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Abstract. It is shown that for each k > 1, if f is a Baire one function
and f is the product of k& bounded Darboux (quasi—continuous) func-
tions, then f is the product of k bounded Darboux (quasi—continuous)
Baire one functions as well.

1. Preliminaries

The letters R, Z, and N denote the real line, the set of integers, and the
set of positive integers, respectively. The word function denotes a mapping
from R into R unless otherwise explicitly stated. The word interval means
a nondegenerate interval. For each A C R we use the symbols int A, cl A,
fr A, X4, and |A| to denote the interior, the closure, the boundary, the
characteristic function, and the cardinality of A, respectively. We write
¢ =|R|.

Let ACRand f: A — R. For each y € Rlet [f < y] = {z € A: f(z)
< y}. Similarly we define the sets [f <], [f > y], etc. If B C A and |B| =
¢, then let c-inf(f, B) = inf{y € R: |[f < y] N B| = ¢} and c-sup(f, B) =
—c-inf(—f, B). If |AN(z—e,z)| = ¢ for every € > 0, then let ¢-lim (f,27) =
1ir(1)1+ c-inf(f, AN (z —€,2)) and c-lim (f,27) = — c-lim (— f,27). Similarly
e
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we define the symbols ¢-lim (f,#7) and ¢-lim (f,z%) if [AN (z,2 +¢)| = ¢
for every € > 0. If B C A is nonempty, then let w(f, B) be the oscillation
of f on B, ie., w(f,B) = Sup{|f(:n) — f@)]: x,t € B}. For each x € A we
write w(f,z) = li%1+w(f,A N(z—e,x+e¢)), e, w(f, z) is the oscillation

of f at x. The symbol Cy denotes the set of points of continuity of f.

Let f: R — R. We define ||f|| = sup|f|[R]. We say that f is quasi—
continuous in the sense of Kempisty [9] if f~*(V) C cl(int f~(V)) for each
openset V C R. We say that f is Darboux if it maps intervals onto connected
sets.

There are many conditions equivalent to the Darboux property of Baire
one functions. (See, e.g., [2, Theorem 6.1] or [1, Theorem 1.1, p. 9].) We
will use two of them.

Theorem 1.1. For each Baire one function f the following are equivalent:
(i) f is Darboux;
(ii) for each z € R we have
max{ lim f(1), lim £(1)} < /() < min{ Tn f(0), T f(5)};
t—x— t—xt+ t—ax— t—x

(iii) for each z € R there are sequences z,, / = and t, \, z such that

f(@n) — f(x) and f(tn) — f(2).

It is evident that the problem of characterization of the products of
bounded positive Darboux Baire one functions can be reduced to character-
ization of the sums of Darboux Baire one functions bounded below, which
in turn is equivalent to characterization of the sums of nonnegative Darboux
Baire one functions [11]. First we solve the latter problem! (Theorem 2.2),
and then we deal with the products of bounded Darboux (quasi-continuous)
Baire one functions.

2. Sums of nonnegative Darboux Baire one functions

To prove the main theorem of this section we will need the following
technical lemma.

Lemma 2.1. Let 0 <7 < I'< o0, k> 1, and let ¢, ..., gr be nonnegative
Baire one functions. Set f = g1 + --- + gx, and assume that for each i < k
and x € R the following conditions hold:

min{¢-lim (min{g; + I, f}, 27 ), ¢-lim (min{g; + I, f},z7)}
> gi(z), (1)

'The sums of nonnegative Darboux quasi-continuous Baire one functions are charac-
terized in [12, Theorem 3.4].
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max{c-lim (max{g; — I,0},27), ¢-lim (max{g; — I',0},z ")}
< gi(z). (2)
There are nonnegative Baire one functions hq,..., h such that hy +--- +

hry = f on R, and that for each ¢ < k and x € R the following conditions
hold:

min{c¢-lim (min{h; + 7, f},27), e-lim (min{h; + 7, f},27)}

max{c-lim (max{h; — 7,0}, 27 ), ¢-lim (max{h; — 7,0}, ")}

|hi(z) — gi(z)| < T (5)

Proof. For each n > 0 let J,, denote the family of all compact intervals .J
for which there exist nonnegative Baire one functions hq,..., hi such that
hi+---+ hp = f on J, and for each i:

conditions (3)—(5) hold for each x € J, (6)
hi(z) = gi(x) for x € fr J, (7)
c-sup(hy, J) > c—sup(min{gi +1I,f}, J) -, (8)
c-inf(h;, J) < e-inf (max{g; — I',0}, J) + 7. 9)

Moreover let J = (1, Jy, and let G denote the set of all 2 € R for which
there is a d; > 0 such that [a,b] € J whenever a,b € (x — 6,2 + d)
and a < b.

The first claim is evident.
Claim 1. If [ag,a;] € J and [a1,a2] € J, then [ag, as] € J. <
Claim 2. If a < b and J = [a,b] C G, then J € J.

Indeed, the compactness of J and the relation J C (J,c;( — 0z, 2 + 0z)
imply that J C (J" (2 — 0a;, 2 + 0z, ) for some z1, ..., zn, € J. Hence there
are nonoverlapping compact intervals Jy,...,J; € J with J = Ué’:1 Jj. So
by Claim 1, J € J. <

Claim 3. Let A be an uncountable Borel measurable set such that
sup f[A] < oo. For each n > 0 there are nonnegative Baire one functions
Ji,--.,0r and a perfect set Q C A such that g3 +---+ g = f on A, and
for each i € {1,...,k}: g; — g; is a Darboux function, g;]Q is continuous,
’gl _gZ’ < I'on A, gi = gi on R\Qv C'Sup(gia A) > d;—mn, and c_inf<§i7A) <
c;+mn, where d; = c—sup(min{gi—i—F, ft A) and ¢; = c—inf(max{gi—F, 0}, A).
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By [6, Lemma 2|, we can find pairwise disjoint nonempty perfect sets
Q1,...,Qo so that for each ¢ < k:
Qi CAN[min{g; + I, f}>d; —n/3], (10
Qr+i C AN[max{g; — I,0} < ¢; + /2], (11
and g;[Q); is continuous for each j. Clearly we may assume that w(g;, @;)
n/(3k) for each i and j. Put Q = U?il Q.
Fix an i < k. For j < 2k let ; ; = min g;{Q;]. Observe that for each j <
k, if Cj = Zz‘;&j Qid‘, then by (10),

k
0+ G = i (maxgi[Q;] — w(gi, @5))
> max f[Q;] — /3 > d; — 20/3. (12)
Let ; (respectively 1;) be a nonnegative Darboux Baire one function such
that ¢; = 0 on R\ Q; and ||¢;|| = max{d; —2n/3 —0;;,0} (such that ¢; =0
on R\ Qi and [|¢);]| = max{6; i — ¢; — 1/2,0}, respectively). (Cf. [3,
Corollary].) Define the function g, as follows:
o if x € Q;, then g;(z) = gi(x) + vi(z);
o if x € Q; for some j € {1,...,k}\ {i}, then

M@Z{M@_&ﬂf%“)¥@>a
gi(x) if (; = 0;
o if x € Qpyy, then g;(x) = gi(x) — 4(x);
o if v € Qi for some j € {1,...,k} \ {i}, then
gi(x) = gi(z) + (k — 1)~ " (2);
e finally if x ¢ @, then g;(z) = g;(z).
Clearly g; — g; is a Darboux Baire one function. To prove that g; is nonneg-
ative we consider three cases.
o If x € Q; for some j € {1,...,k}\ {i}, and {; > 0, then by (12), we
obtain ¢;(z) < (j, so gi(xz) > 0.
o If © € Qpy, then g;(x) > min{c; +n/2,g:(x)} > 0.
e If none of the above cases holds, then g;(z) > gi(z) > 0.
Observe that

sup ;[Q:] > 0ii +sup i [Qi] > di — 21/3 > d; — 1.

Since g;[Q; is continuous and ¢; is a Darboux function which vanishes out-
side of @, so ¢-sup(gi, A) > d; —n. (Cf. [10, Corollary 6.2].) Similarly

inf §;[Qr+i] < max g;[Qrri] — sup ¢i[Qp+i] < w(gi, Qr+i) + i +n/2 < ¢+,
whence ¢-inf(g;, A) < ¢; + 7. The other conditions are evident. (Notice that
by (10) and (11), max{p;,;} < I" on R.) <

Claim 4. We have G = R.

~— —

N
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Notice that G is an open set. By way of contradiction suppose that the
set P =R\ G is nonempty. Let xg € ﬂle Cy,1p- We will show that xo € G,
which is impossible.

Choose a 6 > 0 so that
max{w(gi, PN (xo — 6,20 +0)): i <k} < 7. (13)

Let J C (g — 8,20 + d) be a compact interval, and let n € (0,7). If J C G,
then by Claim 2, we obtain J € J. So suppose A = PNJ # 0. We
will assume |A| = ¢, the other case being simpler.? Write G N J as the
union of a family of nonoverlapping compact intervals, {I,: n € N}, such
that each x € G N J is an interior point of I, U I, U (R \ J) for some
n,m € N. (Wehave N =0 if GNJ = (), and N = N otherwise.) For each n
let hip,. .., Ly, witness I, € TIn/n- (Cf. Claim 2.) Construct nonnegative
Baire one functions g1, . .., §r and a perfect set ) C A according to Claim 3.

Fix an ¢ € {1,...,k}. Define hi(z) = h;j,(x) if x € I, for some

n € N, let hij(x) = gi(z) if x € A, and let h; be constant on (—oo, min J]
and [max J, 00). Clearly h; is a nonnegative Baire one function, |h; —g;| < I
on J, and h; = g; on fr J. Moreover

c-sup(h;, J) = sup({e-sup(hs, I): n € N} U {e-sup(hs, A)})

>sup ({e-sup(min{g;+ I, f},1,): n € N }U{c-sup(min{g;+1I, f}, 4)})—n

= c—sup(min{gz- + I, f}, J) —n.
Similarly we can show that condition (9) holds.

Fix an x € J. We consider four cases.

o If z € GG, then evidently condition (3) is satisfied.
e If x is a limit point of () from the left, then since g; [ is continuous,
and g; — g; is a Darboux function which vanishes outside of @), so

c-lim (min{h; + 7, f},27) > olim (b ]Q, 27) > hy().

o If |[AN(x —¢,2)|] = ¢ for each € > 0, and z is not a limit point of Q
from the left, then §; = ¢; on (z — €g, z] for some gy > 0, so by (13)
and (1), we obtain

c-lim (min{h; + 7, f},27) > c-lim (min{g;(z), f} 1A, 27)

*We define §1 = --- = gx = f/k on R, and Q = 0.
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e Finally if z € A\ {minJ} and |AN (z — ep,2)| < ¢ for some g9 > 0,
then by (8) and (1), we obtain

c-lim (min{h; + 7, f},27) > lirél+ c-sup(hs, (z — €, )
e—
> h%lJr sup{e-sup(hi, I): I, C (z —¢,2)}
e—

> lim sup{c-sup(min{g; + I, f},I,) = n/n: I, C (z — £,2)}

e—0t

= c-lim (min{g; + I, f},27) > gi(z) = hi(z).

Similarly we can show that ¢-lim (min{h; + 7, f},2") > hi(z), and that
condition (4) holds for each = € J. The condition “hy + -+ hx = f on J”
is evident. <

Using Claims 4 and 2 one can easily prove the assertion of the lemma. [

Theorem 2.2. Let £k > 1. For each Baire one function f the following
conditions are equivalent:

(i) f is the sum of k nonnegative Darboux functions;
(ii) f is nonnegative and f fulfills the following condition:

min{c¢-lim (f,27), e-lim (f,2")} > f(z)/k for each z € R; (14)

(iii) f is the sum of k& nonnegative Darboux Baire one functions.

Proof. The implication (i) = (ii) follows by [11, Proposition 3.2], and the
implication (iii) = (i) is obvious.
(ii) = (iii)

Set 79 = oo and 7, = 27" for n > 1. Let g10 = -+ = gro = f/k.
For each n use Lemma 2.1 to construct nonnegative Baire one functions
91ns- -+ 9kn such that g1, +--- 4+ gr, = f on R, and that for each ¢ < k
and € R we have:

min{c—m (min{g; n + Tn, f},27), c-lim (min{g; n, + 7o, f}, $+)}
> gin(x), (15)

max{c—@ (max{gin — 7,0}, 2" ), ¢-lim (max{g; n — 7,0}, x+)}
< gin(z), (16)

|9in(T) = gim—1(x)| < Tp1.
(17)
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Fix an i < k. Put ¢; = lim, o ¢in. By (17), the sequence (g;y) is
uniformly convergent, so g; belongs to Baire class one. Meanwhile by (15)
and (16), we obtain

min{¢-lim (g;, 27), e-lim (g;, 2™) }

> gi(z) > max{c-lim (g;, 27 ), ¢-lim (g;,2%) }.
So by Theorem 1.1, g; is Darboux. Clearly f = g1 +---+ g on R. O

3. Products of bounded Darboux Baire one functions

Theorem 3.1. Let £k > 1. For each Baire one function f the following
conditions are equivalent:

(i) f is the product of k bounded Darboux functions;
(ii) f is bounded,

for all z,t € R, if z < t and f(z)f(t) <O,
then [f = 0] N (x,t) #0, (18)

and there is a T' > V/||f|| such that for each € R we have

max{c-lim (|f],27), e-lim (|f],2)} < TV f(2)]; (19)

(iii) f is the product of & bounded Darboux Baire one functions.

Proof. The implication (iii) = (i) is obvious.
(i) = (i)

Let f = g1...gk, where g1,...,gr are bounded Darboux functions. The
boundedness of f is obvious, and condition (18) follows by [4]. Put T =
max{||gi||: ¢ < k}. Fix an z € R. There is an ¢ < k such that |g;(x)| <
V| f(x)|. Using the fact that g; is Darboux, we obtain

e-lim (| f],27) < Tz llggll - elim (gal, 27) < TF1 - |gs(a)] < THIV[f ()],
Similarly ¢-lim (|f], zT) < T* V] f(2)].

(i) = (i)

Let J denote the family of all intervals J = [a,b] for which there ex-
ist Darboux Baire one functions gi,...,gx such that g;...g9x = f on J,
Tsgn f(a) € qi[J], T € |q1|[J] N g2[J] N -+ N gi[J]], and for each i: g;(z) =
V()] - (sgn f(z)) 580D for z € frJ, and |g;| < T on .J. Moreover let
G denote the set of all x € R for which there is a d; > 0 such that [a,b] € J
whenever a,b € (x — 0z, + ) and a < b.
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Claim 1. Let K be a nonempty perfect set such that K N[f = 0] is dense
i K. There exist Baire one functions g1,...,gr such that f = g1...gx
on K, and for each i:

gz[K] = [_T7 T]v (20)

gz(z) = |f(l‘)| . (Sgnf(l,))l—i-sgn(i—l)

whenever © € K and x is not a bilateral limit point of K, (21)

c-lim (|g; — gi(@)|1K,27) =0
whenever x € K and x is not isolated in K from the left, (22)

c-lim (|g; — gi(@)|IK,2%) =0
whenever x € K and x is not isolated in K from the right. (23)

Let K be the set of all points of continuity of f[K which are bilateral
limit points of K. Observe that K is a dense Gy subset of K N[f = 0]. For
each n € NU {0} define 7, = T'/2". Put Fy = ().

Assume that for some n € N we have constructed a nowhere dense in K
closed set F,_1. Put A, = {z € K: w(|f[[K,z) > 7F}. Notice that
A, is nowhere dense in K and closed. Let I, 1,I,2,... be nonoverlap-
ping compact intervals disjoint from A,, such that each = ¢ A, belongs
to int(Ip m U I p) for some m,p € N. For each m € N, if K N I, ,, #
(0, then find pairwise disjoint nonempty nowhere dense in K perfect sets
Pinms - Ponm C KNintl,,, \ F,—1, and for ¢ < k construct a Dar-
boux Baire one function g; ., such that g;,,, = 0 outside of P;,, ,,, and
Ginm|Pinm] = [~Tn-1,Tn-1]; otherwise let P, = 0 and Gipnm = 0 for
each i. Observe that the set F;, = F,, 1 UA, UlJ,,cn U?Zl P; , m is nowhere
dense in K and closed.

Fix an ¢ < k. It is clear that g;, = ZmEN Gin,m 1s a Baire one function
for each n. So g; = >, cn i,n belongs to the first class of Baire, too.

Define §; = V/|f]- (sgn f)'+52"(—D . X . Obviously §; is Baire one if i > 1.
Let y € R. If y <0, then [g1 < y] = [f — ygl;*l < 0], and y > 0 implies
[31 < 9] = [fXKx < ¢*]. Similarly we can express the set [§1 > y]. Thus g
belongs to Baire class one. (See also [5, p. 82].)

Define g; = g; + g;. Clearly g; is a Baire one function, and conditions (20)
and (21) hold. (Notice that g;(x) = 0 whenever x ¢ |J,,cx F.) To prove (22)
suppose that € K and z is not isolated in K from the left. We consider
three cases.
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o If gi(z) = 0, then since J,cn Fr is a meager subset of K, so for
each € > 0 we have |K N (z —e,2) N[g; = 0]| = ¢. Hence c-lim (lgi| 1K,
x*) = 0.

o If v € Pj,, p for some j < k and n,m € N, and g;(z) # 0, then z is
not isolated in P, ,,, from the left. Consequently, by [10, Lemma 6.1],
we have ¢lim (|g; — gi(z)||K,27) = 0.

e Finally if # € A, \ 4,1 for some n € N, then w(|f|[K,z) < 7h_, and
lgi(x)| = V| f(z)| < Tn_1. Meanwhile for each & > 0 there is an m € N
with 0 # P, m C (x —€,2), whence ¢g;[K N (x—¢€,2)] D [~Tn-1, Tn-1]-
Thus ¢-lim (|g; — gi(2)|[K,27) = 0.

Similarly we can show that condition (23) is fulfilled.

Observe that if z € K, then §y(z) = --- = gp(z) = 0, and = ¢ K yields

gi(z)=---=gg(x)=0. Thus f=¢g1...9x = on K. <

Claim 2. If a < b, and (a,b) C [f > 0] or (a,b) C [f < 0], then [a,b] € J.

Without loss we may suppose that (a,b) C [f > 0]. Define f(z) =
EInT —1In f(z) if z € (a,b), and f(z) =0if x € R\ (a,b). By (19), for each
x € (a,b) we have

¢lim (f,27) =kInT — c¢lim(In f,27) > InT — k™' In f(z) = f(2)/k,

and similarly ¢-lim ( 1, .CU+) > f (x)/k. Since f is nonnegative and f vanishes
outside of (a,b), so f fulfills condition (14).

Let {a,: z € Z} be an arbitrary strictly increasing sequence with limit
points a and b. Construct nonnegative Darboux Baire one functions gy, ...,
gr. such that f =g1 4+ ---+ g on R, and

gi [[am az+1H ) [0, ln(Tk/(c—inf(f, [CLZa aerl]) + 2_|Z|))] (24)
for each i. (Cf. condition (8) in the proof of Lemma 2.1.)

Fix an i < k. Define g;(z) = T'/exp(gi(z)) if z € (a,b), let g;i(z) = Vi(z)
if z € {a,b}, and let g; be constant on (—oo,a] and [b,c0). Then by (24),
we have

gi|lan, b]] D [inf{(c-inf(f, [az, az41]) + 27%)/TF 1 2 > n},T]
O [(c-inf(f, [an, b)) +27") /T, T
for each n € N. So, the left cluster set of ¢; at b contains [c—liim (f,b7)/T+ 1,
T } Similarly the right cluster set of g; at a contains [c—@ (f,at) T+ T }

By (18), we have {a,b} C [f > 0]. So by (19) and Theorem 1.1, g; is
Darboux. <

Claims 3 and 4 are easy to prove. (Cf. also Claim 2 in the proof of
Lemma 2.1.)
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Claim 3. If [ag,a1] € J and [a1, a2] € J, then [ag, a2 € J.
Claim 4. If a < b and [a,b] C G, then [a,b] € J.
Claim 5. If a < b and (a,b) C G, then [a,b] € J.

Let ¢ € (a,b). By Claim 3, it suffices to show that [a,c| € J and [c,b] € J.
We will show only that [a, ] € J, the proof of the other case being similar.

If [f =0] N (a,d] = 0 for some d € (a,c), then either (a,d] C [f > 0], or
(a,d) C [f < 0], whence [a,c] € J. (Cf. Claim 2.) So suppose f(c) =0 and
a € cd([f =0]N(a,c)). Let (an) C [f = 0N (a,c) be such that a, \, a.
Put a9 = c¢. For each n let gi,,..., gk, wWitness [an,an—1] € J. (See
Claim 4.) One can easily construct sequences (t1,,),..., (tgn) C {—1,1} so
that 1, ...%;, = 1 for each n, and that for each i and each n we have

{=T,T} C (tinGin)[lan, an—1]] U+ U (tin+39in+3) [[an+3, anta]]-
(25)
Fix an ¢ < k. Define g;(z) = t; ngin(x) if © € [ay, an—1] for some n € N,
let gi(a) = V|f(a)] - (sgn f(a))*+*e"(~1) and let g; be constant on (—oo, al
and [b,00). By (25), the right cluster set of g; at a equals [-T,T]. Hence
by Theorem 1.1, g; is Darboux. <

Claim 6. If P =R\ G, then P C cl[f = 0].

Indeed, if z ¢ cl[f = 0], then by (18), we have either (z — 6,z + 0) C
[f > 0] or (x—d,z+0) C[f < 0] for some § > 0. Hence by Claim 2,
reG=R\P. <

Claim 7. The set P is perfect.

Clearly G is open. If PN (s — 9,5+ 0) = {s} for some s € P and ¢ > 0,
then by Claims 5 and 3, we obtain s € (7, an impossibility. <

Claim 8. The set PN [f = 0] is dense in P.

By way of contradiction suppose () # P N (s,t) C [f # 0] for some s < t.
Since f is Baire one, we may assume that either P N (s,t) C [f > 0] or
PN(s,t) C[f <0]. We will consider the first case only, the other one being
analogous. We will show that (s,¢) C G, which is impossible.

Fix an interval J = [a,b] C (s,t). By Claims 7, 5, and 3, we may assume
that P N J is perfect, and a,b € P. Let Z be the family of all components
of J\ P.

Let I = (¢,d) € Z. If [f = 0] NI # 0, then by Claims 5 and 3, there
are Darboux Baire one functions gq7,...,gx s such that f = g1 7... gk
on I, and for each i: |g;| < T on I, gi(x) = Vf(z) for = € {c,d}, and
{0,T} C gi[[c. d]]. Otherwise let g17,..., g, witness [c,d] € J.
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Fix an ¢ < k. Define g;(x) = ¢;r(x) if € I for some I € Z, let
gi(z) = Vf(z) if z € PN J, and let g; be constant on (—oc,a] and [b, c0).
If x € PN J and z is not isolated in P from the left (from the right), then
by Claim 6, the left (right) cluster set of g; at = contains [0,7]. Thus by
Theorem 1.1, g; is Darboux. Hence J € J and PNG D PN (s,t) # 0, an
impossibility. <

Claim 9. We have G = R.

By way of contradiction suppose that P is nonempty. We will show that
P C G, which is impossible.

Let J = [a,b] be a compact interval. We may assume that P N J is
perfect, and a,b € P. Apply Claim 1 with K = P N J to construct Baire
one functions gi,...,gx with f = g1...gx on K, fulfilling conditions (20)—
(23). (Cf. Claims 7 and 8.) Let Z be the family of all components of J \ P.
For each I € Z let g11,..., gk 1 Witness cl] € J.

Fix an i < k. Define g;(x) = g; 1(z) if z € I for some I € Z, let g;(x) =
gi(x) if x € PN J, and let g; be constant on (—o0,a] and [b,00). By (22)
and (23), the graph of g; is bilaterally dense in itself, so by Theorem 1.1,
gi is Darboux. Hence J € J and () # P C G, an impossibility. <

Using Claims 9 and 4 one can easily prove the assertion of the theorem.
O

Theorem 3.2. Let kK > 1. For each Baire one function f the following
conditions are equivalent:
(i) f is the product of k bounded Darboux quasi-continuous functions;
(ii) f is bounded, f fulfills condition (18), the set [f = 0] \ int[f = 0] is
nowhere dense, and there is a T' > V/||f|| such that for each = € R we
have

El_i)rél+max{inf]f][cfﬁ(x—&t,x)],inﬂf’[@rﬁ(x,x+5)]}
< T Wf(@)]; (26)

(iii) f is the product of k£ bounded Darboux quasi-continuous Baire one
functions.

Proof. The implication (iii) = (i) is obvious.
(i) = (i)

Let f = g1 ...gg, where g1,..., gr are bounded Darboux quasi-continuous
functions. The boundedness of f is obvious, condition (18) follows by [4],
and the set [f = 0] \ int[f = 0] is nowhere dense by [13]. Put T =
max{||g;||: ¢ < k}. Fix an z € R. There is an i < k such that |g;(z)| <
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V]f(z)]. By [14, Lemma 2], there is a sequence (x,) C Cy such that z,, /' =
and g;(x,) — gi(z). Hence for each ¢ > 0 we have
inf |£11C; 0 (@ — 2,2)] < TT; - inf 411G 1 (@ — ,)]
< T |gi(a)| < TF WV f ().

Similarly we can prove that inf |f|[C; N (2,2 +¢)] < T*~1V/|f(x)| for each
e>0.
(i) = (iii)

For each n > 0 let J;,, denote the family of all compact intervals J for

which there exist Darboux quasi-continuous Baire one functions g1, ..., gk
and a § € {—1,1} such that ¢g;...gx = f on J, and for each i: g;(z) =

VNf(@)] - (sgn f(z)) 820D for 2 € frJ, |g;| < T on J, and
(0= g)[C, N J] D [inf | f][Cp N J]/TF + 0, T].
Moreover let J = (1, Jy, and let G denote the set of all 2 € R for which

there is a d; > 0 such that [a,b] € J whenever a,b € (x — 6z, + d)
and a < b.

Claim 1 is evident, Claim 2 follows easily by (18) and [12, Lemma 4.4],
and Claims 3-7 are easy to prove. (Cf. also Claims 2-8 in the proof of
Theorem 3.1.)

Claim 1. If a < b and (a,b) C [f = 0], then [a,b] € J.

Claim 2. If a < b and (a,b) C [f > 0] or (a,b) C [f < 0], then [a,b]
J.

Claim 3. If [ag,a1] € J and [a1, a2] € J, then [ag,as] € J.
Claim 4. If a < b and (a,b) C G, then [a,b] € J.

Claim 5. If P =R\ G, then P C fr[f = 0].

Claim 6. The set P is perfect.

Claim 7. The set PN [f = 0] is dense in P. <

AA A A AM A

Claim 8. Let K be a nowhere dense compact perfect set such that KN[f =
0] is dense in K, and let Z be the family of all components of [min K, max K|\
K. There are pairwise disjoint families Z1,7Z2,7Z3 C Z such that:

if we put f(z) = f(z) for z € Urer,uz, fr I, and f(z)y=0 (27)
otherwise, then f belongs to Baire class one,

for each j < 3 and z € K, if z is not isolated in K from (28)
the left (from the right), then there is a sequence (I,,) C

Z; such that min I, /" « and f(minI,,) — 0 (such that

max I, \, « and f(max I,,) — 0, respectively).
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Without loss we may assume that K # ). For j < 3 put Z;o = 0. We
proceed by induction. Fix an n € N, and assume that the family | <3 Ljn—1
is finite. Find pairwise disjoint open intervals V;,1,...,V, p, of diameter
less than n~! such that K N Vs # 0 for each s, and K C | Vi,s. For
each s < p, and j < 3, observe that the family

Tins = {1 € I\(Uj<3 Zin1U{Iins: i <j}): I CVpsand fr I C[|f| <27}

5<pn

is nonempty (recall that K is perfect, and Cy1x C [f = 0]), and pick I, s €
jjm,s- For j < 3 define Z;,, = Z;,,—1 U {ijn,sz s < pn}. This completes the
induction step.

For j < 3 put Z; = |J,,cy Zjn- Clearly these families are pairwise disjoint,
and condition (27) is evident. To prove condition (28) fix a 7 < 3 and
an r € K, and suppose that = is not isolated in K from the left. (The
other case is similar.) Fix an m € N. Let t € K N (x — m~1/2,z) be a
bilateral limit point of K, and let n > (x —t)~!. Let s < p, be such that
t € Vi, s, and define I,,, = I, ;. Since the diameter of V,, ; is less than x — ¢,
o I, C (x —m~1, z). Moreover f(minI,,) <27 ™. <

Claim 9. We have G = R.

By way of contradiction suppose that P is nonempty. We will show that
P C G, which is impossible.

Let J = [a,b] be a compact interval. We may assume that P N J is
perfect, and a,b € P. Let Z = {I,,: n € N} be the family of all components
of J\ P. Apply Claim 8 with K = PN J to find pairwise disjoint familie§
71,752,735 C 7 fulfilling conditions (27) and (28). (Cf. Claims 5-7.) Define f
as in (27).

Let n € N. Let Baire one functions g1 ;. .., gk and 6, € {—1,1} witness
cl, € jl/n (Cf Claim 4.) Set tl,l,n = Hn and tLQ’n = —Hn. FOI“j <2
define tojpn, ..., tpjn € {—1,1} so that t1 ;... thjn = 1.

Fix an i < k. Define the function g; so that:

o if x € cll, and I, € Z; for some n € N and j < 2, then g¢;(z) =

tijnGin (),
o if v €I, and I, € 7\ (Z; UZy) for some n € N, then g;(z) = gin(z),

e ifz e Pn J\UIGI1U12 fr I, then g;(z) = v/ |f(z)] - (sgn f(:c))”sg“(i*l),
e g; is constant on (—oo,a] and [b, 00).

Observe that if x € K, then
|gi(2) = V[f(@)] - (sgn f (@) D] < 2| ().

Since f is Baire one, so the function /| f]- (sgn f)*sen(—1) belongs to Baire
class one, too. (Cf. the proof of Claim 1 in Theorem 3.1.) But f is a Baire
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one function which vanishes outside of a countable set, so g; is also a Baire
one function.

Let z € K. If x is isolated in K from the left, then g;[[x — €9, 2] is
Darboux and quasi-continuous for some ¢y > 0. In the other case by (28)
and the definition of g;, there is a sequence (x,) C C,4, such that z, / x
and g;(zp) — g¢i(x). Similarly for each x € K there is a sequence (t,) C C,
such that ¢, N\, = and g¢;(t,) — gi(z). Clearly g; is Darboux and quasi-
continuous on R\ K. Thus g; is both Darboux and quasi-continuous on R.
(Cf. Theorem 1.1 and [7] or [8, Lemma 2].) Hence J € J and 0 # P C G,

an impossibility. <

Using Claims 9 and 4 one can easily prove the assertion of the theorem.
O
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