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Abstract. We consider a hyperbolic variational–hemivariational initial
value problem on a vector valued functions space. Using a regularization
procedure and a Barbu result we obtain an existence result for a problem
independent on u′.

1. Introduction

The hyperbolic and the parabolic hemivariational (or variational–hemiva-
riational) initial value problem were studied by several authors. Interesting
results concerning the existence property for the parabolic case can be found
in [8], [9] or in [3]. Existence results for the hyperbolic case have been
obtained in [13] and in [7]. The problem studied in this paper differs by the
problems considered in [13] or in [7] due to the presence of the subgradient
of a convex function ψ and due to the absence of the terms which contain
u′.

We will use a regularization procedure which combines the Yoshida ap-
proximation with the regularization technique based on mollifiers (see, e.g.
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[2]). The existence property for the regularized problem is a consequence of
a Barbu result.

In the last part of this paper we give applications concerning beams and
plates adhesively connected with a support.

Throughout the paper we assume the following hypotheses:
(H1) The separable real Hilbert space V is compactly and densely imbed-

ded in H = L2(Ω;RN ), where Ω is an open, bounded subset of Rm. One
identifies H with its dual space H∗, thus one has V ⊂ H = H∗ ⊂ V ∗.

(H2) A ∈ L(V, V ∗) is a self-adjoint, coercive operator (i.e. there is a
positive constant ω such that (Au, u) ≥ ω ‖ u ‖2V , for every u ∈ V.)

(H3) ψ : V → R is a lower semicontinuous, convex function such that ∂ψ
is bounded (i.e. it maps bounded subsets in bounded subsets).

(H4) j : RN → R is a Lipschitz-continuous function.
(H5) u0 ∈ V, u1 ∈ H and f ∈ L2(0, T ;H).
(H6) If (un)n is bounded in L∞(0, T ;V ), un → u in L1(0, T ;H) and

(v∗n)n is a sequence such that v∗n(t) ∈ ∂ψ(un(t)) a.e. on (0, T ), for every
n, then there is a subsequence of (v∗n)n, which is weakly-* convergent in
L∞(0, T ;V ∗) to v∗ and v∗(t) ∈ ∂ψ(u(t)) a.e. on (0, T ).

We denote by ( , ) the duality between V and V ∗ and by ( , )H the inner
product of H. ‖ ‖V is the V−norm, ‖ ‖H is the H−norm and | | is the
euclidean norm in RN . As a consequence of (H1), one has

(u, v) = (u, v)H for every u ∈ H and v ∈ V.

The aim of this article is to give an existence result for the following
problem:

Problem (P). Find u ∈ L∞(0, T ;V ), with u′ ∈ L∞(0, T ;H), u′′ ∈
L1(0, T ;V ∗), and find χ ∈ L∞(0, T ;H) such that u′′(t) +Au(t) + ∂ψ(u(t)) + χ(t) 3 f(t), a.e. on (0, T ),

χ(t) ∈ U∗(∂cj(Uu(t))), a.e. on (0, T ),
u(0) = u0, u

′(0) = u1,

where ∂c denotes the generalized gradient introduced by Clarke (see [4]).

Here, and in the sequel, U : H → L2(Ω′;RN ) is defined by Uv = v|Ω′ ,
where Ω′ is an open subset of Ω and U∗ denotes the adjoint of U , i.e.

U∗ : L2(Ω′;RN )→ H, (U∗u)(x) =
{
v(x) if x ∈ Ω′

0 otherwise.

The derivatives which appear in this paper are derivatives in the sense of
distributions on (0, T ).
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Remark 1. Assume, generally, that (X,B, µ) is a positive measure space.
If C is a measurable multivalued operator defined on RN , we can define the
extension of C to L2(X;RN ), C by setting:

f ∈ C(u)⇔ f(x) ∈ C(u(x)) µ-a.e. on X.

In this paper, we use the same notation for C and its extension, C.

Remark 2. If u is a solution of the problem (P), then u satisfies:

(u′′(t), v) + (Au(t), v) + ψ(v + u(t))− ψ(u(t)) +
∫
Ω′

j0(u(x, t); v(x))dx

≥
∫
Ω

f(x, t) · v(x)dx ∀v ∈ V, a.e. t ∈ (0, T ).

Remark 3. The idea of using the operator U in the formulation of (P)
came from [10].

As a first step in proving an existence result for problem (P), we will
consider a regularized problem and we will give an existence result for it.

Let ρ ∈ C∞0 (RN ;R) be a nonnegative function such that∫
RN

ρ(x)dx = 1 and for x with |x| ≥ 1, ρ(x) = 0.

For every positive integer n, we consider ρn ∈ C∞0 (RN ,R), ρn(x) = nNρ(nx)
and jn : RN → R, jn = j∗ ρn, where ∗ denotes the convolution product.

Lemma 1. If j satisfies (H4), then
1. For every positive integer n, we have: jn ∈ C∞(RN ;R) and jn, j

′
n

are Lipschitz-continuous functions. In addition, there is a constant L,
such that

|j′n(x)| ≤ L, for x ∈ RN and for every n.

2. If (xn)n converges in RN to x, then

lim sup
n

j′n(xn) · y ≤ j0(x; y), for y ∈ RN .

Here j0( ; ) is the directional derivative of Clarke for j, i.e.

j0(x; y) = lim sup
z → x

t→ 0+

j(z + ty)− j(z)
t

.
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Proof. 1. follows immediately from the formula which defines jn.
2. follows from [14], Lemma 1 or from [6], Lemma 2.1.

Let φ : H → R ∪ {∞}, φ(u) =

{
ψ(u) +

1
4

(Au, u) if u ∈ V
∞ otherwise.

Due to the hypotheses (H2) and (H3), it follows that φ is a convex,
proper and lower semicontinuous function on H. For each positive integer
n, one defines:

φn : H → R, φn(u) = inf
v∈H

{n
2
‖ u− v ‖2H +φ(v)

}
.

Remark that φn is Fréchet-differentiable and its derivative, φ′n, is Lipschitz-
continuous. (See [1], Corollary 2.2, Chap. 2.)

Let (fn)n be a sequence in H1(0, T ;H), which converges in L2(0, T ;H)
to f.

From (H1), one follows that {u ∈ V : Au ∈ H} is a dense subset of V .
Let u0n ∈ V, be a sequence such that Au0n ∈ H, for every n and u0n

V→ u0.
As V is densely imbedded in H, there is a sequence (u1n)n ∈ V such that
u1n

H→ u1.
For every positive integer n, we consider the following regularized prob-

lem:

Problem (Pn). Find u ∈ L∞(0, T ;V ), with u′ ∈ L∞(0, T ;H), u′′ ∈
L1(0, T ;V ∗) such that

u′′(t) +
1
2
Au(t) + φ′n(u(t)) + (U∗ ◦ j′n ◦ U) (u(t)) = fn(t),

a.e. on (0, T ),
u(0) = u0n, u

′(0) = u1n .

Theorem 1. There exists a sequence (un)n ⊂ C(0, T ;H) ∩ L∞(0, T ;V )
such that for every n we have: u′n ∈ L∞(0, T ;V ) ∩ C(0, T ;V ∗), u′′n ∈
L∞(0, T ;H), Aun ∈ L∞(0, T ;H) and

u′′n(t) +
1
2
Aun(t) + φ′n(un(t)) + (U∗ ◦ j′n ◦ U) (un(t)) = fn(t),

a.e. on (0, T ),
un(0) = u0n, u

′
n(0) = u1n.

(1)

Proof. For every n, un is the solution of (Pn). The existence property
for (Pn) and the required properties for un follow from [1], Theorem 1.5,
Chap. 5.



On a type of hyperbolic variational–hemivariational inequalities 99

Theorem 2. The following properties hold:

(i) The sequence (u′n)n is bounded in L∞(0, T ;H);
(ii) The sequence (un)n is bounded in L∞(0, T ;V );
(iii) The sequence (φn(un))n is bounded from above in L∞(0, T );
(iv) The sequence (Jn(un))n is bounded in L∞(0, T ;V );
(v) The sequence (φ′n(un))n is bounded in L∞(0, T ;V ∗);
(vi) The sequence (Aun)n is bounded in L∞(0, T ;V ∗);
(vii) The sequence ((U∗ ◦ j′n ◦ U)(un))n is bounded in L∞(0, T ;H);
(viii) The sequence (u′′n)n is bounded in L1(0, T ;V ∗);

(ix) The sequence (
d

dt
(Jn ◦ un))n is bounded in L∞(0, T ;H);

where Jn = (I +
1
n
∂φ)−1.

Proof. Let t be fixed in [0, T ]. Taking the inner product in the equation
from (1) with u′n(s), then integrating s between 0 and t, one obtains:

t∫
0

(fn(s), u′n(s))Hds =

t∫
0

(
u′′n(s), u′n(s)

)
H
ds (2)

+
1
2

t∫
0

(
Aun(s), u′n(s)

)
ds+

t∫
0

(
φ′n(un(s)), u′n(s)

)
H
ds

+

t∫
0

(
(U∗ ◦ j′n ◦ U)(un(s)), u′n(s)

)
H
ds.

On the other hand,

t∫
0

(
u′′n(s), u′n(s)

)
H
ds =

1
2

t∫
0

d

ds
‖ u′n(s) ‖2H ds (3)

=
1
2
‖ u′n(t) ‖2H −

1
2
‖ u′n(0) ‖2H

=
1
2
‖ u′n(t) ‖2H −

1
2
‖ u1n ‖2H≥

1
2
‖ u′n(t) ‖2H −c,
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1
2

t∫
0

(
Aun(s), u′n(s)

)
ds=

1
4

t∫
0

d

ds
(Aun(s), un(s)) ds (4)

=
1
4

(Aun(t), un(t))− 1
4

(Au0n, u0n)

≥1
4
ω ‖ un(t) ‖2V −c,

t∫
0

(
(U∗ ◦ j′n ◦ U)(un(s)), u′n(s)

)
H
ds (5)

≥−
t∫

0

‖ (U∗ ◦ j′n ◦ U)(un(s)) ‖H‖ u′n(s) ‖H ds

≥− L
t∫

0

‖ u′n(s) ‖H ds ≥ −L
2

T +

t∫
0

‖ u′n(s) ‖2H ds

 ,

and
t∫

0

(
fn(s), u′n(s)

)
H
ds ≤ 1

2
‖ fn ‖2L2(0,T ;H) +

1
2

t∫
0

‖ u′n(s) ‖2H ds (6)

≤ c+
1
2

t∫
0

‖ u′n(s) ‖2H ds.

Let us estimate the term
t∫

0
(φ′n(un(s)), u′n(s))H ds. Let ψ1 : V → R, ψ1(u) =

ψ(u) + (1/4)(Au, u).
As ψ1 is a convex, coercive, lower semicontinuous function on V , the

range of ∂ψ1 is V ∗. Thus, there is a v0 ∈ V such that 0V ∗ ∈ ∂ψ1(v0), i.e.
ψ1(u) ≥ ψ1(v0), for every u ∈ V. Then, φ(u) ≥ φ(v0), for every u ∈ H.

Let n be fixed. From the definition of φn, one results

φn(v0) ≤ φn(u) ≤ φ(u) = ψ1(u), for every u ∈ V.

If v∗n ∈ ∂ψ1(u0n), one obtains

ψ1(v0)− φn(u0n) ≥ ψ1(v0)− ψ1(u0n) ≥ (v∗n, v0 − u0n) , (7)

(we used the fact that the sequence (u0n)n is included in V.) According to
(H3), ∂ψ is a bounded operator on V . The sequence (u0n)n is convergent
in V, thus it is bounded in V . For every u ∈ V, ∂ψ1(u) = ∂ψ(u) + (1/2)Au.
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It follows that (v∗n)n is bounded in V ∗. From (7), one obtains:

ψ1(v0)− φn(u0n) ≥ −c, for every n. (8)

Therefore, for every n,
t∫

0

(
φ′n(un(s)), u′n(s)

)
H
ds =

t∫
0

d

ds
φn(un(s))ds (9)

= φn(un(t))− φn(u0n) ≥ φn(v0)− ψ1(v0)− c.
On the other hand, ψ1(v0) = φ(v0) = lim

n
φn(v0). Thus,

t∫
0

(
φ′n(un(s)), u′n(s)

)
H
ds ≥ −c1. (10)

From (2), (3), (4), (5), (6) and (10), one gets

1
2
‖ u′n(t) ‖2H +

1
4
ω ‖ un(t) ‖2V≤

L+ 1
2

t∫
0

‖ u′n(s) ‖2H ds+ c,
(11)

for every n and for all t ∈ [0, T ]. But, un is an absolutely continuous function
from [0, T ] to V, and u′n is an absolutely continuous function from [0, T ] to
H. Using Gronwall’s inequality, from (11) we obtain (i) and (ii).

From (2), (3), (4), (5), (6), (8), (9) and (i), (ii) one deduces

φn(un(t)) = φn(u0n) +

t∫
0

(
φ′n(un(s)), u′n(s)

)
H
ds

= φn(u0n) +

t∫
0

(
fn(s), u′n(s)

)
H
−

t∫
0

(
u′′n(s), u′n(s)

)
H
ds

−
t∫

0

(
Aun(s), u′n(s)

)
ds−

t∫
0

(
(U∗ ◦ j′n ◦ U)(un(s)), u′n(s)

)
H
ds

≤ ψ1(v0) + c1,

for every t ∈ [0, T ] and every n. Therefore, (iii) is satisfied.
As Jn are non-expansive functions from H to H, it consequently follows

that, if vn(t) = Jn(un(t)), then ‖ v′n(t) ‖H≤‖ u′n(t) ‖H a.e. t ∈ (0, T ) and
(ix) is implied by (i).

For every n and for every t ∈ [0, T ], we have vn(t) ∈ D(∂φ) ⊂ D(φ) = V,
thus

ψ1(vn(t)) = φ(vn(t)) = φ(Jn(un(t))) ≤ φn(un(t)) ≤ ψ1(v0) + c1.
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(See [1], Theorem 2.2, Chap. 2.)
As ψ1 is coercive on V , for every positive number c, there is a positive

number R such that
ψ1(v) ≤ c⇒‖ v ‖V≤ R.

Consequently, (iv) is satisfied.
For u ∈ V, we have ∂φ(u) ⊂ ∂ψ1(u). One obtains

φ′n(un(t)) ∈ ∂φ(vn(t)) ⊂ ∂ψ1(vn(t)), ∀t ∈ [0, T ], ∀n.
From (iv) and (H3), it follows (v). From (H2) and (ii), it follows (vi).
Lemma 1, 1) proves (vii) and (1) together with the previous assertions
prove (viii).

Lemma 2. Let X, Y two reflexive spaces such that X is compactly imbed-
ded in Y . Let (un)n be a bounded sequence in L∞(0, T ;X) such that (u′n)n
is weakly convergent in L1(0, T ;Y ). Then, there are an u ∈ L∞(0, T ;Y )
and a subsequence (unk)k such that

unk(t) → u(t) in Y, a.e. on (0, T ) and
unk → u in Lp(0, T ;Y ), ∀p ∈ (1,∞).

Proof. From the hypotheses of this lemma, one follows that the sequence
(un)n is bounded in L2(0, T ;Y ). Passing to a subsequence, we can assume
that (un)n is weakly-convergent in L2(0, T ;Y ). Let u be the weak-limit of
(un)n in L2(0, T ;Y ). Firstly, we will prove that

un(t)→ u(t) weakly in Y, a.e. on (0, T ).

As un and u′n are in L1(0, T ;Y ), it follows that un can be identified with
an absolutely continuous function from [0, T ] to Y. For any n, for any v ∈ Y ∗
and for any t ∈ [0, T ],

un(t) = un(0) +

t∫
0

u′n(s)ds,

(un(t), v)Y,Y ∗ = (un(0), v)Y,Y ∗ +

t∫
0

(
u′n(s), v

)
Y,Y ∗

ds

= (un(0), v)Y,Y ∗ +
〈
u′n, χ(0,t) ⊗ v

〉
L1(0,T ;Y );L∞(0,T ;Y ∗) ,

where χ(0,t) is the characteristic function of the set (0, t). (For θ : (0, T )→ R
and v ∈ Y ∗, θ ⊗ v : (0, T )→ Y ∗ is defined by (θ ⊗ v)(t) = θ(t)v.)

As (un(0))n is a bounded sequence in X, which is compactly imbedded
in Y , one can assume that (un(0))n is convergent in Y . The sequences
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from the right side of the previous equality being convergent, there is an
u : [0, T ]→ Y such that

(un(t), v)Y,Y ∗ → (u(t), v)Y,Y ∗ , ∀t ∈ [0, T ], ∀v ∈ Y ∗. (12)

We are going to prove that u = u. It is obvious that u ∈ L∞(0, T ;Y ).
Let θ be in L1(0, T ;Y ∗). Then, a.e. on (0, T ), ∀n,∣∣∣(un(t), θ(t))Y,Y ∗

∣∣∣ ≤ c ‖ un(t) ‖X‖ θ(t) ‖Y ∗≤ c1 ‖ θ(t) ‖Y ∗ . (13)

Due to Lebesgue’s dominated convergence theorem, from (12) and (13) one
obtains

〈un, θ〉L∞(0,T ;Y ),L1(0,T ;Y ∗)

=

T∫
0

(un(s), θ(s))Y,Y ∗ ds→
T∫

0

(u(s), θ(s))Y,Y ∗ ds = 〈u, θ〉L∞(0,T ;Y ),L1(0,T ;Y ∗) .

Therefore, (un)n converges to u weakly-* in L∞(0, T ;Y ). One follows
that (un)n converges to u weakly in L2(0, T ;Y ). Consequently, u = u.

Let us prove that (un)n converges in Lp(0, T ;Y ) to u, for p ∈ (1,∞). Due
to the assumed boundedness of (un)n, it is sufficient to prove that (un(t))n
converges in Y to u(t), a.e. on (0, T ). The sequence (un(t))n is bounded
in X a.e. on (0, T ), therefore it is a relatively compact subset of Y. On
the other side, un(t) → u(t) weakly in Y a.e. on (0, T ). One obtains that
(un(t))n converges in Y to u(t) a.e. on (0, T ).

Theorem 3. The problem (P) has a solution.

Proof. Let (un)n be a sequence as in Theorem 1. Passing to a subsequence
(if necessary), from Theorem 2 (i), (ii), (iv), (ix), hypothesis (H5) and
Lemma 2, it follows that there are u and v in L2(0, T ;H), such that

un → u, vn → v in L2(0, T ;H), (14)

where vn(t) = Jn(un(t)) for t ∈ (0, T ). The proof of our assertion has several
steps.

Step 1. un → u, vn → v weakly-* in L∞(0, T ;V ).
Proof. According to Theorem 2 (ii), (iv) (un)n and (vn)n are bounded se-
quences in L∞(0, T ;V ), the latter being continuously imbedded in L2(0, T ;H).
Passing to a subsequence, we can assume that there are u and v in L∞(0, T ;V ),
such that

un → u, vn → v, weakly-* in L∞(0, T ;V ).
It follows that (un)n and (vn)n are weakly convergent in L2(0, T ;H), to u,
respectively to v. From (14), one obtains the assertion stated in Step 1.
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Step 2. u = v.
Proof. For every n, Jn = (I + (1/n)∂φ)−1. Consequently, for every n and
a.e. on (0, T ), we have

un(s) ∈ Jn(un(s)) +
1
n
∂φ(Jn(un(s))).

But, ∂φ(Jn(un(s))) ⊂ ∂ψ1(Jn(un(s))). Due to (H3) and by Theorem 2, (iv),
there is a constant c such that

∂ψ1(Jn(un(s))) ⊂ {v∗ ∈ V ∗ : ‖ v∗ ‖V ∗< c}, ∀n, a.e. on (0, T ).

Thus

‖ un(s)− Jn(un(s)) ‖V ∗≤
1
n
c, ∀n, a.e. on (0, T ). (15)

On the other side, as a consequence of (14), we can assume that

un(s)−Jn(un(s))→ u(s)−v(s) in H and, consequently, in V ∗ a.e. on (0, T ).

It follows from (15) that u = v.

Step 3. (Aun)n and (Avn)n converge to Au weakly-* in L∞(0, T ;V ∗).
Proof. As A is a self-adjoint operator from V to V ∗, the assertions derive
easily from Step 1.

Step 4. φ′n(un)→ v∗+(1/2)Au weakly-* in L∞(0, T ;V ∗), with v∗(s) ∈
∂ψ(u(s)), a.e. on (0, T ).
Proof. The sequence (φ′n(un))n is bounded in L∞(0, T ;V ∗) (see Theorem 2,
(v)). For every n, a.e. on (0, T ),

φ′n(un(t)) ∈ ∂φ(vn(t)) ⊂ ∂ψ1(vn(t)) = ∂ψ(vn(t)) +
1
2
Avn(t).

Conform Lemma 2, vn → u in L2(0, T ;H). One can apply (H6) for v∗n =
φ′n(un)−(1/2)Avn. Then, one can assume that there is a v∗ in L∞(0, T ;V ∗)
such that

−1
2
Avn + φ′n(un) → v∗ weakly-* in L∞(0, T ;V ∗),

v∗(t) ∈ ∂ψ(u(t)), a.e. on (0, T ).

Step 5. (U∗ ◦ j′n ◦ U)(un) → χ weakly-* in L∞(0, T ;H) and χ ∈
L∞(0, T ;H) satisfies

χ(t) ∈ U∗(∂c j(Uu(x, t))) a.e. on (0, T ). (16)

Proof. The existence of χ is a consequence of Theorem 2 (vii). Let QT =
Ω′× (0, T ) and let Q̃T = (Ω\Ω′)× (0, T ). Due to the separability of RN and
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using the upper-semicontinuity of j0, in order to have (16) it is sufficient to
prove that for every positive function θ ∈ L∞(QT ) and every ξ ∈ RN ,∫

QT

χ(x, t) · ξ θ(x, t) dx dt ≤
∫
QT

j0(u(x, t); ξ) θ(x, t) dx dt (17)

and that for every function θ ∈ L∞(Q̃T ) and every ξ ∈ RN ,∫
gQT

χ(x, t) · ξ θ(x, t) dx dt = 0. (18)

Let us prove (17). Let θ and ξ be as before; taking into account that χ
is the weak-* limit of ( (U∗ ◦ j′n ◦ U)(un))n in L∞(0, T ;H), one can write:∫
QT

χ(x, t) · ξ θ(x, t) dx dt =

T∫
0

(χ(t), U∗(ξ θ(t)) )H dt (19)

= lim
n

T∫
0

(
(U∗ ◦ j′n ◦ U)(un(t)), U∗(ξ θ(t) )

)
H
dt

= lim
n

∫
QT

j′n(un(x, t)) · ξ θ(x, t) dx dt.

As un → u in L2(0, T ;L2(Ω′;RN )), which can be identified with L2(QT ;RN )
we can assume that

un(x, t)→ u(x, t) a.e. on Ω′ × (0, T ).

Due to Lemma 1, one obtains

lim sup
n

j′n(un(x, t)) · ξ ≤ j0(u(x, t)) · ξ,∣∣j′n(un(x, t))
∣∣ ≤ L,

a.e. on Ω′ × (0, T ). Thus,

lim sup
n

∫
QT

j′n(un(x, t)) · ξ θ(x, t) dx dt (20)

≤
∫
QT

lim sup
n

j′n(un(x, t)) · ξ θ(x, t) dx dt ≤
∫
QT

j0(u(x, t)) · ξ θ(x, t) dx dt.

The assertion follows from (19) and (20). As (U∗ ◦ j′n ◦ U)(un) = 0 a.e. on
Q̃T , analogously, we derive (18).

Step 6. u′n → u′ weakly-* in L∞(0, T ;H).
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Proof. (u′n)n is a bounded sequence in L∞(0, T ;H). We can assume that
u′n → z weakly-* in L∞(0, T ;H). In order to prove that u′ = z, we will show
that

T∫
0

u(t)θ′(t)dt = −
T∫

0

z(t)θ(t)dt, ∀θ ∈ C∞0 (0, T ),

or, equivalently,

T∫
0

(u(t), w)H θ
′(t)dt = −

T∫
0

(z(t), w)H θ(t)dt, ∀θ ∈ C
∞
0 (0, T ), ∀w ∈ H.

Let θ and w be as before. One has

T∫
0

(u(t), w)H θ
′(t)dt = lim

n

T∫
0

(un(t), w)H θ
′(t)dt,

−
T∫

0

(z(t), w)H θ(t)dt = − lim
n

T∫
0

(
u′n(t), w

)
H
θ(t)dt.

But the terms from the right-hand side of the previous equalities are equal.

Step 7. u′′n → u′′ weakly in L1(0, T ;V ∗).
Proof. As fn → f in L1(0, T ;V ∗), due to (1), from the previous steps it
follows that (u′′n)n is weakly convergent in L1(0, T ;V ∗). Conform Step 6,
u′n → u′ weakly-* in L∞(0, T ;H) and, consequently, weakly in L1(0, T ;V ∗).

The assertion follows using similar arguments with those used in the proof
of the previous step.

Step 8. u′(0) = u1, u(0) = u0.
Proof. Let n be fixed. For all t ∈ [0, T ],

un(t) = u0n +

t∫
0

u′n(s)ds. (21)

For v ∈ H, conform Step 6 and Lemma 2, the following hold:

(

t∫
0

u′n(s)ds, v)H =

T∫
0

(
u′n(s), vχ(0,t)(s)

)
H
ds→ (

t∫
0

u′(s)ds, v)H ,

(un(t), v)H → (u(t), v)H , (u0n, v)H → (u0, v)H .
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Passing to weak-limit by n in (21), we obtain that

u(t) = u0 +

t∫
0

u′(s)ds.

But u ∈ L∞(0, T ;H) and u′ ∈ L∞(0, T ;H); thus,

u(t) = u(0) +

t∫
0

u′(s)ds.

It follows that u(0) = u0. By a similar argument for (u′n)n and the space
V ∗, one obtains that u′(0) = u1.

Step 9. u′′(t) +Au(t) + v∗(t) + χ(t) = f(t) a.e. on (0, T ).
Proof. As u′′+Au+v∗+χ−f ∈ L1(0, T ;V ∗), in order to prove the required
equality, we will prove that for every v ∈ V and every θ ∈ L∞(0, T ),

T∫
0

(
u′′(t) +Au(t) + v∗(t) + χ(t)− f(t), v

)
θ(t)dt = 0. (22)

Then, due to the separability of V , the assertion in Step 9 will follow im-
mediately.

Let v ∈ V and θ ∈ L∞(0, T ) be as before. From (1) one obtains:
T∫

0

(
u′′n(t)+

1
2
Aun(t)+φ′n(un(t))+(U∗ ◦ j′n ◦ U)(un(t))−fn(t), v

)
θ(t)dt = 0.

Passing to limit by n and taking into account that the application t 7→ vθ(t)
is in the space L1(0, T ;V ), one obtains (22).

Proposition 1. Let V be a normed space continuously imbedded in the
separable Hilbert space H. If M : H → P(H) is a bounded, maximal
monotone operator, then M satisfies (H6).

Proof. Let (un)n be a bounded sequence in L∞(0, T ;V ), such that un → u
in L1(0, T ;H). Let (v∗n)n be such that v∗n(t) ∈Mun(t) a.e. on (0, T ) and for
every n. As R(M) ⊂ H, one obtains that (v∗n)n is a bounded sequence in
L∞(0, T ;H). Let us assume that v∗n → v∗ weakly-* in L∞(0, T ;H). We are
going to prove that v∗(t) ∈ Mu(t) a.e. on (0, T ). Let [w,w∗] ∈ M and θ a
positive function in L∞(0, T ). Then

T∫
0

(w∗ − v∗n(t), w − un(t) )H θ(t)dt ≥ 0, ∀n. (23)
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But,

w∗ − v∗n → w∗ − v∗ weakly-* in L∞(0, T ;H),
w − un → w − u in L1(0, T ;H).

Passing to limit in (23), one obtains
T∫

0

(w∗ − v∗(t), w − u(t))H θ(t)dt ≥ 0.

As θ was chosen arbitrarily among positive functions in L∞(0, T ), we get

(w∗ − v∗(t), w − u(t) )H ≥ 0, a.e. on (0, T ). (24)

On the other hand, M can be identified with a subset of the separable space
H ×H . Thus, there is a sequence ([wk, w∗k])k dense in M. For every k, one
considers the following set:

Ak = {t ∈ (0, T ) : (24) is not satisfied for w = wk, w
∗ = w∗k}.

Let A be
⋃
k

Ak. Then A is a set with Lebesgue measure zero.

For t ∈ (0, T )\A and for every integer n,

(w∗n − v∗(t), wn − u(t) )H ≥ 0. (25)

Let t be fixed as before. Let [w,w∗] ∈M. There is a subsequence ([wkl , w
∗
kl

])l
such that wkl → w in V and w∗kl → w∗ in H. For every l, (25) is satisfied
for n = kl. Passing to the limit by l, one obtains

(w∗ − v∗(t), w − u(t) )H ≥ 0.

As [w,w∗] is arbitrarily chosen in M, by use of the maximal monotonicity
of M, one gets that v∗(t) ∈Mu(t).

Remark 4. Let V and H, two real Hilbert spaces which satisfy (H1). If ψ
satisfies (H3) and R(∂ψ) ⊂ H, then ψ satisfies (H6).

Proof. Let ψ2 : H → R ∪ {∞}, ψ2(u) =
{
ψ(u)+ ‖ u ‖2H if u ∈ V
∞ otherwise.

The functional ψ2 is proper, convex, lower semicontinuous and coercive on
H. Consequently, ∂ψ2 is a maximal monotone operator. Additionally, we
have

∂ψ2(u) = ∂ψ(u) + 2u, ∀u ∈ V.
As a consequence of the previous proposition one obtains that ∂ψ2 satisfies
(H6) and it follows immediately that ∂ψ also satisfies (H6).
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2. Applications

2.1. Beam in adhesive contact. We consider an elastic beam obeying
linear Hooke’s law, which is simply supported at its ends x = 0 and x = l.
From its upper side along the segment (l1, l2) the beam is adhesively con-
nected with a support. Under the beam, at the distance h, we consider
a deformable support which causes a reaction proportional to its deforma-
tion (Winkler support). The displacements of the beam are denoted u(x, t).
The action of the adhesive material on the beam is described by a non-
monotone, possibly multivalued, law between −f1(x, t) and u(x, t), where
f1(x, t) denotes the reaction force per unit length due to the gluing material.
This law may be written in the form (cf. [13], p.51 or [11], p.26)

−f1(x, t) ∈ ∂cj(u(x, t)) on (l1, l2)× (0, T ), (26)

where j is a locally Lipschitz function.
The reaction force due to the Winkler support is

−f2(x, t) ∈ β(u(x, t)) on (0, l)× (0, T ), (27)

where β(z) =
{
k(z − h) if z ≥ h
0 if z < h

.

The beam is assumed to have the modulus of elasticity E and the moment
of inertia I. Then we may write, in the framework of small displacements,
the differential equation of the beams

m
∂2u

∂t2
+EI

∂4u

∂x4 = f1(x, t) + f2(x, t) + f3(x, t), (28)

where f3(x, t) is the given loading and m denotes the mass intensity per
unit length. We add the boundary conditions

u(t, 0) = u(t, l) = 0,
∂2u

∂x2 (t, 0) =
∂2u

∂x2 (t, l) = 0 (29)

and the initial conditions

u(x, 0) = u0(x),
∂u

∂t
(x, 0) = u1(x). (30)

We introduce the space V = H2((0, l)) ∩ H1
0 ((0, l)) which is a Hilbert

space for the inner product (cf. [5], p. 220, Remark 4.5)

a(u, v) =

l∫
0

∂2u

∂x2
∂2v

∂x2dx.
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Let ψ1 : L2((0, l)) → R, ψ1(v) =
l∫

0
(1/2)k(v − h)2

+(x)dx. Then ψ = ψ1|V

satisfies (H3) and (27) can be written in the form

−f2(t) ∈ ∂ψ(u(t)) on (0, T ).

If the operator A is defined by (Au, v) = (EI/m)a(u, v), Ω = (0, l) and
Ω′ = (l1, l2), one obtains that the displacement u : (0, T )→ V satisfies:

u′′(t) +Au(t) + ∂(
1
m
ψ)(u(t))− 1

m
f1(t) 3 1

m
f3(t), a.e. on (0, T ),

−f1(t) ∈ U∗(∂cj(Uu(t))), a.e. on (0, T ),
u(0) = u0, u

′(0) = u1,
(31)

where Uv = v|Ω′ .We remark that−f1(t) ∈ U∗(∂cj(Uu(t))), a.e. on (0, T ) is
equivalent with the following two relations:

−f1(x, t) = 0 for x /∈ Ω′, t ∈ (0, T )
−f1(x, t) ∈ ∂cj(u(x, t)) for x ∈ Ω′, t ∈ (0, T ).

Note that in the case of large displacements the equation (28) becomes
(see [16])

m
∂2u

∂t2
+EI

∂4u

∂x4 + P
∂2u

∂x2 = f1(x, t) + f2(x, t) + f3(x, t).

Here P denotes a compressive force (P > 0) acting for x = 0 and x = l
along the axis Ox. Then, in (31) the operator A is defined by

(Au, v) =
EI

m
a(u, v) +

l∫
0

P
∂u

∂x

∂v

∂x
dx.

2.2. The case of plates. We assume an analogous problem to the previous
one where now Ω ⊂ R2 is occupied by a Kirchhoff plate which is simply
supported along the boundary Γ of Ω. The set Ω is assumed to be open,
bounded with a Lipschitz boundary. We assume that on Ω′ ⊂ Ω the plate is
adhesively supported from its lower side and that the plate is at a distance
h under a deformable support. We assume that Ω′ ∩Γ = ∅. In this case (cf.
[5], p. 207) the problem is governed by the relation

ρh
∂2I

∂t2
+D42I = f1(x, t) + f2(x, t) + f3(x, t) on Ω× (0, T )

I = 0, M = 0 on Γ

I(t = 0) = I0,
∂I

∂t
(t = 0) = I1 in Ω,

where h denotes the thickness of the plate, ρ the density, I the deflection, M
the bending moment and D = Eh3/[12(1− ν2)] (E is the modulus of elas-
ticity and ν is the number of Poisson). For the expression of M as a function
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of I we refer to [5], p. 204 and to [12], p. 216. The forces f1, f2, f3 have
the same meaning as in the previous example. The bilinear form a( , ) of
the plate theory (see [5], p. 210, eq. 4.1) is continuous and coercive on the
space V ×V , where V = H2(Ω)∩H1

0 (Ω), thus it defines a inner product on
this space and the norm generated by a is equivalent on V with the norm
of H2(Ω) ([5], p. 220, Remark 4.5). The problem considered above can be
put in a form analogous to the form (31).

2.3. Beams and plates with fuzzy support conditions. We can use
reaction displacement laws with nonfully determined values (fuzzy laws).
In order to describe such a law it is necessary to introduce the following
nonconvex superpotential (see [15]): Let I = (a, b) and let I ′ be a measurable
subset of I such that for every open and nonempty subset i of I, meas(i∩I ′)
and meas(i \ I ′) are positive. Let

g : R→ R, g(z) =
{
b2 if z ∈ I ′
b1 if z /∈ I ′ with b1 < b2

and j : R→ R, j(z) =

z∫
0

g(y)dy. Then

∂cj(z) =

 [b1, b2] for z ∈ I
{b1} for z < a
{b2} for z > b.

If we want to describe a fuzzy behaviour for a beam which is adhesively
connected on (l1, l2) with a support, then we will write the law (26) in the
form (fuzzy law)

−f1 ∈ ∂cj(u) + ∂φ(u) on (l1, l2)× (0, T ), (32)

where φ is a convex superpotential and j is the nonconvex superpotential
introduced above with b1 = −α, b2 = α and I = (−ε, ε). The law (32)
describes the fact that for u ∈ (−ε, ε), the reaction force due to the gluing
material −f1 may takae any value between −α and α. (See also [2], pp.
35–36.)

In the case of a plate adhessively connected with a support on Ω′ ⊂ Ω,
the law (32) will be replaced by

−f1 ∈ ∂cj(u) + ∂φ(u) on Ω′ × (0, T ).
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