
Journal of Applied Analysis

Vol. 5, No. 1 (1999), pp. 59–70

ON MINIMAX INEQUALITY AND
GENERALIZED QUASI–VARIATIONAL

INEQUALITY IN H-SPACES

X. WU and Z. ZHANG

Received July 31, 1997 and, in revised form, June 22, 1998

Abstract. In this paper, we give a new minimax theorem and two
new existence theorems of solutions for generalized quasi–variational
inequalities in H-spaces. Our results improve and develop some famous
results.

1. Preliminaries

In this paper, our subject is to establish a Sion type minimax theorem
and two existence theorems of solutions for generalized quasi–variational
inequalities. Our results improve and develop some famous results. In order
to establish our main results, we first give some concepts and notations.

To begin with we explain the notion of a H-space and some related no-
tions.

Let X be a topological space and F(X) the family of all nonempty finite
subsets of X. Let ΓA be a family of nonempty contractible subsets of X
indexed by A ∈ F(X) such that ΓA ⊂ ΓA′ whenever A ⊂ A′. The pair
(X, {ΓA}) is called a H-space. Given a H-space (X, {ΓA}), a nonempty
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subset D of X is called H-convex (resp. weak H-convex) if ΓA ⊂ D (resp.
D
⋂

ΓA is nonempty contractible) for each nonempty finite subset A of D.
For a nonempty subset K of X, we define the H-convex hull of K, denoted
by H − coK as

H − coK =
⋂
{D ⊂ X : D is H-convex and D ⊃ K}

(see also, [11–13]).
In this paper, all topological spaces are assumed to be Hausdorff. Let

X be a nonempty set, we denote by 2X the family of all subsets of X. If
A ⊂ X, we shall denote by clA the closure of A and by intA the interior
of A. If A is a nonempty subset of a topological vector space E, we shall
denote by coA the convex hull of A and by cl(coA) the closed convex hull
of A.

Let X,Y be two topological spaces, T : X → 2Y a multivalued mapping
and f : X × Y → R ∪ {−∞,+∞} a function.

(1) T is said to be upper semicontinuous if for each x ∈ X and each open
set V in Y with T (x) ⊂ V , there exists an open neighborhood U of x
in X such that T (z) ⊂ V for each z ∈ U ;

(2) ([32]) T is said to have local intersection property if x ∈ X such that
T (x) 6= ∅, then there exists an open neighborhood N(x) of x such that⋂
z∈N(x) T (z) 6= ∅;

(3) T is said to have open lower sections if for each y ∈ Y , the set T−1(y) =
{x ∈ X : y ∈ T (x)} is open in X;

(4) ([31]) f(x, y) is said to be W -lower (or, W -upper) semicontinuous
in y if for each y ∈ Y and each r ∈ R with {x ∈ X :
f(x, y) > r} 6= ∅ (or, {x ∈ X : f(x, y) < r}), there exists x′ ∈ X such
that y ∈ int{z ∈ Y : f(x′, z) > r} (or, y ∈ int{z ∈ Y : f(x′, z) < r}).

Obviously, if f(x, y) is lower (upper) semicontinuous in y, then f(x, y) is
W -lower (upper) semicontinuous in y. But, the converse is not true.

Example 1. Let X = Y = (0,+∞). The function f : X × Y → R is
defined by

f(x, y) =

{
1 if x+ y ≥ 1
0 if x+ y < 1.

Example 2. Let X = Y = (0,+∞). The function g : X × Y → R is
defined by

g(x, y) =

{
x+ y + 1 if x+ y ≥ 1
x+ y if x+ y < 1.
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In the above two examples, both f(x, y) and g(x, y) are W -lower semi-
continuous in y, but neither f(x, y) nor g(x, y) are lower semicontinuous in
y. Moreover, if T has open lower sections, then T has local intersection
property.

A family {Dα : α ∈ I} of some subsets of a topological space X is called
closed (resp. open) transfer complete if x ∈ X such that x /∈ Dα0 (resp.
x ∈ Dα0) for some α0 ∈ I, then there exists α′ ∈ I such that x /∈ cl(Dα′)
(resp. x ∈ int(Dα′)). Obviously, if {Dα : α ∈ I} is a family of some closed
(resp. open) subsets of X, then it is closed (resp. open) transfer complete.
But, the converse is not true.

Example 3. Let X = (0, 1/4) ∪ (1/3, 1), Y = [0, 2] and A = {(x, y) ∈
X × Y : x < y ≤ 2}. For any x ∈ X, let A[x] = {y ∈ Y : (x, y) ∈ A} =
(x, 2]. Obviously, A[x] is not closed in Y , but the family {A[x] : x ∈ X} is
closed transfer complete (see also, Example 2 in [31]).

A multivalued mapping T : Y → 2X is said to be transfer closed valued
if the family {T (y) : y ∈ Y } is closed transfer complete.

Let (X, {ΓA}) be a H-space and f : X → R a function. f is called
H-quasi–convex (or, H-quasi–concave) if for each r ∈ R, the set

{x ∈ X : f(x) ≤ r} (or, {x ∈ X : f(x) ≥ r})
is H-convex.

Let X,Y be two sets and A a nonempty subset of X×Y . For each x ∈ X
and each y ∈ Y , we denote

A[x] = {y ∈ Y : (x, y) ∈ A}, A[y] = {x ∈ X : (x, y) ∈ A},
which are called the sections of A.

2. Main results

Lemma 1. Let (X, {ΓA}) and (Y, {Γ′B}) are two H-spaces and K a non-
empty compact subset of X. Suppose that G,F : X → 2Y , S, T : Y → 2X

are multivalued mappings such that
(i) for each x ∈ K,G(x) 6= ∅ and H − coG(x) ⊂ F (x),
(ii) G has local intersection property on K,
(iii) for each y ∈ Y , H − coS(y) ⊂ T (y) ⊂ K and S has nonempty values

on each nonempty compact subset of Y ,
(iv) S has local intersection property.

Then there exists a point x0 ∈ X and a point y0 ∈ Y such that x0 ∈ T (y0)
and y0 ∈ F (x0).
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Proof. By Theorem 2.2 of [28], there exists a continuous selection f : X →
Y of F |K such that f = g ◦ ψ, where g : ∆n → Y and ψ : K → ∆n are
continuous mappings, n is some positive integer and ∆n is the standard
n-dimensional simplex. Since ∆n is compact and g : ∆n → Y is continuous,
g(∆n) is a compact subset of Y . Again, by Theorem 2.2 of [28], there
exists a continuous selection h : g(∆n) → K of T |g(∆n). Consequently,
ψ◦h ◦ g : ∆n → ∆n is continuous and hence there exists a point u0 ∈ ∆n

such that ψ◦h◦g(u0) = u0. Let g(u0) = y0 and x0 = h(y0). Then x0 ∈ T (y0)
and y0 = g(u0) = g ◦ ψ[h(y0)] = f [h(y0)] = f(x0) ∈ F (x0). This completes
the proof.

Now, we shall prove the following minimax theorem and existence theo-
rems of solutions for generalized quasi–variational inequalities.

Theorem 2. Let (X, {ΓA}) and (Y, {Γ′B}) be two H-spaces and X be com-
pact. Suppose the functions f, g : X × Y → R such that

(i) f(x, y) ≤ g(x, y) for all (x, y) ∈ X × Y ,
(ii) for each x ∈ X, f(x, ·) is H-quasiconcave,
(iii) f(x, y) is W -lower semicontinuous in x,
(iv) g(·, y) is H-quasiconvex,
(v) g(x, y) is W -upper semicontinuous in y,

then
inf
x∈X

sup
y∈Y

f(x, y) ≤ sup
y∈Y

inf
x∈X

g(x, y).

Proof. If
inf
x∈X

sup
y∈Y

f(x, y) > sup
y∈Y

inf
x∈X

g(x, y)

then there exist real numbers α, β such that

inf
x∈X

sup
y∈Y

f(x, y) > α>β> sup
y∈Y

inf
x∈X

g(x, y).

For each y = Y , let

S(y) = {x ∈ X : g(x, y) < β}, T (y) = {x ∈ X : g(x, y) ≤ β}.
Then S(y) 6= ∅ and H − coS(y) ⊂ T (y) since β>supy∈Y infx∈X g(x, y)
and g(·, y) is H-quasiconvex. Consequently, for each y ∈ Y , the set
{x ∈ X : g(x, y) < β} 6= ∅, and hence there is a point x′ ∈ X such that
y ∈ int{z ∈ Y : g(x′, z) < β} by (v), i.e. there exists an open neighborhood
N(y) of y such that x′ ∈

⋂
z∈N(y) S(z). It shows that S : Y → 2X has local

intersection property.
For each x ∈ X, let G(x) = {y ∈ Y : f(x, y) > α}, F (x) = {y ∈ Y :

f(x, y) ≥ α}. ThenH−coG(x) ⊂ F (x) by (ii). Since infx∈X supy∈Y f(x, y) >
α, G(x) 6= ∅ for all x ∈ X. Consequently, for each x ∈ X, the set
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{y ∈ Y : f(x, y) > α} 6= ∅, and hence there exists a point y′ ∈ Y such that
x ∈ int{z ∈ X : f(z, y′) > α} by (iii) so that there is an open neighborhood
N(x) of x such that N(x) ⊂ {z ∈ X : f(z, y′) > α}, i.e. y′ ∈

⋂
z∈N(x)G(z).

It shows that the mapping G : X → 2Y has local intersection property.
By virtue of Lemma 1, there exist a point x0 ∈ X and a point y0 ∈ Y such

that x0 ∈ T (y0) and y0 ∈ F (x0). It implies g(x0, y0) ≤ β and f(x0, y0) ≥ α.
Consequently, α ≤ β by (i). It contradicts the choices of α and β. Therefore,

inf
x∈X

sup
y∈Y

f(x, y) ≤ sup
y∈Y

inf
x∈X

g(x, y).

This completes the proof.

Remark 1. Since W -lower semicontinuity (respectively, W -upper semicon-
tinuity) is weaker than lower semicontinuity (respectively, upper semicon-
tinuity), our Theorem 2 not only generalizes Theorem 3.4 and Corollary
3.5 in Sion [26] to H-spaces, but also weakens upper semicontinuity and
lower semicontinuity conditions. Moreover, Theorem 2 is different from the
minimax theorems in [3], [4], [9], [16–18] and [23].

In order to research the existence of solutions for generalized quasi–
variational inequalities, we give the following lemmas:

Lemma 3. Let (X, {ΓA}) and (Y, {Γ′B}) be two H-spaces. Let M,N be
two subsets of X × Y such that

(i) for each x ∈ X,H − co{y ∈ Y : (x, y) /∈M} ⊂ {y ∈ Y : (x, y) /∈ N},
(ii) the family {M [y] : y ∈ Y } of sections of M is closed transfer complete.

Suppose that there exist a subset Q of N and a compact subset K of X
such that
(iii) for each y ∈ Y , the section Q[y]

⋂
K is nonempty H-convex,

(iv) the family {Q[x] : x ∈ K} is open transfer complete.
Then there exists a point x0 ∈ K such that {x0} × Y ⊂M .

Proof. For each x ∈ X, let G(x) = Y \M [x], F (x) = Y \N [x]. Then G :
K → 2Y has local intersection property and H − coG(x) ⊂ F (x) for each
x ∈ X by (i) and (ii). For each y ∈ Y , let T (y) = Q[y]

⋂
K. Then

T : Y → 2K is a multivalued mapping with nonempty H-convex values.
Consequently, for each y ∈ Y , there exists a point x ∈ Q[y]

⋂
K, and hence

y ∈ Q[x]. By (iv) there exists a point x′ ∈ K such that y ∈ intQ[x′], and
thus there is an open neighborhood N(y) of y such that N(y) ⊂ Q[x′], i.e.
x′ ∈

⋂
z∈N(y) T (z). It shows that T : Y → 2K has local intersection property.

Suppose G(x) 6= ∅ for all x ∈ K. By virtue of Lemma 1, there exist a point
x0 ∈ K and a point y0 ∈ Y such that x0 ∈ T (y0) and y0 ∈ F (x0), i.e.
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(x0, y0) ∈ Q ⊂ N and (x0, y0) /∈ N . This is a contradiction. Therefore,
there exists a point x0 ∈ K such that G(x0) = ∅, and hence M [x0] = Y , i.e.
{x0} × Y ⊂M . This completes the proof.

Lemma 4. Let (X, {ΓA}) and (Y, {Γ′B}) be two H-spaces and Y is com-
pact. If F,G : X → 2Y are two multivalued mappings such that

(i) G(x) ⊂ F (x) for each x ∈ X,
(ii) for each y ∈ Y , X\F−1(y) is H-convex,
(iii) for each x ∈ X, F (x) is transfer closed valued,
(iv) G has local intersection property and G(x) is nonempty

H-convex for all x ∈ X,
then

⋂
x∈X F (x) 6= ∅.

Proof. Let M = {(y, x) ∈ Y ×X : y ∈ F (x)}, N = {(y, x) ∈ Y ×X : y ∈
G(x)}. Then N ⊂M by (i) and for each y ∈ Y , the set

{x ∈ X : (y, x) /∈M} = {x ∈ X : y /∈ F (x)} = X\F−1(y)

is H-convex by (ii). Since the section M [x] = F (x) for each x ∈ X, the
family {M [x] : x ∈ X} is closed transfer complete by (iii). By (iv) we know
that N [x] = G(x) is nonempty H-convex for each x ∈ X and for each y ∈ Y
and each x ∈ N [y] = G−1(y), there exists an open neighborhood O(x) of x
and a point y′ ∈ Y such that y′ ∈

⋂
z∈O(x)G(z) and thus x ∈ intG−1(y′) =

intN [y′] so that the family {N [y] : y ∈ Y } is open transfer complete. By
virtue of Lemma 3, there exists a point y0 ∈ Y such that {y0} × X ⊂ M ,
i.e. y0 ∈

⋂
x∈X F (x). This completes the proof.

Remark 2. Lemma 4 is different from other H-KKM-type theorems (see
also, [10–13]). The following we apply it to study quasi–variational inequal-
ities.

Theorem 5. Let (X, {ΓA}) and (Y, {Γ′B}) be two H-spaces and X is com-
pact, T : X → 2Y is an upper semicontinuous multivalued mapping with
nonempty compact weak H-convex values. If the function ϕ : X×Y ×X →
R such that

(i) for each (x, y) ∈ X × Y ,ϕ(x, y, ·) is lower semicontinuous and H-
quasiconvex,

(ii) for each (x, z) ∈ X ×X, ϕ(x, ·, z) is H-quasiconcave,
(iii) for each x ∈ X, there exists a point y ∈ T (x) such that

ϕ(x, y, x) ≥ 0,
(iv) for each z ∈ X, ϕ(x, y, z) is upper semicontinuous in (x, y),
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then there exist a point x̄ ∈ X and a point ȳ ∈ T (x̄) such that

ϕ(x̄, ȳ, x) ≥ 0

for all x ∈ X.

Proof. First, we prove that there exists a point x̄ ∈ X such that

sup
y∈T (x̄)

ϕ(x̄, y, x) ≥ 0, ∀x ∈ X.

If this conclusion is false, then for each u ∈ X, there a point z ∈ X such
that

sup
w∈T (u)

ϕ(u,w, z) < 0.

Let S(u) = {v ∈ X : supw∈T (u) ϕ(u,w, v) < 0}. Then S : X → 2X is
a multivalued mapping with nonempty values. For each u ∈ X and each
finite subset A = {v1, v2, · · · , vn} of S(u), we have

sup
w∈T (u)

ϕ(u,w, vi) < 0, i = 1, 2, · · · , n.

Hence there is a real number such that

sup
w∈T (u)

ϕ(u,w, vi) < r < 0, i = 1, 2, · · · , n.

Consequently, for each v ∈ ΓA and each w ∈ T (u), by (i),

(u,w, v) ≤ max
1≤i≤n

ϕ(u,w, vi) < r,

and thus,
sup

w∈T (u)
ϕ(u,w, v) ≤ r < 0,

i.e. v ∈ S(u). It shows that S(u) is H-convex. Since again T : X → 2Y is an
upper semicontinuous multivalued mapping with nonempty compact values
and ϕ(u,w, v) is upper semicontinuous in (u,w), by virtue of Proposition 21
in [1, P119] we know that supw∈T (u) ϕ(u,w, v) is upper semicontinuous in
u. Consequently, for each v ∈ X,

S−1(v) = {u ∈ X : v ∈ S(u)}
= {u ∈ X : sup

w∈T (u)
ϕ(u,w, v) < 0}

is open. By Corollary 2.3 in [28], there exists a point ū ∈ X such that
ū ∈ S(ū), i.e. supw∈T (ū) ϕ(ū, w, ū) < 0. It contradicts (iii). Therefore, there
exists a point x̄ ∈ X such that

sup
y∈T (x̄)

ϕ(x̄, y, x) ≥ 0, ∀x ∈ X.
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By (iv) and the compactness of T (x̄), for each x ∈ X, there exists a point
y(x) ∈ T (x̄) such that

ϕ(x̄, y(x), x) ≥ 0.

For each fixed ε<0, set G(x) = {y ∈ T (x̄) : ϕ(x̄, y, x) > ε}, F (x) = {y ∈
T (x̄) : ϕ(x̄, y, x) ≥ ε}, ∀x ∈ X. Then G,F : X → 2T (x̄) are two multivalued
mappings with nonempty values and G(x) ⊂ F (x) for each x ∈ X. Since
T (x̄) is a compact weak H-convex subset of Y , (T (x̄), {T (x̄) ∩ Γ′B}) is a
compact H-space and the multivalued mappig G : X → 2T (x̄) has H-convex
values by (ii). For each y ∈ T (x̄),

G−1(y) = {x ∈ X : y ∈ G(x)} = {x ∈ X : ϕ(x̄, y, x) > ε}

is open in X (and hence G has local intersection property) and

X\F−1(y) = {x ∈ X : ϕ(x̄, y, x) < ε}

is H-convex by (i). Obviously, F (x) is closed in T (x̄) by (iv). By virtue
of Lemma 4, there exists a point yε ∈

⋂
x∈X F (x), i.e. yε ∈ T (x̄) and

infx∈X ϕ(x̄, yε, x) ≥ ε. Since T (x̄) is compact, we may assume yε → ȳ ∈
T (x̄)(ε→ 0). Consequently, infx∈X ϕ(x̄, ȳ, x) ≥ 0 by (iv), i.e. ϕ(x̄, ȳ, x) ≥ 0
for all x ∈ X.

Remark 3. In Theorem 5, if X is a nonempty compact convex subset of a
Hausdorff locally convex topological vector space E, Y = E∗ (the conjugate
space of E) and ϕ(x, y, z) = 〈y, x−z〉 (by Lemma B of [20], ϕ is continuous),
then Theorem 5 reduces to Theorem 6 in Browder [2].

Theorem 6. Let (X, {ΓA}) and (Y, {Γ′B}) be two H-spaces and X is com-
pact, T : X → 2Y is an upper semicontinuous multivalued mapping with
nonempty compact weak H-convex values. If functions ϕ,ψ : X × Y → R
such that

(i) ϕ(x, y) is lower semicontinuous and H-quasiconvex in x,
(ii) ϕ(x, ·) is upper semicontinuous and H-quasiconcave,
(iii) for each x ∈ X, there exists a point y ∈ T (x) such that

ψ(x, y) ≥ c (c is a constant),
(iv) ψ(x, y) ≤ ϕ(x, y) for all (x, y) ∈ X × Y ,

then there exist a point x̄ ∈ X and a point ȳ ∈ T (x̄) such that

ϕ(x, ȳ) ≥ c

for all x ∈ X.
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Proof. For each x ∈ X, let

S(x) = {z ∈ X : max
y∈T (x)

ϕ(z, y) < c},

H(x) = {z ∈ X : sup
y∈T (x)

ψ(z, y) < c},

Then S,H : X → 2X are two multivalued mappings with S(x) ⊂ H(x) for
all x ∈ X by (iv). Since ϕ(z, y) is H-quasiconvex in z, the set

S(x) =
⋂

y∈T (x)

{z ∈ X : ϕ(z, y) < c}

is H-convex. Let f(z, x) = maxy∈T (x) ϕ(z, y). For each fixed z ∈ X and
each r ∈ R, let

D = {x ∈ X : f(z, x) ≥ r}.
If {xα : α ∈ I} is a net in D such that xα → u, then

f(z, xα) ≥ r, ∀α ∈ I,
i.e.

max
y∈T (xα)

ϕ(z, y) ≥ r, ∀α ∈ I.

Consequently, for each α ∈ I, there exists a point yα ∈ T (xα) such that
ϕ(z, yα) ≥ r. By Proposition 1 in [21], there exists a point v ∈ T (u) and a
subnet {yβ} of {yα}α∈I such that yβ → v. By (ii) ϕ(z, v) ≥ r, and hence
maxy∈T (u) ϕ(z, y) ≥ r, i.e. f(z, u) ≥ r, i.e. u ∈ D. Hence D is closed.
Consequently, f(z, x) is upper semicontinuous in x. Hence for each z ∈ X,
S−1(z) = {x ∈ X : f(z, x) < c} is open.

If S(x) 6= ∅ for all x ∈ X, there exists a point ū ∈ X such that ū ∈ H(ū)
by Corollary 2.3 in [28], i.e. supy=T (ū) ψ(ū, y) < c. It contradicts (iii).
Therefore, there exists a point x̄ ∈ X such that S(x̄) = ∅, i.e.

max
y=T (x̄)

ϕ(x, y) ≥ c, ∀x ∈ X.

For each ε< c, let G(x) = {y ∈ T (x̄) : ϕ(x, y) > ε}, F (x) = {y ∈ T (x̄) :
ϕ(x, y) ≥ ε},∀x ∈ X. Then G,F : X → 2T (x̄) are two multivalued mappings
with nonempty values and G(x) ⊂ F (x) for each x ∈ X. Since T (x̄) is a
compact weak H-convex subset of Y , (T (x̄), {T (x̄) ∩ Γ′B}) is a compact
H-space and the multivalued mappig G : X → 2T (x̄) has H-convex values
by (ii). For each y ∈ T (x̄),

G−1(y) = {x ∈ X : y ∈ G(x)} = {x ∈ X : ϕ(x, y) > ε}
is open in X (and hence G has local intersection property) and

X\F−1(y) = {x ∈ X : ϕ(x, y) < ε}
is H-convex by (i). Obviously, F (x) is closed in T (x̄) by (ii). By virtue
of Lemma 4, there exists a point yε ∈

⋂
x∈X F (x), i.e. yε ∈ T (x̄) and
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infx∈X ϕ(x, yε) ≥ ε. Since T (x̄) is compact, we may assume yε → ȳ ∈ T (x̄)
(ε → c). Consequently, infx∈X ϕ(x, ȳ) ≥ c by (ii), i.e. ϕ(x, ȳ) ≥ c for all
x ∈ X.

Remark 4. Theorem 6 improves and develops Theorem 5.7.1 of [5].
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