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Abstract. Regular variation is an asymptotic property of functions
and measures. The one variable theory is well-established, and has
found numerous applications in both pure and applied mathematics.
In this paper we present several new results on multivariable regular
variation for functions and measures.

1. Introduction

A Borel measurable function R : Rt — R™ is said to vary reqularly at
infinity with index p € R if, for all A > 0 we have

tliglo R(At)/R(x) = M. (1.1)

A regularly varying function with index zero is also called slowly varying. A
comprehensive account of the one variable theory, including a large number
of applications, can be found in [4]. The beginnings of a theory of regular
variation in R can be found in [1], [8], [12], and [22]. The general theory
was laid out in [14]. This theory of multivariable regular variation was
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then generalized to regular varying functions and measures on nilpotent Lie
groups in [18].

In this paper we establish some basic results on the geometry of regularly
varying functions, measures, and sequences of linear operators on R . By
geometry we mean that regular variation for linear operators, which is the
foundation of the whole theory, leads to a powerful decomposition theorem
of the underlying vector space R called the spectral decomposition (see
Theorem 2.4). Such a spectral decomposition, which was already proved in
the slightly different setting of generalized domains of (semi-) attraction of
operator (semi-) stable laws, is the key ingredient to various deep theorems
on operator (semi—) stable laws. See [15], [17] and the literature cited there.

Then we investigate regularly varying functions on R . Our principal re-
sult is an extension of Feller’s characterization of regularly varying functions
(see Theorem 3.14). The theory of regularly varying measures is derived
along the same lines as our theory for functions with virtually the same
proofs. One might argue that these two theories should be equivalent via
a uniqueness and continuity theorem for a certain operator. Unfortunately,
as shown in a counter example, this is not the case. Hence we will only
sketch the proofs of the theory of regularly varying measures pointing out
the differences to the proof in the function case.

Recently, the concept of regular variation on R has been generalized to
multivariable R-O variation, which is the appropriate theory to investigate
generalized domains of semistable attraction, see [18]. This theory is again
based on the theory of regular variation for linear operators presented here.

2. Regular variation for linear operators

Suppose f : R — GL(R™) is Borel measurable, where GL(R7) is the Lie
group of invertible linear operators on R . We say that f varies reqularly if

Jim () F(1)™ = b)) € GLRY) (2.1)

for all A > 0. In this case, for some linear operator B called the indez of f
we have ¥(A) = AZ for all A > 0, see [14]. Here AP = exp(Blog\) where
exp(A) = I+ A+ A%/2! + A3/3! + .. is the usual exponential operator.

The convergence in (2.1) is automatically uniform on compact subsets of
A > 0, see [1], [14]. A straightforward extension of that proof yields the
following technical result, which will be useful in the next section. See also
[15], Theorem 3.1.

Definition 2.1. Let (W, ||-||) be a Banach space and set S C W be closed.
For z € W we define

|z — S|| = inf{|jz — z|| : z € S}
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the distance between z and S. For a sequence (x,) in W we write
zn, — S ifand only if |z, — S| —0

as n — OoQ.

Lemma 2.2. Suppose K is a compact subset of GL(R7) and
fOOfH) = \PK (2.2)

as t — oo for all A > 0. Then this convergence is uniform on compact
subsets of ¢t > 0.

Regular variation on GL(R7) (and more generally on Lie groups) is the
most natural extension of the one variable theory. It is also the key to the
theory of regularly varying functions and measures, which will be discussed
in the following two sections. The main purpose of this section is to establish
a structure theorem called the spectral decomposition for regularly varying
sequences of linear operators. We begin with a preparatory lemma. If
An,B;' — I in GL(R™) we will write A,, ~ B,. Suppose f varies regularly
with index B. Factor the minimal polynomial g of B into gi(x)--- gp(x)
where all roots of g; have real part a; and a; < a; for i < j. Define
Vi = Ker(gi(B)). Then Vi@ --- @V, is a direct sum decomposition of R
into B-invariant subspaces, and we may write B = B1 @ - - @ B, where
B; : V; — V; and every eigenvalue of B; has real part equal to a;. We will
call this the spectral decomposition of B. (This is a special case of the
primary decomposition theorem of linear algebra. See for example [5].)

Lemma 2.3. Suppose f varies regularly with index B, and let Vi,...,V)
be the spectral decomposition of B. Then for each ¢ = 1,... ,p there is a
subspace L; of R such that for ¢ — oo

(i) dim(L;) = dim(Vi - D Vi)

(i) fOz/||f)z]| = Vi@ ---@V; for all z € L;;

(it) F(t)e/|[F(t)all — Vier -+~ DV for all a ¢ L.

(iv) tP||f(t)z| — 0 for all x € L; and p > a;.

(v) t7P||f(t)x| — oo for all x ¢ L; and p < ajt1.
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Proof. Let VV = Vi@ ---PViand V = Vi1 P ---@PV,. The subspace
L; is in some sense the limit of f=!(¢)(V') as t — oo. Fix p € (a;,ais1)
and note that ¢~7|[t®x|| — 0 uniformly on compact subsets of V'’ while
t°|[tPz|| — oo uniformly on compact subsets of U = R1—V’. For y € R
write y = 70 + 1’0" where r,7’ € R™ and 6,6 are unit vectors in V, V'
respectively. Given 6 > 0 define Vs = {rf +1'0" : v/’ > 6}, so that Vs C U
and Vj increases to U as § — 0. The regular variation of f implies that
t=P||f(t)x|| — oo whenever z = f~1(t)y for any y € V5 and t > t¢(J). Then

define
s=UJ U oo (2.3)
>0 t>to(d)
A computation shows that ¢t=°||f(t)x|| — oo and f(t)x/||f(t)x|| — V for all
x € S. Furthermore, if x ¢ S then t=°||f(t)z|| — 0 and f(t)z/||f(t)z| —
V'. Let L; = R —S. For further details see [17] and [18]. This concludes
the proof. O

Theorem 2.4 (Spectral decomposition). A Borel measurable function f :
Rt — GL(R7) varies regularly with index B if and only if f ~ g7 for some
T € GL(R™) and some g regularly varying with index B such that:

(i) each V; in the spectral decomposition of B is g-invariant; and
(i) g= g P P gp where each g; : RT — V5 is regularly varying with
index B;.

Proof. Suppose f varies regularly with index B. Apply Lemma 2.3 and
choose T € GL(R) so that Ly = T ' (V@ ---@V;) forall i = 1,... ,p.
Using the direct sum decomposition, for = € V; define g(t)z to be the
component of f(t)7 'z which lies in V;. Extend by linearity. Then use the
uniform convergence in (2.1) to show that

fOT7'0 g(t)0

for]  Tewen "
Tl
le@e 24

uniformly on the unit sphere in V; for each i. It follows that fT~' ~ g.
Then it follows immediately from the formula (2.1) that g is also regularly
varying with the same index B as f. Since each V; is g-invariant, each
g; varies regularly with index B; by projecting (2.1) onto the subspace V;.
Conversely, it follows immediately from the formula (2.1) that if f ~ ¢gT
and if g varies regularly with index B, then so does f. This concludes the
proof. O
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3. Regular variation for functions

Let T =R — {¥} and suppose that F : T' — [0, 0c0) is Borel measurable.
We say that F varies regularly if there exist f : RT — GL(R™) and R :
R* — RT, both regularly varying, R not slowly varying, such that

tlim F(f(t) 'zy)/R(t) = o(x) >0 (3.1)
whenever z; — « in I'. In this case the limit function ¢ satisfies
to(z) = p(t~Fx) (32)

for all t > 0 and all z € ', where E = 37'B and 3, B denote the index of
R and f, respectively, see [14]. We say that F' varies regularly with index
E. If all eigenvalues of B have positive (negative) real part, then Lemma
2.3 shows that f(¢)~!z tends to zero (infinity) in norm as t — 0, and we
say that F' varies regularly at zero (infinity), respectively. In this section
we investigate the structure of regularly varying functions.

Remark 3.1. The definition of a regularly varying function F' can be re-
written in the following way: Let f : Rt — GL(R?) be regularly varying
with index B and let R : R™ — R™ be regularly varying with index 3 # 0.
Then limy o F(f(t)"'2;)/R(t) = ¢(x). We have to consider two cases
separately.

(a) The case B > 0: Then R(t) — oo as t — oo. Choose an asymptotic
inverse S € RV(1/3) such that R o S(t) ~ ¢ (see [20] Theorem on page
21). Here and in the following let us agree to write f ~ g for functions
f,g: RT — Rt if f(t)/g(t) — 1 as t — oo. Define fi(t) = f(S(¢)). Then
f1 is regularly varying with index E = (1/5)B and it follows that

-1

t—00 t
whenever z; — x in I'.
(b) The case 3 < 0: Then R(t) — 0 ast — oo and 1/R € RV(—f). Choose
an asymptotic inverse S € RV(—1/3) such that 1/R o S(t) ~ t. Define
fi(t) = f(S(t)). Then f; is regularly varying with index (—1/3)B and it
follows that

lim tF(f1(t) " 2y) = ()
whenever z; — x in I'.

We begin with an examination of the limit function. The following is not
the most general treatment possible, but it is sufficient for our purposes.

Definition 3.2. A function ¢ : I' — (0,00) is called admissible if it is
continuous and if either
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(i) o(zt) + p(—x¢) — oo whenever ||z¢]| — oo
or
(ii) ¢(xt) + (=) — 0 whenever ||z;|| — oo.

Since in (3.1) there are only nonsingular operators allowed we restrict
ourselves to operators from GL(R) in the following theory. (It is possible
to allow all linear operators A in the following definition but then we need
the additional property ¢(0) = 0 of an admissible function.)

Definition 3.3. An operator A € GL(R) is called a symmetry of a func-
tion o : ' — R if p(Ax) = p(z) for all z € T'. Let

S(p)={A € GLMR Y : A is a symmetry of p}.

Lemma 3.4. For a function ¢ : I' — (0,00) define g(z) = ¢(x) + p(—x).
Then S(¢) C S(g).

Proof. Assume ¢ € S(¢). Then p(Az) = ¢(x) for all z € T'. Especially
o(A(—z)) = o(—Azx) = ¢(—x) for all x € . Hence g(Ax) = p(Ax) +
o(—Azx) = p(x) + p(—z) = g(x) for all z € T' so A € S§(g). This concludes
the proof. O

Theorem 3.5. The symmetries S(¢) of an admissible function ¢ form a
compact subgroup of GL(RT).

Proof. Obviously S(¢) is closed under composition and inverses, so S(¢)
is a subgroup of GL(R™). If A, € S(¢) and A,, — A then for all z € T we
have p(x) = p(Apx) — @(Az) which implies that ¢(Ax) = ¢(z), and so
S(yp) is closed. Finally, if A,, € S(p) then by Lemma 3.4 A,, € S(g), where
g(x) = ¢(x) + ¢p(—x) as before. Then g(x) = g(Anz) implies that ||A,z|| is
bounded (otherwise g(A,x) tends to either zero or infinity), and so S(g) is
bounded and hence S(y) is compact. This concludes the proof. O

In the following we use the notation AF(z) = F(A~'z) for A € GL(RT)
and F: T — R*,

Definition 3.6. Let F denote the set of all Borel measurable functions
F :T — R which are monotone on rays, by which we mean that t — F(tz)
is a monotone function of t > 0 for all x € I'. For F,, € F and an admissible
function ¢ : I' — (0,00) we write F,, — ¢ if F,(z,) — ¢(x) whenever
Ty, — xin I,
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The next step is to establish a convergence of types theorem for real-valued
functions on R. We begin with two simple lemmas.

Lemma 3.7. Let F,, € F, ¢ admissible and A,, € GL(RV). If F,, — ¢ then
A, F, — ¢ if and only if A, — S(y).

Proof. Let p(z) = ¢(x)+¢(—z) and Gy, (z) = F,(z)+F,(—x). If ¢ satisfies
(ii) of Definition 3.2 then supjg—,p(z) — 0 as r — oco. Furthermore,
since F,, € F and F,, — ¢ uniformly over any fixed sphere, it follows that
t — F,(tr) is monotone decreasing for all x € I and hence ¢ — Gy (tx) is
monotone decreasing for all x € I' too. Then the uniform convergence of
F,, — ¢ over any fixed sphere implies that G,, — p uniformly on compact
subsets of I' and hence G, (z,) — 0 whenever |z,| — oo. Similarly if
o satisfies (i) in Definition 3.2 then G, (x,) — oo whenever ||x,| — oc.
Now if ApF, — ¢ then for all x € T we have F,(A,'z) — p(x) > 0
and F, (A, (—z)) — ¢(—z) > 0. Then G,(A,'x) — p(x) > 0 for all
x € T. If ||A;'z]| — oo then G, (A;'z) tends to either zero or infinity,
which is a contradiction. Thus the sequence A;! is relatively compact.
If along a subsequence n’ we have A7! — C then F,(A 'z) — ¢(Cx)
and so C € S(p). Since S(y) is a compact group, taking inverses yields
A, — S(p). Conversely, if A, — S(p) then for any subsequence there
is a further subsequence n’ such that A,, — A for some A € S(p). Then
An Fpr — Ap = . Tt follows that A, F,, — . This concludes the proof. [

Lemma 3.8. Let F, € F, ¢, ¢ admissible and A, € GL(R). If F,, — ¢
and A, F,, — ¢o then ¢y = C¢ for some linear operator C' € GL(R7).

Proof. Let p and GG, be as in the proof of Lemma 3.7. If A, F;,, — ¢g then
for all # € T we have F,,(A;'z) — ¢o(x) > 0. If ||A;z|| — oo then the
fact that F,, — ¢ admissible implies that G, (A, 'z) tends to either zero
or infinity, which is a contradiction (see the proof of Lemma 3.7). Then
the sequence A, ! is relatively compact. If along a subsequence n’ we have
Al — Cp then Fn/(A;,lx) — @o(z) = ¢(Cox) for all z € T'. Since g is
admissible we cannot have Cox = 0 for any x € I', so C' = C ! exists and
we may write ¢o = C'p. This concludes the proof. O

Theorem 3.9 (Convergence of types). Let F,, € F, ¢, po admissible and
A, B, € GL(RY). Suppose B,F, — ¢. Then A,F, — g if and only if
@0 = Cyp and A,B;' — CS(p) for some C € GLR™M).
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Proof. If A,F, — o then (A,B;')B,F, — ¢o and so Lemma 3.8 yields
o = Cp. Then C~(A, B, !)B,F, — ¢ and so Lemma 3.7 yields C~'(A,, B, !)
— S(p). Multiply both sides by C on the left. Conversely, if A,B; 1 —
CS(p) then C71(A, B;;Y) — S(¢) and so Lemma 3.7 yields C 1 (A4, B, 1) B, F,
— . Simplify and then multiply both sides by C' on the left to obtain
ApF, — ¢o which concludes the proof. O

Now we come to the main point of this section, which is to establish the
basic characterization of regularly varying functions which are monotone on
rays. We begin with two technical results.

Theorem 3.10. Let F € F, ¢ admissible and 4, € GL(R"). Suppose
ap > 01is aregularly varying sequence with index 3 # 0 and that a,, (A, F) —
. Then there exists a linear operator B such that for all ¢ > 0: t%-¢ = tBy;
and

A A7t = 1758 (p). (3.3)

Proof. Let F,, = a, - F so that A,F, — ¢. Regular variation of the
sequence a, implies that Ay, I, = (ayna, 1)_1A[m]F[m] — t7% .. Then
Theorem 3.9 yields t? - ¢ = Cyp and A[tn]A;Ll — CiS(yp) for all t > 0,
where Cy € GL(R™). Define G; = C;S(y) and note that Cp = t=7 . ¢ if
and only if C' = CA for some A € S(¢). Define G to be the union of all G;
taken over t > 0. If C € G then Cp =t . p which implies C"1p =17 - ¢
and so C~! € Gy I C € Gy and D € G then CDyp = t=Ps8 . © implies
that C'D € G4. Therefore Gt_1 C Gy and GsGy C Gg. Now replace t by
1/t in the first inclusion and replace s and t by 1/s and st in the second to
obtain equality. Then G is a group. If D,, € G and D,, — D in GL(R™)
write D,, = Cy, A,, for some t, > 0 and A,, € S(¢). Since Do — Dy we
must have t,, relatively compact in R™, and it is immediate from Theorem
3.5 that G; is compact. If along a subsequence t,, — t and A, — A then
Dyp =Ct ,App — t=P . » which yields D = CyA € G;. Thus G is closed
in GL(RT). Define ¢(C) =t for all C' € G; to obtain a continuous group
homomorphism ¢ : G — R* and note that since Gy N Gy = ) for t # s
this homomorphism is well defined. Since G is a Lie group, the connected
component of the identity G is an open normal subgroup which consists
of one parameter semigroups {t¥ : t > 0} for some elements E of the Lie
algebra of G. It is easy to check that (¢ is open, and so ((Gy) is an open
subgroup of R and hence must be R*. Then there must exist a linear
operator B such that ((t~B) =t for all ¢ > 0. Then ¢t~ € G, and so we
may write Gy = t~BS(p) for all + > 0. This concludes the proof. O
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In the case of Theorem 3.10, if we define E = 87! B then (3.2) holds for
all t > 0 and all € T. In other words, we have typ = tF¢ for all t > 0.

Definition 3.11. Let ¢ be admissible. Then any linear operator F such
that
t-p= tf @)

holds for all £ > 0 is called an exponent of ¢. Let
E(p) ={F : E is an exponent of ¢}.

Exponents in general are not unique. The next theorem describes the
structure of the set £(y) of exponents of an admissible function ¢.

Theorem 3.12. Exponents and symmetries of an admissible function ¢
are related by

E(p)=E+TS(p) (3.4)
where E € £(p) is arbitrary and T'S(p) denotes the tangent space. One

can always select an exponent Fy which commutes with every symmetry
AeS(p).

Proof. Let G and ¢ be as in the proof of Theorem 3.10. Define a continuous
group homomorphism L : TG — R by letting L(X) = log ((exp(X)). Then
TS(p) = kerL and E € E(yp) if and only if E € TG and L(E) = —1/5.
Use continuity to check that L(tX) = tL(X), and then take the derivative
of L(tX) + L(tY) at t = 0 to show that L is actually a linear functional.
Equation (3.4) follows. Finally if E' € £(p) is arbitrary we may define

Ey = / AEATYH(dA) (3.5)
A€S(p)

where H is Haar measure on the compact group S(¢). It is easy to check
that Ey = AEgA~! for every A € S(¢), and since (3.4) holds we know that
E(¢p) is closed and convex, so Ey € E(¢). This concludes the proof. O

Remark 3.13. If B is the linear operator in Theorem 3.10 then we know
that £ = 37 !B is an element of £(¢). Suppose E' € &(p) is another
exponent and let B’ = SE’. Then Theorem 3.12 implies that £/ = F + X
where X € TS(p). Using the fact that t¥ € S(p), it is easy to see that
t=P'S(p) = t7BS(y) for all t > 0. Then we may assume that the linear
operator B in (3.3) commutes with every symmetry.

The next result is our basic characterization of regularly varying functions
which are monotone on rays. The one variable version is due to Feller [6].
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Theorem 3.14. Let F € F, ¢ admissible and A4, € GL(R™). Suppose
an > 0is a regularly varying sequence with index § # 0 and that a, A, F' —
. Then F is regularly varying with index E for any E € ().

Proof. Theorem 3.10 implies that (3.3) holds for some linear operator B,
and Lemma 2.2 shows that this convergence is uniform on compact subsets
of t > 0. Remark 3.13 shows that we may take B = SE where E € E(p)
is arbitrary. To begin with, we will assume that E is commuting, so that
t=BS(p) = S(p)t=F for all t > 0. Now suppose that G, € S(¢) and let
B, = G,A,. Then Lemma 3.7 shows that a,B,F — ¢ too. In order to
show that F' varies regularly with index F, it will suffice to show that we can
choose GG, to make B,, vary regularly with index —B. Since the argument is
quite similar to the proof of the theorem in [14] we only sketch the argument
here. Since S(¢p) is a compact subgroup of GL(R), there exists an inner
product on R which makes every symmetry G € S(y) orthogonal. We
will use the norm associated with this inner product to define the sequence
B,,. Let By = A;. For all other n, suppose that 2¥ < n < 2F+1 and let
r = n/2%. Select G, € S(¢) to minimize HAnB2_k1 —r~BS(p)||. Using
the uniform convergence and the fact that B is commuting, a computation
shows that B[m]Bgl — t~B for all t > 0. Finally suppose that E € £(y) is
not commuting, and use Theorem 3.12 to write £ = Ey+X where Ey € E(p)
is commuting and X € TS(p). Define B = 37'F and By = 37 !E,. The
above argument yields a sequence B,, such that a,B,F — ¢ and B,, varies
regularly with index —By. Let C,, = n~X B,, and notice that n=~ € S(¢)
for all n. Then Lemma 3.7 implies that a,C,F — ¢, and since By is
commuting, it is easy to check that C,, varies regularly with index —B.
This concludes the proof. ]

Remark 3.15. In order to apply Theorem 3.14 one must verify that the
limit function ¢ is admissible. In fact if a, F(A,;'2,) — ¢(z) > 0 whenever
Zn — « in I' then ¢ must be continuous. Suppose not. Then for some € > 0
and some y; — x in I" we have |¢o(yx) — ¢(x)| > € for all k. We also have for
each fixed k that a, F(A;'yx) — ©(yx) as n — oo, so that for each k there
exists an integer ny, such that |a, F (A, 'yx) — @(yr)| < €/2 for all n > ny,.
Without loss of generality we can choose n; monotone increasing. Now let
Ty, = Yn,, for all n_; <n < ny. Then for all n we have

|anF (A5 n) — o(2)] = [o(an) = @(2)] = lanF (A, 20) — p(24)| > €/2
which is a contradiction. A similar argument shows that if F' varies regularly
and (3.1) holds then ¢ is continuous. Furthermore, if F' varies regularly at
zero or infinity then ¢ is admissible. For example, if every eigenvalue of £
has positive real part and ||z|| — oo, write z; = (r;) ¥, where r, > 0 and
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10¢]] = 1. Then (3.2) yields ¢(x¢) + o(—x¢) = m(0(6) + p(—6;)) — 0 as
t — 0 since 1, — 0 and ¢ is bounded on the unit sphere.

4. Regular variation for measures

In this section we develop a multivariable theory of regularly varying
measures.

Let M denote the set of o finite Borel measures on I' which are finite
outside every neighborhood of the origin with the topology of weak conver-
gence. In this topology we have u, — p if and only if u,(S) — wu(S) for
all Borel subsets S C I' which are bounded away from the origin and whose
topological boundary dS has p—measure zero.

Definition 4.1. A measure u € M varies regularly if there exist f : Rt —
GL(R™) and R : RT — R*, both regularly varying, R not slowly varying,

such that ,
p{f (t)dx}
7}2@) — o{dz} (4.1)

as t — oo for some ¢ € M which is full, by which we mean that ¢ cannot
be supported on any k£ — 1 dimensional linear subspace.

If (4.1) holds then the limit measure ¢ satisfies

t-¢p{dz} = p{t Fdx} (4.2)

for all t > 0, where E = 37'B and (3, B denote the index of R and f,
respectively, see [14]. We say that p varies regularly with index E.

Remark 4.2 (see Remark 3.1). As in the function case we have the follow-
ing alternative definition of regularly varying measures: Let R : RT — RT
be regularly varying with index 8 # 0 and f : R™ — G]L(R-‘) be regularly
varying with index B.

(a) The case 5 > 0:

= ¢{dx}

where f; is regularly varying with index (1/3)B.
(b) The case 3 < 0:

AL}
t

t—oo

Jlim tp{ f1(t) " do} = ¢{dx}

where fi is regularly varying with index —(1/53)B.
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We first investigate the possible limit measures in (4.1). In contrast to
the case of regularly varying functions considered above it follows that only
certain E in (4.2) are allowed.

Remark 4.3. If ¢ € M is full and satisfies (4.2) then the real parts of
the eigenvalues of F in (4.2) are necessarily non-negative. In fact assume
that a1 < --- < a, are the real parts of the eigenvalues of £ and let R =
Ve @ --- @V, be the direct sum decomposition into E-invariant subspaces
as in section 2. Now assume that a; < 0. Let 6y € V|* be a unit vector,
where V;* denotes the dual space of Vi. Then (4.2) implies

t- ¢z |(z,00)] > R} = ¢{x : |(z,t¥ 6)| > R} (4.3)

for all R > 0 and ¢t > 0. Write t¥" 6y = 746, for some ||6;|| = 1 and r; > 0 and
note that since a; < 0 and 0y € V|* we have r; — 0 as t — oco. Furthermore
¢{a : [(z,00)] > R} < o{x : |lz| > R} < co. But ¢{z : |(z,t" 0o)| > R} =
of{x : [{(x,6;)] > R/ri} — 0 as t — oco. Hence the right hand side of (4.3)
tends to zero whereas the left hand side of (4.3) either tends to infinity as
t — oo which is a contradiction or ¢{z : |(x,0)| > R} = 0. Since R > 0 is
arbitrary, we have ¢{x : |(x, 6p)| # 0} = 0 which contradicts the assumption
that ¢ is full.

In the following we assume that the real parts of the eigenvalues of E in
(4.2) are positive.

Next we define our class of admissible measures which will contain the
possible limit measures in our theory of regularly varying measures. We will
show later that full measures ¢ satisfying (4.2) are in fact admissible.

Definition 4.4. A measure ¢ € M is admissible if ¢{y : (x,y) = 1} =0
and ¢{y : [(z,y)| > 1} >0 for all x € I, and ¢(I") = oc.

Remark 4.5. The condition ¢{y : (x,y) = 1} = 0 for all z € I is the
substitute for the continuity of an admissible function (see Definition 3.2).
Furthermore ¢{y : [(z,y)| > 1} > 0 corresponds to the condition that ¢ > 0
and ¢(I") = oo corresponds to condition (i) of Definition 3.2.

Before we can show that measures ¢ satisfying (4.2) are admissible we
need a structural theorem showing that any measure ¢ in (4.2) can be
desintegrated according to the orbits of the one-parameter group (t%);o.

Theorem 4.6. Let ¢ € M satisfy (4.2) for some index E with positive real
parts of the eigenvalues. Then there exists a norm || - ||o on R such that
for all Borel subsets A C I' we have

H(A) = /S /O T LA70) G (0) (4.4)
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where A is a finite Borel measure on the unit sphere S = {z : ||z]o = 1}
with respect to || - [|o.

Proof. Let || - | denote the Euclidean norm on R7 and define

o = / ke

Since the real parts of the eigenvalues of E are positive we get, following [9]
p.136, that there exists a § > 0 and a C' > 0 such that |[tFz|| < Ct0| z| for
allz € R1and all 0 < ¢ < 1. Hence | - ||o is well defined and it is easy to see
that it is a norm on R. It follows from [13] that for all z # 0 the mapping
t = |[tPx|| is strictly increasing and that 1 : (0,00) x S — T, ¥(t,0) = t¥6
is a homeomorphism, where S = {z € R7: ||~y = K}
For a Borel subset F' C S we define
MF) = o{tP0:t>1,0 € F}.

Then ) is a finite Borel measure on S. For s > 0 and a Borel subset F' C S
let

A={tFo:t>s0€c F}. (4.5)
Then we get from (4.2) and the definition of

// 1A(7~E0)d—gd)\ // —d/\
s Jo r
—8_1)\

=5 1<z>{tE9:t2 1,0 € F}
= ¢(s¥{tF0:t > 1,0 € F}
= ¢{t70:t > 5,0 € F} = ¢(A).

But the sets of the form A in (4.5) form a N-stable generator of the Borel

o-algebra of I' and hence (4.4) holds for all Borel subsets A C I'. This
concludes the proof. O

Our next result shows that measures ¢ satisfying the transformation for-
mula (4.2) are admissible.

Theorem 4.7. Let ¢ € M be full and satisfies (4.2) for some index E with
positive real parts of the eigenvalues. Then ¢ is admissible.

Proof. For x € I' we get from Theorem 4.6 that

oty ) =11 = [ [T 170 ZaN0)
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But since the real parts of the eigenvalues of F are positive it is easy to see
that (z,t¥6) = 1 for at most countably many ¢ > 0 and hence the inner
integral on the right hand side of the equation above is zero for every 6 € S
and hence ¢{y : (z,y) =1} =0 for every z € I'.

Next we show that ¢(I') = co. Since ¢(I') D lims_o p{x : [(x,0)| > d} all
we have to show is that for some ||0] =1

lim ¢{y : [(y, 0)] = 6} = oo. (4.6)

In view of (4.2) we have

By .0)] = 6} = ~oly: 1,57 0)] > 5}

for all s > 0. Now write s 0 = r,0, for some ||fs|| = 1 and r, > 0 and
note that r,; depends continuously on s with r;, — 0 as s — 0 and 3 — 00
as s — oo. Choose s = s(0) such that rs = §. Then if § — 0 we have
s = s(6) — 0. But then ¢{y : [(y,0)| > 6} = (1/s)d{y : [{y,05)] = 1}, so in
view of (4.6) it remains to show that
H;ﬁil(b{y [y, 0)] = 1} > 0. (4.7)
For [[0]] = 1 let p(0) = ¢{y : [(y,0)| > 1}. Since p(0) < ¢{y : [lyl >
1} < o0, p is finite for all ||#]| = 1. We first show that p is continuous. Let
€ > 0 be arbitrary and ¢, — ¢ where [|0,|| = 1 for all n. Since ¢[(4:|u|>5}
is a finite Borel measure for every > 0 there exists a R > 1 such that for
D={zeR": || >R} we have ¢(D) < £/4. Then

1p(6n) — p(0)] = |¢{y : [(y,0n)] > 1} — d{y : [{y,0)| > 1}]
<|o({y : [{y,0n)] = 13N D) — ¢({y : |{y,0)| > 1} N D°)] +§

<o(({y: 109,00 > 1Ay {y,0)] > 1}) N D)

where AAB denotes the symmetric difference of the set A, B C I'" and A°
denotes the complement of a set A. A simple geometrical argument shows
that

({y : [y, 0n)] > 1}A{y « [{y, )] > 1})ND° C {y : [(y,0)| € [1—en, 1+en]}ND°

for some &, > 0 depending on 6,,,0 and R with €, — 0 as n — oco. But

o({y : [y, 0)] € [ —en, 1 +en]} N D) — ¢({y : [{y,0)| =1} N D) — 0
as n — oo since we already know that ¢{y : (y,0) = 1} =0 for all § € T".
Hence p is a continuous function. In order to prove (4.7) it now suffices to
show that ¢{y : |(y,0)] > 1} > 0 for all ||0]| = 1. If ¢{y : |{y,6)| > 1} =0
for some ||6p|| = 1 it follows as in Remark 4.3 that ¢ is not full, which is
a contradiction. A similar argument shows that ¢{y : |(y,z)| > 1} > 0 for
any x € I', and this concludes the proof. ]
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Our next result shows that admissible ¢ € M always define an admissible
function ¢ € F. For x € I' let H, = {y € I' : |(z,y)| > 1} and note that for
pu € M the function F(z) = u(Hy) belongs to F.

Theorem 4.8. Let ¢ € M be admissible. For z € I' define p(x) = ¢(Hy).
Then ¢ € F is admissible.

Proof. We first show that ¢ is continuous. Let € > 0 be arbitrary and
assume that x, — z in I'. Since @4 >s) s a finite measure, for every
0 > 0 there exists a R > 0 such that for D = {x : ||z|| > R} we have
¢(D) < /4. Then

lo(2n) — @(2)] < |¢(Hy, N D) — ¢(H, N D°)| + %

= 6((Ha, AHL) N D) + 2.

By an argument similar to the proof of Theorem 4.7 there exist ¢, > 0,
en — 0 such that

(Hy, AH,)ND C{y: (x,y)| € [1 —en, 1 +e,]} N D°
and hence
O((H,, ) N D) < 6({y ¢ | (@) € [L— en L +2,]} 1 DY)
—o({y: [{z,y)| =1} N D) =0

as n — oo since ¢{y : |{x,y)| = 1} = 0 by assumption, and it follows that ¢
is continuous.

Assume now that ||x¢|]] — oo and note that ¢(z;) = ¢{y : |(z¢,y)| > 1}.
Write x; = 70, for some r; > 0 and ||0;|| = 1. If 6; — 6y along a subsequence
then along that subsequence

o1y : znm)| > 1} = o{y : [6,9)] > ")
— 6{y: 1{60,9)] = 0} = 6(I") = .

Since every subsequence contains a further subsequence with that property,
we have ¢(z;) — oo whenever ||z;|| — oo which concludes the proof. O

Next we show that the convergence in M naturally leads to the conver-
gence in F.

Theorem 4.9. Let u, € M, let ¢ € M be admissible and define p(z) =
¢(Hy) and F,(z) = pn(Hy). Then p,, — ¢ in M implies F,, — ¢ in F.
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Proof. Assume that pu,, — ¢ in M. Given ¢ > 0 choose M > 0 large enough
such that for D = {z : ||z|| > M} we have ¢(D) < /2. Since by Theorem
4.8 ¢ is admissible it is continuous and hence for any « € I' we can choose a
d > 0 such that ¢((1 —d)x) < ¢(x) +¢/2. Let 2,, — 2 in I'. Then a simple
geometrical argument shows that there exists a ng > 1 such that for all n >
no we have H,, C H,q_5 UD. Hence Fy(vy) = pn(Hz,) < pn(Hy—s)) +
pn(D), and p, — ¢ together with the Portemanteau theorem for finite
measures implies that p,(Hy1—s5)) — ¢(Hy—s)) since ¢p(0Hy1_s5)) = 0,
and limsup,,_, . tn(D) < ¢(D). Therefore

hTILILSipF n(Tn) < 0(Hyi—s)) + ¢(D)
<p(z(l-9)+

< p(z)+e.
Since € > 0 is arbitrary we have shown that
lim sup Fy, () < ¢(x). (4.8)
n—oo
Next, using the fact that ¢ is admissible again, we can choose a § > 0 such
that ¢((1+9d)z) > ¢(z) — /2 and it is easy to see that Hy, D Hjs5), N D*
for all large n and hence F,,(zy) > py (H(1+6)a: N DC). But H(i45), N D is

open and therefore the Portemanteau theorem for finite measures implies
that

hnniloI.}fF ) > gb(H (14+6)z N D )
> G(Hy o) — g
=¢((1+6)z) -
> p(z) —

so we also have liminf, .. Fy,(zn) > ¢(z). This together with (4.8) con-
cludes the proof. O

Theorem 4.9 can be used to show that if p is regularly varying then
the function F(x) = p(H,) is also regularly varying. One might argue
that if the transformation F'(x) = pu(H;) from measures to functions would
be one-to-one the theory of regularly varying measures could be obtained
from the results for functions. If pi,us € M are finite measures then
if Fi(z) = pi(Hy) = po(Hy) = Fe(x) for all x € T it follows from the
uniqueness of the Fourier transform for finite measures that p; = po. But
if the measures involved have a singularity at the origin this in general is
no longer the case as shown in the following example.
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Example 4.10. On R¥ we define for Borel subsets A C T
& dr
o= [ [ 1w G (49)
st Jo r

where ) is a finite Borel measure on the unit sphere S'. This is the general
form of the Lévy measure of a multivariate 1-stable distribution on R¥, see
[19]. For # € S* and ¢ > 0 compute that

Sy (9:.0) > 1) = 1G(6) (1.10)
where
G0) = [ (.0 uguasop (AW (4.11)

Now let A; be the Lebesque measure on S' with \;(S!) = 27. Since \; is
rotation invariant it follows that the corresponding function (G; defined by
(4.11) is constant, say G1(f) = D > 0 for all § € S! and some constant D.
Now let

2
) 2w 20+ 1)m
frng T — < _—
C = |{(cost,smt) 3 <t< 3 }

=0
and define Aa(A) = MM\ (ANC) for some M > 0 and let Gy be the cor-
responding function defined by (4.11). Then an elementary computation
shows that G2(6) = c¢M for some constant ¢ > 0 and all # € S*. Hence an
appropriate choice of M yields G1(6) = G(0) for all § € S'. Now let ¢;
and ¢9 be defined by (4.9) with A\; and Mg, respectively. In view of (4.10)
we have ¢1(Hy) = dr{y « [(y, z/[lz[}] > 1/||z|[} = da(Hy) for all z € T', but
since supp ¢1 # supp ¢2, where supp denotes the support, we have ¢1 # ¢s.

Now we will derive our theory of multivariate regularly varying measures.
The results and proofs are quite similar to the function case considered
above.

Definition 4.11. An operator A € GL(R) is called a symmetry of a mea-
sure ¢ € M if p{Adx} = ¢{dx}. Let

S(¢) ={A e GL(RT) : A ia a symmetry of ¢}.
For a linear operator A on R let A* denote the transpose of A.
Lemma 4.12. Let ¢ € M and define p(z) = ¢(H,). Then S(¢) C {A €
GL(RT) : (A")™¥ € S(p)}.

Proof. Let A € S(¢) and note that AH, = Hs+)-1,. Then ¢(z) =
¢(H,) = ¢(AH,) = ¢(Ha+)-1,) = @((A*)"'z) for all z € T showing that
(A*)7L e S(p). O
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Theorem 4.13. The symmetries S(¢) of an admissible measure ¢ € M
form a compact subgroup of GL(R™).

Proof. Trivially S(¢) is a group. Show using similar arguments as in the
proof of Theorem 3.5 to show that S(¢) is closed. Let p(z) = ¢(H;). By
Theorem 4.8, ¢ is admissible and hence S(y¢) is a compact subgroup of
GL(RT) using Theorem 3.5. An application of Lemma 4.12 concludes the
proof. O

Now let us define Au{dr} = p{A='dx} for any u € M and any A €
GL(R™).

Theorem 4.14 (Convergence of types). Let p, € M, let ¢, 9 € M be
admissible and A,,, B,, € GL(]R-‘). Suppose that B,u, — ¢. Then A, —
¢o if and only if ¢9 = C'¢ and A, B;* — CS(¢) for some C' € GL(R™).

Proof. If A,u, — ¢o then (A, B, 1) (Bupn) — ¢o. Then by an argument
similar to the proof of Lemma 3.8 it follows that ¢9 = C¢ for some C €
GL(RT). Then C~Y(A,B; ") (Bpun) — ¢ and then using the same kind
of arguments as in the proof of Lemma 3.7 we get C~(A, B, ) — S(¢).
Multiply both sides by C on the left. Conversely if A, B, — CS(¢) then
since S(¢) is compact by Theorem 4.13 any subsequence contains a further
subsequence (n') such that A,B;! — CG for some G € S(¢). Hence
Aptin = (An B Y (Boin) — (CG)p = C¢p = ¢g along (n'). This concludes
the proof. O

Theorem 4.15. Let € M, ¢ € M admissible and 4, € GL(R™). Sup-
pose a, > 0 is a regularly varying sequence with index 3 # 0 and that
an(Anp) — ¢. Then there exists a linear operator B such that for all t > 0:
t8 . ¢ =tB¢ and

Apm Ayt = t775(9) (4.12)

as n — oQ.

Proof. We argue as in the proof of Theorem 3.10. Let p, = a, - p so that
Anpin — ¢. Then Appjpn — t=P . ¢ for any t > 0. Theorem 4.14 yields
t7 . ¢ = Cyp and Ay, At — C1S(¢) for all t > 0 and some C; € GL(RT).
Define Gy = C;S(¢), G = J,»( Gt and show that G is a closed subgroup
of GL(R™). Define ¢ : G — RT, ¢(C) =t for all C € G to obtain a
continuous group homomorphism. It follows as before that there exists a

linear operator B such that t~5 € Gy for all t > 0 and so we may write
Gy = t~BS8(¢) which concludes the proof. O
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In case of Theorem 4.15, if we define E = 37! B then (4.2) holds for all
t > 0. In other words we have t - ¢ = tF¢ for all t > 0.

Definition 4.16. Let ¢ € M. Then any linear operator E such that
t-¢=tFo
holds for all ¢ > 0 is called an exponent of ¢. Let
E(p) = {F : E is an exponent of ¢}.

Theorem 4.17. Let ¢ € M be admissible. Then the exponents and sym-
metries of ¢ are related by

£(6) = E+TS(9)

where E € £(¢) is arbitrary and TS(¢) denotes the tangent space. One
can always select an exponent Ey which commutes with every symmetry

G e S(9).

Proof. We argue as in the proof of Theorem 3.12. Let G and ( be as
in the proof of Theorem 4.15. Define a continuous group homomorphism
L : TG — R by letting L(X) = log((exp(X)), where exp : TG — G is
the exponential mapping. Then T'S(¢) = ker L and F € £(¢) if and only if
E € TG and L(E) = —1/f. Since L is a linear functional £(¢) = E+TS(¢)
follows. Then the existence of a commuting exponent follows exactly as in
the proof of Theorem 3.12.

If B is the linear operator in Theorem 4.15 then we know that £ = 3~'B
is an element of £(¢). Suppose E' € E£(¢) is another exponent and let
B’ = BE’. Then Theorem 4.17 implies that £/ = F 4+ X where X € TS(¢).
Using the fact that t¥ € S(¢), it is easy to see that t~5'S(¢) = t BS(¢)
for all ¢ > 0. Then we may assume that the linear operator B in (4.12)
commutes with every symmetry. O

Theorem 4.18. Let u € M and ¢ € M be admissible and A,, € GL(R™).
Suppose a, > 0 is a regularly varying sequence with index 3 # 0 and that
an(App) — ¢. Then p is regularly varying with index F for any E € £(¢).

Proof. The proof is similar to the proof of Theorem 3.14. Theorem 4.15
implies that (4.12) holds for some linear operator B and Lemma 2.2 shows
that this convergence is uniform on compact subsets of t > 0. We may take
B = BE where E € £(¢) is arbitrary. To begin with we will assume that
E is commuting so that t %G = Gt~ for all t > 0 and all G € S(¢). Now
suppose that G, € §(¢) and let B, = A,G,. Since by Theorem 4.13 S(¢)
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is compact it follows that a,(B,u) — ¢ too. Now the proof follows along
the same lines as the proof of Theorem 3.14. 0

5. Remarks

Some of the results in this paper extend the work of probabilists interested
in the behavior of random vectors and probability distributions on R 1. The
convergence of types theorem for probability measures on R is due to
Fisz [7] and Billingsley [2]. The limit measure ¢ in (4.1) appears in a
natural way as a kind of spectral measure in the Fourier transform of a class
of probability measures called operator-stable laws, which were introduced
by Sharpe [21]. While the methods of this paper can be used to give a
simpler proof of Sharpe’s results, our proof of Theorem 3.10 was inspired by
Sharpe’s work. The subsequent work of Holmes, Hudson, and Mason [10]
and Hudson, Jurek, and Veeh [11] is reflected in Theorem 3.12. The spectral
decomposition theorem presented here extends a result of the authors which
appeared in [15] and [17]. Theorem 3.14 above extends a recent result from
[16]. The multivariable theory of regularly varying functions and measures
was generalized recently to the class of R-O varying measures which form a
broader class appropriate for investigations of operator semistable laws and
their generalized domains of attraction as well as stochastic compactness
results for R-O varying measures, see [18].

Acknowledgement. We thank the anonymous referee for a number of
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of the paper.
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