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Abstract. Numerous methods for the inversion of the Radon trans-
formation which is the basis of computerized tomography are known:
Fourier inversion, filtered backprojection or Kaczmarz’s method. In
the filtered backprojection method the choice of the filter function is
crucial for the quality of the pictures. Here we deal with singular filter
functions which have some advantages in comparison with conventional
filters. An adapted method allows to handle the numerical problems
caused by the singularities.

1. Introduction

The method of computerized tomography is used in many fields: me-
dicine, geology, astrophysics etc. All those applications are based on the
following model: An X-ray of initial intensity I0 has after passing through
a material of optical density f and thickness µ a reduced intensity I(µ) =
I0 exp(−fµ). If the material is non-homogeneous, i.e. if f is a function of
x, and if we neglect optical refraction, then the X-ray follows a straight line
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L and its final intensity becomes

I(L) = I0 exp(−
∫

L
f(x) dτ)

where dτ denotes the line element on L.
∫
L f(x) dτ is called the Radon

transform of f as a function of L. Thus by measuring one can find the value
of

∫
L f(x)dτ for every line L in a given plane Π. The problem is then to

reconstruct the function f from those data. Radon found the solution in
1917. For the reader who is not familiar with the theory we include a brief
introduction in Section 1.1 which follows [8, Chapter II].

A glance at Radon’s original formula explains why the problem is eighty
years later still a matter of discussion. In fact, Radon found the following
explicit representation of the solution:

f(x) = − 1

π

∫ ∞

0

dFx(q)

q

with

Fx(q) =
1

2π

∫

S1

Rf(θ, x · θ + q)dθ

where Rf denotes the Radon transform of f (see Section 1.1 for the defini-
tion). Unfortunately, this formula exhibits a bad numerical behavior (even
if the Radon transform Rf would be known on its full domain of definition)
and is therefore of no practical use. Moreover, in practice, Rf is only given
by a discrete number of measurements, and it can be shown that the set
of f leading to the same finite set of data is very large (see Section 1.2).
A direct implementation of Radon’s formula does not lead to a reasonable
reconstruction. Therefore, many alternative methods were invented which
allow to control the properties of the reconstructed function in terms of the
original function (see Section 1.3). The aim of this paper is to show, that
the use of singular filters in the backprojection method has some advantages
compared to classical filter functions.

1.1. Basic definitions and properties of the Radon transformation.

Definition 1. The Radon transformation is given by

R : S(R2) → S(Z)

f 7→ Rf(θ, s) :=

∫

θ·x=s
f(x) dτ

where S(R2) and S(Z) denote the Schwartz-space on R
2 and on the cylinder

Z = S1 × R respectively. We use the notation Rθf(s) if we consider the
vector θ ∈ S1 as fixed.
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Remark. Of course this definition may be extended to larger classes of
functions.

An easy inversion formula is based on the Fourier transformation:

Theorem 1. For f ∈ S(R2) there holds R̂θf(σ) =
√

2πf̂(σθ).

Proof. By definition we have

R̂θf(σ) =
1√
2π

∫

R

exp(−isσ)Rθf(s) ds =

=
1√
2π

∫

R

exp(−isσ)

∫

θ⊥
f(sθ + y) dy ds.

Substituting x := sθ + y, i.e. s = θ · x and dx = dy ds, we get

R̂θf(σ) =
1√
2π

∫

R2

exp(−iσθ · x)f(x) dx =
√

2πf̂(σθ).

This inversion formula is the basis in the Fourier-reconstruction method.
The backprojection method which we want to use here needs the following
definition:

Definition 2. The dual Radon transformation is given by

R# : S(Z) → S(R2)

g 7→ R#g(x) :=

∫

S1

g(θ, θ · x) dθ .

The filtered backprojection method is based upon the following theorem
connecting Radon and dual Radon transformation by the convolution.

Theorem 2. For f ∈ S(R2) and W ∈ S(Z) there holds

f ∗ (R#W ) = R#(Rf ∗W ) .

Proof.

f ∗ (R#W )(x) =

∫

R2

R#W (x− y)f(y) dy =

=

∫

R2

∫

S1

W (θ, θ · (x− y)) dθf(y) dy =

=

∫

S1

∫

R2

W (θ, θ · (x− y))f(y) dy dθ .
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Substituting y := sθ + z, z ∈ θ⊥, we obtain

f ∗ (R#W )(x) =

∫

S1

∫

R

∫

θ⊥
W (θ, θ · x− s)f(sθ + z) dz ds dθ =

=

∫

S1

∫

R

W (θ, θ · x− s)Rf(θ, s) ds dθ =

=

∫

S1

(W ∗Rf)(θ, θ · x) dθ .

If we choose in the above theorem a function W such that w = R#W is
in some sense an approximation of the delta distribution then we get

f ≈ f ∗ w = R#(Rf ∗W ) . (1)

This is the heart of the filtered backprojection method. The functions w
respectively W are called filter. The filtered backprojection method consists
in an implementation of the right hand side of (1).

For other inversion formulas, such as Radon’s original formula, we refer
to [8, Section II.2].

Below it will be necessary to invert R#. The following theorem enables
us to do this.

Theorem 3. For g ∈ S(Z) there holds

R̂#g(ξ) =

√
2π

|ξ|

(
ĝ
( ξ

|ξ| , |ξ|
)

+ ĝ
(
− ξ

|ξ| ,−|ξ|
))

.

Proof. (i) For f ∈ S(R2) we have
∫

R

Rθf(s)g(θ, s) ds =

∫

R

∫

θ⊥
f(θs+ y)g(θ, s) dy ds =

=

∫

R2

f(x)g(θ, θ · x) dx .

Integration over S1 yields
∫

S1

∫

R

Rf(θ, s)g(θ, s) ds dθ =

∫

R2

f(x)R#g(x) dx .

(ii) Let ŵ ∈ S(R2). Then (i) gives
∫

R2

ŵ(x)R#g(x) dx =

∫

S1

∫

R

g(θ, s)Rŵ(θ, s) ds dθ =

=

∫

S1

∫

R

ĝ(θ, σ)(Rŵ)v(θ, σ) dσ dθ .
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In the last line we used Parseval’s identity (the Fourier transformation for
functions in S(Z) only acts on the second argument). From Theorem 1 we
infer that (Rŵ)v(θ, σ) =

√
2πw(θσ). Hence

∫

R2

ŵ(x)R#g(x) dx =
√

2π

∫

S1

∫

R

ĝ(θ, s)w(θσ) dσ dθ =

=
√

2π

∫

R2

(
ĝ
( ξ

|ξ| , |ξ|
)

+ ĝ
(
− ξ

|ξ| ,−|ξ|
))

w(ξ)

|ξ| dξ .

Here we used ξ = θσ once on σ < 0, once on σ > 0. From Parseval’s identity
the assertion follows since w was arbitrary.

1.2. Uniqueness. According to Theorem 1 the Radon transformation is
bijective. But how is the situation if Rf is known only on a subset of its
domain of definition as it is typically the case in practice? The following
theorem shows that we should not hope for too much. (For the proof we
refer to [8, Theorem II.3.7].)

Theorem 4. Let θ1, . . . , θp ∈ S1 be distinct directions, K ⊂ R
2 a compact

set and f ∈ C∞
0 (K). Then for every compact set K0 ⊂

◦
K in the interior of

K there exists f0 ∈ C∞
0 (K) having the property that f0 ≡ f on the set K0

and Rθi
f0 = 0 for 1 ≤ i ≤ p.

1.3. Resolution. In Section 1.2 we have seen that we cannot reconstruct
f from its Radon transform if Rf is only known on a finite set of directions
θi. Now we ask for the “size of details” that can be reconstructed depending
on the choice of the θi.

Definition 3. A function f : R
n → R is called b-band-limited if its Fourier

transform vanishes outside a ball of radius b.

Example 1. The function

sinc(x) :=





sin(x)

x
if x 6= 0

1 if x = 0

is 1-band limited since ŝinc(ξ) =
√
π/2 χ[−1,1](ξ) (where χA denotes the

characteristic function of the set A). If we consider sinc(x) =
∏n

i=1 sinc(xi)

on R
n then sincb(x) = sinc(bx) is

√
nb-band-limited since ŝincb = (π/2)n/2×

b−nχ[−b,b]n .
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We say that sincb (interpreted as density function of a picture) represents
a detail of size 2π/b. Hence a b-band-limited function does not contain
details smaller than 2π/b.

A picture typically has finite extension, i.e. its density function f has
compact support and hence its Fourier transform is analytic and cannot
vanish outside a ball unless it is identically zero. Thus f cannot be b-band-
limited in the strong sense. So we say a function f is essentially b-band-

limited if f̂ is small (in a sense that has to be made precise) outside a ball
of radius b. Essentially b-band-limited functions are interpreted analogously
as b-band-limited functions.

Theorem 5. Let f ∈ C∞
0 (Ω) for an open domain Ω in R

2 and g(φ, s) =

Rf(θ, s) for θ =

(
cos(φ)
sin(φ)

)
. For 0 < ϑ < 1 and b ≥ 1 we define

K :=
{

(k, σ) : |σ| < b, |k| < max
( |σ|
ϑ
, b

( 1

ϑ
− 1

))}
⊂ R

2.

LetW ∈ GL2(R) having the property that the setsK+2πW−Tn are disjoint
for n ∈ Z

2. Then there holds

‖Rf‖L∞(Ω) ≤ η(ϑ, b) ‖f‖L1(Ω) +
8

πϑ

∫

|ξ|>b
|f̂(ξ)| dξ

provided g(Wn) = 0 for n ∈ Z
2.

For a proof we refer to [8, Theorem III.3.1].
Theorem 5 is interpreted as follows: If f is essentially b-band-limited in

the sense that
∫
|ξ|>b |f̂(ξ)| dξ is small then f may be reconstructed from

the values of Rf on the grid Wn, n ∈ Z
2, with the above error estimate

provided the sets K + 2πW−Tn are disjoint for n ∈ Z
2.

The standard sampling geometry is

W =

(
π/p 0
0 1/q

)
, (2)

i.e. Rf is measured for the p directions θi = i(π/p), 1 ≤ i ≤ p, and for every
direction θi at the points n/q, n ∈ Z. The points K + 2πW−Tn are disjoint
if the so called sampling conditions

b ≤ pϑ and b ≤ πq (3)

hold. They are also valid for the reconstruction of f ∗ w since there holds

|R(f ∗ w)(θ, s)| ≤ ‖Rf‖L∞(Ω)

∣∣∣∣
∫

R

Rθw(s − t) dt

∣∣∣∣ ≤ ‖Rf‖L∞(Ω)

if ‖w‖L1 = 1.
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2. Singular filters

Usually, a filter is chosen based on properties of W . Here we will choose
w first as the characteristic function of a pixel for several pixel shapes.

A filter function which is very often used in practice is wb defined by

ŵb(ξ) =
1

2π
Ψ̂

( |ξ|
b

)
(4)

for a parameter ε ∈ [0, 1] and

Ψ̂(σ) =

{
1 − εσ for σ ≤ 1

0 else.
(5)

This is essentially the filter introduced by Ramachandran and Lakshmi-
narayanan which is of the same type as the famous filter of Shepp and
Logan (see e.g. [9], [7] or [2]). Recall that for the dual filter Wb with
R#Wb = wb we get the formula of the filtered backprojection f(x) ≈
f ∗ wb(x) = R#(Rf ∗ W )(x) as discussed in Theorem 2. What are the
disadvantages of this type of filters:

(I) The resulting function wb is b-band-limited. Since wb is analytic, it
has non-compact support. This means that the value f(x) ≈ f ∗ wb(x)
(which is constructed by the filtered backprojection method) involves also
values of f which are far away from x. In other words, if we change f at
some point x this will influence all other values f ∗ wb(y).

(II) Since the function Wb is quite regular, the classical trapezoidal rule
is usually applied in the calculation of the convolution Rf ∗Wb. However if
functions with large bandwidth have to be reconstructed, i.e. if b has to be
chosen large, Wb has large second derivatives and (according to the theory
of the trapezoidal rule) the error term is large.

Those two main errors cannot be made small at the same time, they are
antagonistic.

So let us try a filter function

wA =
1

|A| χA (6)

where A is just one pixel on the screen, i.e. a circle, a square or a hexagon
(centered at the origin). Then f ∗ wA(x) is exactly the mean value of f
over the pixel Ax centered at the point x. This strategy has no longer the
disadvantage (I). Unfortunately the dual function WA will be singular in
general and the calculation of the convolution Rf ∗WA in R#(Rf ∗WA)
becomes a numerical problem. This is clearly the reason why this kind of
filter has not been discussed in the literature yet, although variants may be
found in [10], [9] or [7]. However if we use a modification of the classical
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trapezoidal rule (see next section) we overcome this difficulty. The result-
ing algorithm will not be slower than the classical filtered backprojection
method. Let us first calculate the filters WA for three different shapes of
pixels A.

2.1. A hexagon. Let us consider the weight function

wλ =
1

|Hλ|
χHλ

(7)

where Hλ denotes the regular hexagon with side length λ centered at the
origin and oriented such that one side is parallel to the x-axes. The area of
this hexagon is |Hλ| = (3

√
3/2)λ2. We have to find Wλ such that R#Wλ =

wλ. We calculate the case λ = 1. Then from R#W1 = w1 the general case
follows by scaling

Wλ(θ, s) =
1

λ2
W1

(
θ,
s

λ

)
. (8)

We are free to assume that W1 is even, i.e. W1(−θ,−s) = W1(θ, s). Thus
Theorem 3 gives

Ŵ1(θ, σ) =
1

2
√

2π
|σ| ŵ1(θσ) . (9)

Remark. Note that this is only a formal relation since the hypothesis that
w1 ∈ S(R2) is clearly not fulfilled. We can take (9) as a definition of W1

and show after formal calculation of W1 that in fact R#W1 = w1 a.e. and
that f ∗ wλ = R#(Rf ∗Wλ).

Let the vectors ak denote the edges of H1

ak =

(
Re(exp(2ikπ/3))
Im(exp(2ikπ/3))

)
.

Then a quite extensive calculation leads to

χ̂H1
(η)=−|H1|

3π

η · a1 cos(η · a1)+η · a2 cos(η · a2)+η · a3 cos(η · a3)

(η · a1)(η · a2)(η · a3) (10)

provided θ · ak 6= 0. Using expression (10) in (7) and (8) we find (for
θ · ak 6= 0)

Wλ(θ, s) =
1

12λ2π2

3∑

i=1

θ · ai log |(θ · ai)
2 − s2

λ2
|

3∏

i=1

θ · ai

. (11)
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For θ · a1 = 0 we find

χ̂H1
(η) =

|H1|
3π(η · a2)(η · a3)

(cos(η · a2) − η · a2 sin(η · a2) − 1) .

Now the function

Ŵ1(θ, σ) =
1√

2π6π|σ|β2
(cos(σβ) − σβ sin(σβ) − 1)

(with β := θ · a2 = −θ · a3) does not have a Fourier inverse. However we
can extend the function W1(θ, s) continuously in the points (θ, s) where
θ · a1 = 0:

lim
θ·a1→0

W1(θ, s) =
1

12π2

(
2

α2 − s2
− 1

α2
log | s2

α2 − s2
|
)

with α = limθ·a1→0 β =
√

3/2. The cases η · a2 = 0 and η · a3 = 0 are
analogous. By direct calculation we can check that in fact R#W1(x) =
(ŵ1)

v(x) = w1(x) a.e. and that f ∗ wλ = R#(Rf ∗Wλ).

2.2. A square. Repeating the above calculations for the square Qλ with
side length 2λ, centered at the origin with sides parallel to the axes we find
that for wλ = (1/|Qλ|)χQλ

the dual filter has the form

Wλ(θ, s) =
1

4π2λ2((a+ b) · θ)((a− b) · θ) log

∣∣∣∣
(a · θ)2 − (s2/λ2)

(b · θ)2 − (s2/λ2)

∣∣∣∣
(12)

with a =

(
1
1

)
and b =

(
1
−1

)
denoting the edges of Q1. Again one can

extend continuously this function if θ is perpendicular to one of the sides of
the square.

2.3. A circle. Here we consider Kλ the circle with radius λ centered at the
origin and wλ = (1/|Kλ|)χKλ

. We know that

χ̂K1
(η) =

1

|η| J1(|η|)

where J1 denotes the Bessel function of the first kind with index 1. Thus
we obtain from (9) that

Ŵ1(θ, σ) =
1

(2π)3/2
J1(|σ|) .
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Fourier inversion leads to

W1(θ, s) =
1

2π2

∫ ∞

0
cos(sσ)J1(σ) dσ = (13)

=





1

2π2

(
1 − |s|√

s2 − 1

)
if |s| > 1

1

2π2
else.

This filter has the advantage that it does not depend on the angle θ.
Now of course we have a problem to calculate numerically R#(Rf ∗Wλ)

since in all of the considered cases the filter functions Wλ have severe sin-
gularities. In the next section we present a method to handle this problem.

3. A numerical method for product integration

In this section we present a method to find a numerical approximation of
the integral ∫

R

f(x)ψ(x)dx

where f is supposed to be a “nice” function with compact support whereas ψ
may be discontinuous, unbounded or oscillating with high frequency. Then
the standard integration algorithms as Simpson, Romberg or adaptive quad-
rature method do not converge in an appropriate way. In case of an un-
bounded ψ the step-length at least in a neighborhood of the singular points
of ψ has to be very small–although f could be nice all over the interval of
integration. We have the further restriction that an algorithm which only
evaluates f at equidistant points is required.

The trapezoidal rule we present here can be found in [5] or [6].
Let f ∈ C2([a, b]) and θ′′ = ψ ∈ L1([a, b]) and let ∆2

h denote the central
second difference quotient

∆2
hθ(x) =

θ(x− h) − 2θ(x) + θ(x+ h)

h2
.

Then we have
B∫

A

f(x)ψ(x)dx = h
n−1∑

i=1

f(ai)∆
2
hθ(ai) + T [f ] +R[f ] . (14)

with boundary terms T [f ] (which vanish for f ∈ C2
0 ([A,B])),

T [f ] = f(B)θ′(B) − f(A)θ′(A)

+
1

h

(
f(A)

(
θ(a1) − θ(A)

)
+ f(B)

(
θ(an−1) − θ(B)

))
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and error term R[f ],

|R[f ]| ≤ h2

8
MB

A (f ′′)

B∫

A

|ψ(x)|dx .

Definition. We call

J [f ] := h

n−1∑

i=1

f(ai)∆
2
hθ(ai) + T [f ] (15)

trapezoidal rule. We shall use the notation Jh[f ] when we want to emphasize
the dependence on h.

Interpretation. When we integrate
∫ B
A f(x)θ′′(x)dx for f ∈ C2

0 ([A,B])
we have to replace the second differential quotient θ′′ by the second dif-
ference quotient ∆2

hθ and proceed as in the ordinary trapezoidal rule with
mesh constant h (when f does not vanish at the endpoints of the interval a
boundary term T [f ] has to be added). The error order is O(h2) as for the
classical trapezoidal rule.

From [6] we infer the following extrapolation scheme for the trapezoidal
formula (15).

Theorem 6. Let ψ have finitely many algebraic singularities on an integra-
tion interval I of length l. Let f be smooth and T1,n = Jl/2n [f ], n ∈ N, the

numerical approximations for
∫
I f(x)ψ(x)dx obtained by the trapezoidal

rule (15) applied with step length h = l/2n. If we denote by Tm+1,n,
m = 1, 2, . . . , the Aitken transformation of the sequence Tm,n, i.e.

Tm+1,n = Tm,n − (Tm,n − Tm,n+1)
2

Tm,n − 2Tm,n+1 + Tm,n+2
,

then the sequences Tm,n for fixed m are integration rules of increasing order

O(hβ̃m). In case ψ has logarithmic singularities Tm,n is a rule of order
O(h3/(log h)2m−5) for m ≥ 2.

Remarks. To eliminate the leading error term c2h
2 of the trapezoidal

approximation in the very first step there may be used the corresponding
classical Romberg step.

Example 2. We use this method on the integral
∫ 1

0

expx√
x
dx = −i

√
πErf(ix)|10 = 2.92530349181436 . . .
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Erf denotes the error function. To use the trapezoidal rule we need a second
primitive of ψ(x) = 1/

√
x, e.g. 4x3/2/3. We start with a step length h = 1/2

and obtain
T1,n T2,n T3,n T4,n

2.9811732544 2.9252857083 2.9253071463 2.9253034950
2.9395615282 2.9252965978 2.9253035659 2.9253034918
2.9289322995 2.9253019559 2.9253034964
2.9262232288 2.9253031939 2.9253034921
2.9255357475 2.9253034370
2.9253619756 2.9253034819
2.9253181878
2.9253071791

4. Implementation of the algorithm and error estimates

A numerical realization of the formula f ∗ wλ = R#(Rf ∗Wλ) will now
look like this.

Step 1: The convolution Rf ∗Wλ is numerically approximated with the

method discussed in the previous Section. We write Rf
h∗ Wλ for the nu-

merical result obtained with evaluation of Rf at points of distance h.

Step 2: For the backprojection R# which requires an integration over S1

a standard integration algorithm such as Romberg’s method may be used.

We write R#
p for the numerical value of this integral with discretization step

π/p.
Thus we have

(f ∗ wλ)FB := R#
p (Rf

h∗Wλ) = wλ ∗ f + e1 + e2

with error terms

e1 = R#
p (Rf

h∗Wλ −Rf ∗Wλ)

e2 = (R#
p −R#)(Rf ∗Wλ) .

We emphasize that f ∗wλ is exactly the value we want (the average of f
over the pixel) unlike as in the case of the standard filter (4) where f ∗wb is
only an approximation of the value which is intended to be constructed (the
value of f in the center of the pixel). In the latter case there will always
be additional artifacts resulting from the non-compactness of the support
of the point-spread function wb.

The error term e1 is of the order of the method which we choose in the

calculation of the convolution
h∗. On the other hand the term e2 is of the
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order of the method we use for the backprojection R#. Notice that Wλ ∗Rf
(as a function of the angle θ) is as smooth as f is.

In order to accelerate the algorithm there is usually an interpolation
step preceding the backprojection: For the angles θi = iπ/p, i = 1, . . . p,

we first calculate the values αik := Wλ
h∗ Rf(θi, sk), where sk = k/q for

k = −qmax,−qmax + 1, . . . ,+qmax. Then we interpolate the values sk in the

computation of the backprojection R#
p :

(f ∗ wλ)FBI := R#
p Ih(Rf

h∗Wλ) = wλ + d1 + d2 + d3 .

Here Ih denotes e.g. the polynomial interpolation in the points sk. The
error terms are

d1 = R#
p Ih(Rf

h∗Wλ −Rf ∗Wλ)

d2 = R#
p (Ih(Rf ∗Wλ) −Rf ∗Wλ)

d2 = (R#
p −R#)(Rf ∗Wλ) .

d3 is again error term e2. The term d1 is of the order of the method which

we choose in the calculation of the convolution
h∗. At last d2 is of the order

of the interpolation Ih. So in consideration of the sampling conditions (3)

we should choose methods of the same order in the three numerical steps
h∗,

Ih and R#
p .

Remark. Notice that the weights ∆2
hωλ(sik) (ω′′

λ = Wλ) which occur in

the numerical calculation of αik := Wλ
h∗ Rf(θi, sk) may be calculated in

advance and stored in an array since they are independent of the function
f . Thus the algorithm is as fast as the classical backprojection method.

5. Comparison of the methods

It seems impossible to compare the two concepts of the classical filters
and of the singular filters in terms of mathematical criterion. In the end it is
the human eye which prefers one picture or another. In order to compare the
quality of the different filters we can simulate a Radon transformation Rf
of some function f . For example the Radon transform of the characteristic
function of a circle K of radius r centered at the origin is given by

RχK(θ, s) = 2
√
r2 − min(r2, s2) .

The function which we want to reconstruct by the different filters considered
in the previous sections is the characteristic function of a set A = (B1\B2)∪
(R \ B3) where R is a rectangle and the Bi are balls such that B1 ⊃ B2 ⊃
R ⊃ B3.
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We have chosen quite large pixels to make visible the different philosophy
of conventional filters on the one hand and singular filters on the other: With
the conventional filter (4) a pixel is intended to have the gray-level of its
center whereas the concept of the singular filters (11), (12), (13) guarantees
that the gray-level of a pixel is the mean value over its area. The examples
below also show that the numerical error at the same level of discretization
is smaller for the singular filters than for the conventional filter (compare
discussion Section 2).

The improvement in the quality of the pictures by the singular filters (11),
(12), (13) in comparison to the conventional filter (4)-(5) is quite obvious
(see Figures 1–4). (The conventional filter used in the reconstruction of the
pictures below, is chosen according to the sampling conditions (2)-(3).)
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Figure 1. Image reconstruction with conventional filter (4). Rf sampled for 19
angles at 30 positions per angle.

Figure 2. Image reconstruction with hexagonal filter (11). Rf sampled for 19
angles at 30 positions per angle.
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Figure 3. Image reconstruction with conventional filter (4). Rf sampled for 99
angles at 158 positions per angle.

Figure 4. Image reconstruction with circular filter (13). Rf sampled for 99 an-
gles at 158 positions per angle.


