence we obtain the desired esti-

mate. ¤
Lemma 5. Suppose that Assumption [C] is satisfied, hΓ < 1, u : Eh → R+

and the norms
∥∥u(i,·)∥∥

h.1
are bounded. Then the following estimate is true:

Nh−1∑
j=Si

u(i,j)
(
y(i,j+1) − y(i,j)

) ≤ C1 (1 + hΓ)i
∥∥u(i,·)∥∥

1.h
,
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i = 0, 1, . . . , N, provided that u(i,j) = 0 for j < Si, i = 1, . . . , N.

Proof. Let y(i,j) ∈ E(i), i = 0, 1, . . . , N. From Assumption [C] it follows that

y(i+1,j+1) − y(i+1,j) ≤ (
y(i,j+1) − y(i,j)

)
(1 + hΓ) (9)

with C0h ≤ y(0,j+1) − y(0,j) ≤ C1h, j = 0, 1, . . . , Nh − 1. Consider the compar-
ison difference equation for (9):

α(i+1,j) = α(i,j) (1 + hΓ) .

There is no loss of generality in assuming α(0,j) = C1h, j = 0, 1, . . . , Nh. Taking
into consideration the initial condition, we have

α(i,j) = C1h (1 + hΓ)i and y(i,j+1) − y(i,j) ≤ α(i,j).

Hence, for i = 0, 1, . . . , N, j = Si, . . . , Nh − 1 the following inequality holds

y(i,j+1) − y(i,j) ≤ C1h (1 + hΓ)i .

Multiplying the above inequality by u(i,j) and summing the terms over j =
Si, . . . , Nh − 1, we obtain the desired assertion. ¤

In order to make the descriptions concise, denote

c(i,j) = c
(
t(i), y(i,j)

)
, λ(i,j)[u, z] = λ

(
t(i), y(i,j), u(i,j), z(i)

)

for i = 0, 1, . . . , N, j = Si, . . . , Nh.

3. Stability of the Scheme

To prove the stability of the finite difference scheme for problem (1)–(3)
consider a perturbed scheme with respect to the truncations of the domain,
perturbations of the right-hand sides and the initial condition. As in the pre-
vious section, we truncate the unbounded domain E to some bounded domain
determined by respective characteristic. The procedure presented in Section
2 will be applied to the difference schemes with perturbed right hand-sides.
The knots are derived by the improved Euler formula (the Heun method) with
perturbations:

ȳ(i+1,j) = ȳ(i,j) +
h

2

[
c̄(i,j) + c

(
t(i+1), ȳ(i,j) + hc̄(i,j)

) ]
+ h2η(i,j), (10)

where c̄(i,j) = c
(
t(i), ȳ(i,j)

)
, i = 0, 1, . . . , N, j = 0, 1, . . . , Nh. The initial con-

dition is given by ȳ(0,j) = y(0,j), j = 0, . . . , Nh. Denote Ēh =
{ (

t(i), ȳ(i,j)
)

: i =

0, 1, . . . , N, j = Si, . . . , Nh

}
. The numbers Si, i = 0, 1, . . . , N, were defined in

the previous section. Note that some points of the mesh Ēh may be placed
below the X-axis.

The value of any discrete function ū : Ēh → R+ at the knot
(
t(i), ȳ(i,j)

)
is

denoted by ū(i,j) = ū
(
t(i), ȳ(i,j)

)
. Consider the following scheme with the per-

turbed right hand-side

ū(i+1,j) = ū(i,j) + h ū(i,j)λ
(
t(i), ȳ(i,j), ū(i,j), z̄(i)

)
+ hξ(i,j), (11)
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and the perturbed initial condition ū(0,j) = v
(
ȳ(0,j)

)
+ ξ(0,j) for j = 0, 1, . . . , Nh.

The perturbed function z̄ is given by formula (8) with the discrete functions ȳ,
ū : z̄(i) = (Qhū)i, i = 0, 1, . . . , N.

Assumption [P ] . Suppose that the perturbations η and ξ satisfy the condi-
tions:

(i) sup
i=1,...,N

∥∥η(i,·)∥∥
∞.h

≤ Cη.h,

(ii) sup
i=1,...,N

∥∥ξ(i,·)∥∥
∞.h

≤ C̄ξ.h, sup
i=1,...,N

∥∥ξ(i,·)∥∥
1.h
≤ Ĉξ.h,

∥∥ξ(0,·)∥∥
∞.h

≤ C̄0
ξ.h,

∥∥ξ(0,·)∥∥
1.h
≤ Ĉ0

ξ.h,

where Cη.h, C̄ξ.h, Ĉξ.h, C̄0
ξ.h, Ĉ0

ξ.h → 0 as h → 0.

We write an auxiliary estimate for
∥∥∥(ȳ − y)(i,·)

∥∥∥
∞.h

.

Lemma 6. Suppose that
(
t(i), y(i,j)

) ∈ Eh,
(
t(i), ȳ(i,j)

) ∈ Ēh. If Assumptions
[C] and [P ](i) are satisfied, then∥∥∥(ȳ − y)(i,·)

∥∥∥
∞.h

≤ hCη.hX,

i = 0, 1, . . . , N, where X = eaΓ−1
Γ

, Γ = Lc

(
1 + hLc

2

)
.

Proof. Denote ε(i,j) = ȳ(i,j) − y(i,j). Subtracting (6) from (10), we obtain the
explicit recurrence error equation

ε(i+1,j) = ε(i,j) +
h

2

[
c̄(i,j) + c

(
t(i+1), ȳ(i,j) + hc̄(i,j)

) ]
+ h2η(i,j)

− h

2

[
c(i,j) + c

(
t(i+1), y(i,j) + hc(i,j)

) ]
,

i = 0, 1, . . . , N − 1, j = Si, . . . , Nh. It follows from Assumption [C] that∣∣ε(i+1,j)
∣∣ ≤

∣∣ε(i,j)
∣∣ (1 + hΓ) + h2

∣∣η(i,j)
∣∣ .

Taking the maximum over j = Si, . . . , Nh, we have∥∥ε(i+1,·)∥∥
∞.h

≤ ∥∥ε(i,·)∥∥
∞.h

(1 + hΓ) + h2
∥∥η(i,·)∥∥

∞.h
. (12)

Consider the comparison recurrence equation with respect to (12):

θ(i+1) = θ(i) (1 + hΓ) + h2
∥∥η(i,·)∥∥

∞.h
.

Taking into consideration the initial condition θ(0) = 0 and the estimate given
in Assumption [P ](i), we have

∥∥ε(i,·)∥∥
∞.h

≤ θ(i) and θ(i) ≤ hCη.h
(1 + hΓ)i − 1

Γ
,

i = 0, 1, . . . , N. Since (1 + hΓ)i ≤ eihΓ ≤ eNhΓ = eaΓ, i = 0, . . . , N, we have the
estimate ∥∥ε(i,·)∥∥

∞.h
≤ hCη.hX, i = 0, 1, . . . , N,
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which completes the proof. ¤
Now, we present the estimate of the term

∣∣z̄(i) − z(i)
∣∣ .

Remark 4. By the definition of the functions z̄(i), z(i) we have

z̄(i) − z(i) =

Nh−1∑
j=Si

(
ū(i,j)

(
ȳ(i,j+1) − ȳ(i,j)

)− u(i,j)
(
y(i,j+1) − y(i,j)

) )
.

Adding a term

Nh−1∑
j=Si

(
ū(i,j)

(
y(i,j+1) − y(i,j)

)− ū(i,j)
(
y(i,j+1) − y(i,j)

) )
,

which is equal to zero, to the right hand-side of the above equality we have

∣∣z̄(i) − z(i)
∣∣ ≤

Nh−1∑
j=Si

ū(i,j)
(∣∣ȳ(i,j+1) − y(i,j+1)

∣∣ +
∣∣ȳ(i,j) − y(i,j)

∣∣)

+

Nh−1∑
j=Si

∣∣ū(i,j) − u(i,j)
∣∣ (

y(i,j+1) − y(i,j)
)
.

Applying Lemma 6 to the terms
∣∣ȳ(i,j+1) −y(i,j+1)

∣∣,
∣∣ȳ(i,j) − y(i,j)

∣∣ and Lemma 5

to
∣∣ū(i,j) − u(i,j)

∣∣ (
y(i,j+1) − y(i,j)

)
, we obtain the estimate

∣∣z̄(i) − z(i)
∣∣ ≤ 2X

∥∥ū(i,·)∥∥
1.h

Cη.h + C1e
aΓ

∥∥ū(i,·) − u(i,·)∥∥
1.h

, (13)

where X = eaΓ−1
Γ

, Γ = Lc

(
1 + hLc

2

)
. Note that using the second order method

to approximate solutions of (4) is essential to obtain estimate (13).

Now, we prove a stability theorem for the proposed difference scheme.

Theorem 1. Suppose that
(
t(i), y(i,j)

) ∈ Eh,
(
t(i), ȳ(i,j)

) ∈ Ēh, Assumptions
[C], [P ] are satisfied, the discrete functions u : Eh → R, ū : Ēh → R+ are
bounded and for i = 1, . . . , N the norms

∥∥u(i,·)∥∥
1.h

,
∥∥ū(i,·)∥∥

1.h
are bounded. If

(i) u is a nonnegative solution of problem (7),
(ii) ū is a solution of problem (11) with perturbations satisfying Assumption

[P ](ii),
(iii) the function λ ∈ C(E × R× R,R) satisfies Assumptions [Λ], [Λ0],
(iv) the function λ ∈ C(E × R × R,R) and the discretization parameter h

satisfy Assumption [N ],

then the sequences
{∥∥ū(i,·) − u(i,·)∥∥

∞.h

}
i
,
{∥∥ū(i,·) − u(i,·)∥∥

1.h

}
i
converge uniform-

ly to 0 as h → 0.

Proof. The proof is based on the recurrence inequalities similarly as in the proofs
of Lemmas 5 and 6. Recall that ε(i,j) = ȳ(i,j) − y(i,j). By ω(i,j) = ū(i,j) − u(i,j)

denote the error of the scheme. Subtracting (7) from (11), we get the explicit
recurrence error equation

ω(i+1,j) = ω(i,j) + h
(
ū(i,j)λ(i,j)[ū, z̄]− u(i,j)λ(i,j)[u, z]

)
+ hξ(i,j).
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Applying Assumption [Λ] and the nonnegativeness of the function u, we obtain
the inequality∣∣ω(i+1,j)

∣∣ ≤ (
1 + hL + hLλu

(i,j)
) ∣∣ω(i,j)

∣∣ + hLxu
(i,j)

∣∣ε(i,j)
∣∣

+ hLzu
(i,j)

∣∣z̄(i) − z(i)
∣∣ + h

∣∣ξ(i,j)
∣∣ . (14)

Denote Ū1 = sup
i=0,...,N

∥∥ū(i,·)∥∥
1.h

. By virtue of Lemma 6 and Remark 4, we obtain

the recurrence inequality∥∥ω(i+1,·)∥∥
∞.h

≤ (1 + hL + hLλU∞)
∥∥ω(i,·)∥∥

∞.h
+ hLzU∞C1e

aΓ
∥∥ω(i,·)∥∥

1.h

+ hCη.hU∞X
(
hLx + 2LzŪ1

)
+ h

∥∥ξ(i,·)∥∥
∞.h

, (15)

where the number U∞ is given in the proof of Lemma 3. Multiplying both sides
of (14) by h, summing all terms over j = Si, . . . , Nh − 1, applying Lemma 6
and Remark 4, we obtain∥∥ω(i+1,·)∥∥

1.h
≤ (

1 + hL + hLλU∞ + hLzU1C1e
aΓ

) ∥∥ω(i,·)∥∥
1.h

+ h2Cη.hU1X
(
hLx + 2LzŪ1

)
+ h

∥∥ξ(i,·)∥∥
1.h

, (16)

where the number U1 is given in Lemma 4.
Just as in the proof of Lemma 6 consider the comparison recurrence equations

with respect to (15) and (16):

θ̄(i+1) =
(
1 + hL̄

)
θ̄(i) + hLzU∞C1e

aΓθ̂(i) + hΠ̄h + h
∥∥ξ(i,·)∥∥

∞.h
,

θ̂(i+1) =
(
1 + hL̂

)
θ̂(i) + hΠ̂h + h

∥∥ξ(i,·)∥∥
1.h

,

where L̄ = L + LλU∞, Π̄h = Cη.hU∞X
(
hLx + 2LzŪ1

)
, L̂ = L + LλU∞ +

LzU1C1e
aΓ, Π̂h = hCη.hU1X

(
hLx + 2LzŪ1

)
. Taking into consideration the ini-

tial conditions
∥∥ω(0,·)∥∥

∞.h
≤ θ̄(0) = C̄0

ξ.h,
∥∥ω(0,·)∥∥

1.h
≤ θ̂(0) = Ĉ0

ξ.h, we obtain the

estimates
∥∥ω(i,·)∥∥

∞.h
≤ θ̄(i) and

∥∥ω(i,·)∥∥
1.h

≤ θ̂(i). Hence the solutions of (16),
(15) satisfy the inequalities

∥∥ω(i,·)∥∥
1.h
≤ θ̂(i) ≤ eaL̂Ĉ0

ξ.h +
eaL̂ − 1

L̂

(
Π̂h + Ĉξ.h

)
=: F̂h,

∥∥ω(i,·)∥∥
∞.h

≤ θ̄(i) ≤ eaL̄C̄0
ξ.h +

eaL̄ − 1

L̄

(
LzU∞eaΓF̂h + Π̄h + C̄ξ.h

)
,

(17)

respectively. The proof is complete. ¤
Remark 5. It follows from Theorem 1 that sup

i=0,...,N

∣∣z̄(i) − z(i)
∣∣ → 0 as h → 0.

Note that the right hand-sides of (17) do not depend on Nh.

4. Numerical Experiments

The idea of truncations introduced in the paper is employed in numerical
experiments. For a fixed discretization parameter h > 0 we truncate the domain
E to some bounded domains by discrete characteristics and observe that the
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errors behave stably as the length of the initial set increases. To simplify the
presentation of numerical experiments only the length of the initial interval
[0, Y ], Y > 0, is given. The mesh points on the initial set [0, Y ] are uniformly
spaced, i.e. y(0,j) = jh, j = 0, . . . , Nh. We take a = 1 and h = 0.01, h = 0.002.
With the prescribed functions u : [0, 1]× R+ → R+, v(x) = u(0, x), x ∈ [0, Y ],
c : [0, 1]×R+ → R we determine the respective right-hand side of the differential
equation, i.e. the function λ : [0, 1]×R+×R2 → R. The errors are given by the
formulas

∆u = max
i=1,...,N
j=0,...,Nh

∣∣ũ(i,j) − u
(
t(i), y(i,j)

)∣∣ , ∆z = max
i=1...,N

∣∣z̃(i) − z(t(i))
∣∣ ,

where the discrete functions ũ, z̃ approximate the functions u, z, respectively.
The values of the errors are listed in the tables for various lengths of the initial
interval [0, Y ]. In our examples the function λ depends on the approximated
values of the unknown functions u and z, represented by p and q. The approxi-
mation of the integer term q is computed on a sufficiently large interval.

Example 1. Let

c(t, x) = sin3(x) sin
(π

4
(t + 1)(1 + sinh(2)− cosh(2))

) 1

x + 1

and

λ(t, x, p, q) =
1

t + 1
+

sin(x)

x + 1

(
sin(2x)− 2xp

t + 1

)
sin(q), v(x) =

sin2(x)

1 + x2
.

The solution of (1)–(3) with the above function is

u(t, x) =
(t + 1) sin2(x)

1 + x2
.

Moreover z(t) = π
4
(t + 1)(1 + sinh(2)− cosh(2)). The errors of computations

are given it the table.

Y h ∆u ∆z h ∆u ∆z

10 0.01 7.0E-3 0.1 0.002 6.12E-3 0.1
100 1.68E-3 10.8E-3 7.45E-4 1.01E-2

1000 1.3E-3 2.82E-3 4.45E-4 4.34E-3

Example 2. Consider problem (1)–(3) with

c(t, x) = sin(4.9875(t + 1)) sin(x) sin
(
(t + 1) sin2(x) exp(−0.1x)

)
/(1 + x),

λ(t, x, p, q) =
1

t + 1
+ sin(p) sin(q) (2 cos(x)− 0.1 sin(x)) /(1 + x)

and v(x) = sin2(x) exp(−0.1x). The function

u(t, x) = (t + 1) sin2(x) exp(−0.1x)

is a solution of the above problem. Moreover, z(t) = 4.9875(t + 1). The errors
of computations are presented in the table.
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Y h ∆u ∆z h ∆u ∆z

10 0.01 0.4 3.9 0.002 0.41 3.89
50 1.17E-2 7.04E-2 8.07E-3 6.83E-2

100 4.82E-3 3.1E-3 1.08E-3 2.03E-3
500 4.8E-3 2.9E-3 1.08E-3 2.03E-3

In both numerical experiments we observed that for given h, as the values of
Y increase, the values of the errors ∆u and ∆z decrease. Moreover, for greater
values of Y, which are not listed in the tables, both of the errors are equal to
the errors given in the last row of the tables.
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