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Abstract. Herein a sufficient condition for q to belong to
Q ∩ T−1(0) is provided, where Q is a weakly compact convex subset
of a real reflexive Banach space E and T : E →→ E∗ is a maximal mono-
tone operator.

1. Introduction

In the paper we are dealing with the problem of finding the constrained
equilibrium points of maximal monotone operator i.e. for a given weakly
compact convex subset Q of a reflexive Banach space E and T : E →→ E∗

we are looking for a solution of the inclusion 0 ∈ T (q) required to belong to
Q. Our approach is different than that by the viability method (see [1] for
details). We follow S. Simons, who exploring the subdifferential operator of
convex function showed that

if for every (x, x∗) ∈ graph ∂ψ there exists q ∈ Q
such that < x∗, x− q >≥ 0, then (Q× {0}) ∩ graph ∂ψ 6= ∅,

(see [3, 4, 5, 6]). He also posed the question whether the implication holds
true if we replace the subdifferential by an arbitrary maximal monotone
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operator. Herein we give the answer in the affirmative to this question
in reflexive Banach space setup. Of course this is a new method ensuring
the existence of the constrained equilibrium points for maximal monotone
operator in reflexive Banach spaces. The problem still remains open in
nonreflexive Banach space as well as the problem of extension of the class
of operators beyond the maximal mononotone one.

2. Basic facts and definitions

Let E be a real Banach space with the topological dual E∗. For a
nonempty convex subset A of E we define

dA(x) = inf
a∈A
‖ x− a ‖,

where ‖ · ‖ is the norm in E. The function d2
A is convex and continuous on

E.
Below we show that the subdifferential of d2

A is singleton on the set A,
we refer to [1, 2] for the definition of the subdifferential of convex function.

Lemma 2.1. Let A be a nonempty convex closed subset of a real reflexive
Banach space E. Then

∂d2
A(a) = {0}, for every a ∈ A.

Proof. Let a0 ∈ A be fixed. Our proof starts with the observation that

d2
A(x) ≤‖ x− a0 ‖2 . (2.1)

for every x ∈ E. On the other hand from the convexity and continuity of
d2
A we get ∂d2

A(a0) 6= ∅. Let v∗ ∈ ∂d2
A(a0), then as a consequence of the

definition of the subdifferential of convex function we have

< v∗, x− a0 >≤ d2
A(x)− d2

A(a0) = d2
A(x).

The above inequality and (2.1) imply

< v∗, x− a0 >≤‖ x− a0 ‖2 .

Thus v∗ ∈ ∂ ‖ · − a0 ‖2 (a0), so the following implication holds true

v∗ ∈ ∂d2
A(a0) =⇒ v∗ ∈ ∂ ‖ · − a0 ‖2 (a0).

Of course, we have also

∂ ‖ · − a0 ‖2 (a0) = ∂ ‖ · ‖2 (0) = {0},

so v∗ = 0. This completes the proof.
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Now we recall some basic facts about the maximal monotone operators.
Let S : E →→ E∗ be a maximal monotone operator, we denote the effective
domain of S by dom S i.e.

dom S := {x ∈ E | S(x) 6= ∅}
and by R(S) we denote the range of S i.e.

R(S) :=
⋃

x∈dom S

S(x).

The graph of S is the set

graph S := {(x, x∗) ∈ E× E∗ |x∗ ∈ S(x)}.
Let us recall the following definition of weakly coercive multimapping (see

[7], Definition 32.34).

Definition 2.2. Let S : E →→ E∗. S is called weakly coercive iff either
dom S is bounded or dom S is unbounded and

inf
x∗∈S(x)

‖ x∗ ‖−→ +∞ as ‖ x ‖−→ +∞, x ∈ dom S.

Ending this section we recall some known fact concerning weakly coercive
operators (see [7], Corollary 32.35).

Theorem 2.3. Let S : E →→ E∗ be a maximal monotone and weakly coer-
cive operator on a real reflexive Banach space E. Then R(S) = E∗.

3. Main result

In this section we provide an answer to Simons’ question, concerning the
maximal monotone operators on a reflexive Banach space.

We start with the following lemma.

Lemma 3.1. Let E be a real reflexive Banach space, T : E →→ E∗ be a
maximal monotone operator with dom T 6= ∅. Let Q be a nonempty convex
closed and bounded subset of E. Then R(T + ∂d2

Q) = E∗.

Proof. It follows from the definition of d2
Q that

dom T ∩ int
(
dom ∂d2

Q

)
6= ∅,

so by the classical Rockafellar theorem T + ∂d2
Q is maximal monotone (see

[7], Theorem 32.I) and of course

dom
(
T + ∂d2

Q

)
= dom T.
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Because of Theorem 2.3 it is enough to prove that operator T+∂d2
Q is weakly

coercive. We observe that if dom T is bounded then the weak coercivity of
T + ∂d2

Q follows immediately from Definition 2.2.
Let us consider the case when dom T is unbounded. Let {zn}∞n=1 ⊂

dom T be such that

‖ zn ‖−→ +∞ as n −→ +∞ and z∗n ∈ T (zn).

Without loss of generality we can assume that 0 ∈ T (0). If not we can
translate dom T and R(T ) (keep in mind that d2

Q(x+ y) = d2
Q−y(x)). Now

the above assumptions imply

< z∗n, zn >≥ 0 for every n ∈ N. (3.1)

Let x∗n ∈ ∂d2
Q(zn), then we get

< x∗n, 0− zn >≤ d2
Q(0)− d2

Q(zn),

so

< x∗n, zn >≥ d2
Q(zn)− d2

Q(0). (3.2)

Let us choose r > 0 such that Q ⊂ B(0, r). For sufficiently large n we have
‖ zn ‖> r and

d2
Q(zn) ≥ d2

B(0,r)(zn) =
(
‖ zn ‖ −r

)2
> 0.

From the last inequality and by (3.2) we obtain

< x∗n, zn >≥‖ zn ‖2 −2r ‖ zn ‖ +r2 − d2
Q(0) for sufficiently large n.

(3.3)

It follows from (3.1) and (3.3) that

< x∗n + z∗n,
zn
‖ zn ‖

>≥‖ zn ‖ −2r +
r2 − d2

Q(0)
‖ zn ‖

,

so

‖ zn ‖ −2r +
r2 − d2

Q(0)
‖ zn ‖

≤‖ x∗n + z∗n ‖ .

for every z∗n ∈ T (zn) and x∗n ∈ ∂d2
Q(zn). This inequality we can rewrite as

‖ zn ‖ −2r +
r2 − d2

Q(0)
‖ zn ‖

≤ inf
x∗+z∗∈(T+∂d2

Q)(zn)
‖ x∗ + z∗ ‖

and passing to the limit with n −→ +∞ we get

inf
x∗+z∗∈(T+∂d2

Q)(x)
‖ x∗ + z∗ ‖= +∞ as ‖ x ‖−→ +∞, x ∈ dom T.

This means that T + ∂d2
Q is weakly coercive operator. By Theorem 2.3 we

have R
(
T + ∂d2

Q

)
= E∗ and the proof is complete.
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Now we are ready to prove our main result in this paper, which is the
solution to the Simons’ problem in refexive Banach space setup (see [3]).

Theorem 3.2. Let Q be a nonempty convex weakly compact subset of a
real reflexive Banach space E. Let T : E →→ E∗ be a maximal monotone
operator with dom T 6= ∅, which satisfies the following condition

for every (x, x∗) ∈ graph T there exists q ∈ Q
such that < x∗, x− q >≥ 0. (3.4)

Then

(Q× {0}) ∩ graph T 6= ∅. (3.5)

Proof. Let us define the maximal monotone operator T1 := T + ∂d2
Q (see

the Rockafellar theorem [7]). It is easy to see that T1 fulfills the following
condition

for every (x, x∗) ∈ graph T1 there exists q ∈ Q
such that < x∗, x− q >≥ d2

Q(x). (3.6)

By Lemma 3.1 we obtain R(T1) = E∗ so 0 ∈ R(T1). Let 0 ∈ T1(x0).
Hence there are t∗0 ∈ T (x0) and x∗0 ∈ ∂d2

Q(x0) for which 0 = t∗0 + x∗0. By
(3.6) we can find q0 ∈ Q such that

0 =< 0, x0 − q0 >=< t∗0 + x∗0, x0 − q0 >≥ d2
Q(x0),

which gives x0 ∈ Q. Lemma 2.1 forces that x∗0 = 0 so t∗0 = 0, which
completes the proof.
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