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Abstract. It is shown that for each k > 1, if f is a Baire one function
and f is the product of k bounded Darboux (quasi–continuous) func-
tions, then f is the product of k bounded Darboux (quasi–continuous)
Baire one functions as well.

1. Preliminaries

The letters R, Z, and N denote the real line, the set of integers, and the
set of positive integers, respectively. The word function denotes a mapping
from R into R unless otherwise explicitly stated. The word interval means
a nondegenerate interval. For each A ⊂ R we use the symbols intA, clA,
frA, χA, and |||A||| to denote the interior, the closure, the boundary, the
characteristic function, and the cardinality of A, respectively. We write
c = |||R|||.

Let A ⊂ R and f : A → R. For each y ∈ R let [[[f < y]]] =
{
x ∈ A : f(x)

< y
}

. Similarly we define the sets [[[f ≤ y]]], [[[f > y]]], etc. If B ⊂ A and |||B||| =
c, then let c-inf(f,B) = inf

{
y ∈ R : |||[[[f < y]]] ∩ B||| = c

}
and c-sup(f,B) =

− c-inf(−f,B). If |||A∩(x−ε, x)||| = c for every ε > 0, then let c-lim (f, x−) =
lim
ε→0+

c-inf
(
f,A ∩ (x − ε, x)

)
and c-lim (f, x−) = − c-lim (−f, x−). Similarly
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we define the symbols c-lim (f, x+) and c-lim (f, x+) if |||A ∩ (x, x + ε)||| = c
for every ε > 0. If B ⊂ A is nonempty, then let ω(f,B) be the oscillation
of f on B, i.e., ω(f,B) = sup

{
|f(x)− f(t)| : x, t ∈ B

}
. For each x ∈ A we

write ω(f, x) = lim
ε→0+

ω
(
f,A ∩ (x − ε, x + ε)

)
, i.e., ω(f, x) is the oscillation

of f at x. The symbol Cf denotes the set of points of continuity of f .
Let f : R → R. We define ‖f‖ = sup |f |[R]. We say that f is quasi–

continuous in the sense of Kempisty [9] if f−1(V ) ⊂ cl(int f−1(V )) for each
open set V ⊂ R. We say that f is Darboux if it maps intervals onto connected
sets.

There are many conditions equivalent to the Darboux property of Baire
one functions. (See, e.g., [2, Theorem 6.1] or [1, Theorem 1.1, p. 9].) We
will use two of them.

Theorem 1.1. For each Baire one function f the following are equivalent:
(i) f is Darboux;
(ii) for each x ∈ R we have

max
{

lim
t→x−

f(t), lim
t→x+

f(t)
}
≤ f(x) ≤ min

{
lim
t→x−

f(t), lim
t→x+

f(t)
}

;

(iii) for each x ∈ R there are sequences xn ↗ x and tn ↘ x such that
f(xn)→ f(x) and f(tn)→ f(x).

It is evident that the problem of characterization of the products of
bounded positive Darboux Baire one functions can be reduced to character-
ization of the sums of Darboux Baire one functions bounded below, which
in turn is equivalent to characterization of the sums of nonnegative Darboux
Baire one functions [11]. First we solve the latter problem1 (Theorem 2.2),
and then we deal with the products of bounded Darboux (quasi-continuous)
Baire one functions.

2. Sums of nonnegative Darboux Baire one functions

To prove the main theorem of this section we will need the following
technical lemma.

Lemma 2.1. Let 0 < τ < Γ ≤ ∞, k > 1, and let g1, . . . , gk be nonnegative
Baire one functions. Set f = g1 + · · ·+ gk, and assume that for each i ≤ k
and x ∈ R the following conditions hold:

min
{
c-lim (min{gi + Γ, f}, x−), c-lim (min{gi + Γ, f}, x+)

}
≥ gi(x), (1)

1The sums of nonnegative Darboux quasi-continuous Baire one functions are charac-
terized in [12, Theorem 3.4].
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max
{
c-lim (max{gi − Γ, 0}, x−), c-lim (max{gi − Γ, 0}, x+)

}
≤ gi(x). (2)

There are nonnegative Baire one functions h1, . . . , hk such that h1 + · · · +
hk = f on R, and that for each i ≤ k and x ∈ R the following conditions
hold:

min
{
c-lim (min{hi + τ, f}, x−), c-lim (min{hi + τ, f}, x+)

}
≥ hi(x), (3)

max
{
c-lim (max{hi − τ, 0}, x−), c-lim (max{hi − τ, 0}, x+)

}
≤ hi(x), (4)

|hi(x)− gi(x)| < Γ. (5)

Proof. For each η > 0 let Jη denote the family of all compact intervals J
for which there exist nonnegative Baire one functions h1, . . . , hk such that
h1 + · · ·+ hk = f on J , and for each i:

conditions (3)–(5) hold for each x ∈ J , (6)

hi(x) = gi(x) for x ∈ fr J , (7)

c-sup(hi, J) ≥ c-sup
(
min{gi + Γ, f}, J

)
− η, (8)

c-inf(hi, J) ≤ c-inf
(
max{gi − Γ, 0}, J

)
+ η. (9)

Moreover let J =
⋂
η>0 Jη, and let G denote the set of all x ∈ R for which

there is a δx > 0 such that [a, b] ∈ J whenever a, b ∈ (x − δx, x + δx)
and a < b.

The first claim is evident.

Claim 1. If [a0, a1] ∈ J and [a1, a2] ∈ J , then [a0, a2] ∈ J . C
Claim 2. If a < b and J = [a, b] ⊂ G, then J ∈ J .

Indeed, the compactness of J and the relation J ⊂
⋃
x∈J(x− δx, x+ δx)

imply that J ⊂
⋃m
i=1(xi−δxi , xi+δxi) for some x1, . . . , xm ∈ J . Hence there

are nonoverlapping compact intervals J1, . . . , Jl ∈ J with J =
⋃l
j=1 Jj . So

by Claim 1, J ∈ J . C
Claim 3. Let A be an uncountable Borel measurable set such that
sup f [A] < ∞. For each η > 0 there are nonnegative Baire one functions
g̃1, . . . , g̃k and a perfect set Q ⊂ A such that g̃1 + · · · + g̃k = f on A, and
for each i ∈ {1, . . . , k}: g̃i − gi is a Darboux function, gi�Q is continuous,
|g̃i− gi| < Γ on A, g̃i = gi on R \Q, c-sup(g̃i, A) ≥ di− η, and c-inf(g̃i, A) ≤
ci+η, where di = c-sup

(
min{gi+Γ, f}, A

)
and ci = c-inf

(
max{gi−Γ, 0}, A

)
.
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By [6, Lemma 2], we can find pairwise disjoint nonempty perfect sets
Q1, . . . , Q2k so that for each i ≤ k:

Qi ⊂ A ∩ [[[min{gi + Γ, f} ≥ di − η/3]]], (10)

Qk+i ⊂ A ∩ [[[max{gi − Γ, 0} ≤ ci + η/2]]], (11)

and gi�Qj is continuous for each j. Clearly we may assume that ω(gi, Qj) <
η/(3k) for each i and j. Put Q =

⋃2k
j=1Qj .

Fix an i ≤ k. For j ≤ 2k let θi,j = min gi[Qj ]. Observe that for each j ≤
k, if ζj =

∑
i6=j θi,j , then by (10),

θj,j + ζj =
∑k

i=1
(
max gi[Qj ]− ω(gi, Qj)

)
> max f [Qj ]− η/3 ≥ dj − 2η/3. (12)

Let ϕi (respectively ψi) be a nonnegative Darboux Baire one function such
that ϕi = 0 on R \Qi and ‖ϕi‖ = max{di− 2η/3− θi,i, 0} (such that ψi = 0
on R \ Qk+i and ‖ψi‖ = max{θi,k+i − ci − η/2, 0}, respectively). (Cf. [3,
Corollary].) Define the function g̃i as follows:
• if x ∈ Qi, then g̃i(x) = gi(x) + ϕi(x);
• if x ∈ Qj for some j ∈ {1, . . . , k} \ {i}, then

g̃i(x) =

{
gi(x)− θi,jζ−1

j ϕj(x) if ζj > 0,
gi(x) if ζj = 0;

• if x ∈ Qk+i, then g̃i(x) = gi(x)− ψi(x);
• if x ∈ Qk+j for some j ∈ {1, . . . , k} \ {i}, then
g̃i(x) = gi(x) + (k − 1)−1ψj(x);
• finally if x /∈ Q, then g̃i(x) = gi(x).

Clearly g̃i− gi is a Darboux Baire one function. To prove that g̃i is nonneg-
ative we consider three cases.
• If x ∈ Qj for some j ∈ {1, . . . , k} \ {i}, and ζj > 0, then by (12), we

obtain ϕj(x) < ζj , so g̃i(x) ≥ 0.
• If x ∈ Qk+i, then g̃i(x) ≥ min{ci + η/2, gi(x)} ≥ 0.
• If none of the above cases holds, then g̃i(x) ≥ gi(x) ≥ 0.
Observe that

sup g̃i[Qi] ≥ θi,i + supϕi[Qi] ≥ di − 2η/3 > di − η.
Since gi�Qi is continuous and ϕi is a Darboux function which vanishes out-
side of Q, so c-sup(g̃i, A) > di − η. (Cf. [10, Corollary 6.2].) Similarly

inf g̃i[Qk+i] ≤ max gi[Qk+i]− supψi[Qk+i] ≤ ω(gi, Qk+i) + ci + η/2 < ci + η,

whence c-inf(g̃i, A) < ci+ η. The other conditions are evident. (Notice that
by (10) and (11), max{ϕi, ψi} < Γ on R.) C
Claim 4. We have G = R.
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Notice that G is an open set. By way of contradiction suppose that the
set P = R \G is nonempty. Let x0 ∈

⋂k
i=1 Cgi�P . We will show that x0 ∈ G,

which is impossible.

Choose a δ > 0 so that

max
{
ω
(
gi, P ∩ (x0 − δ, x0 + δ)

)
: i ≤ k

}
< τ. (13)

Let J ⊂ (x0 − δ, x0 + δ) be a compact interval, and let η ∈ (0, τ). If J ⊂ G,
then by Claim 2, we obtain J ∈ J . So suppose A = P ∩ J 6= ∅. We
will assume |||A||| = c, the other case being simpler.2 Write G ∩ J as the
union of a family of nonoverlapping compact intervals, {In : n ∈ N}, such
that each x ∈ G ∩ J is an interior point of In ∪ Im ∪ (R \ J) for some
n,m ∈ N . (We have N = ∅ if G∩J = ∅, and N = N otherwise.) For each n
let h1,n, . . . , hk,n witness In ∈ Jη/n. (Cf. Claim 2.) Construct nonnegative
Baire one functions g̃1, . . . , g̃k and a perfect set Q ⊂ A according to Claim 3.

Fix an i ∈ {1, . . . , k}. Define hi(x) = hi,n(x) if x ∈ In for some
n ∈ N , let hi(x) = g̃i(x) if x ∈ A, and let hi be constant on (−∞,min J ]
and [max J,∞). Clearly hi is a nonnegative Baire one function, |hi−gi| < Γ
on J , and hi = gi on frJ . Moreover

c-sup(hi, J) = sup
(
{c-sup(hi, In) : n ∈ N} ∪ {c-sup(hi, A)}

)
≥sup

({
c-sup(min{gi+Γ, f}, In) : n ∈ N

}
∪
{
c-sup(min{gi+Γ, f}, A)

})
−η

= c-sup
(
min{gi + Γ, f}, J

)
− η.

Similarly we can show that condition (9) holds.

Fix an x ∈ J . We consider four cases.

• If x ∈ G, then evidently condition (3) is satisfied.
• If x is a limit point of Q from the left, then since gi�Q is continuous,

and g̃i − gi is a Darboux function which vanishes outside of Q, so

c-lim
(
min{hi + τ, f}, x−

)
≥ c-lim (hi�Q, x−) ≥ hi(x).

• If |||A ∩ (x − ε, x)||| = c for each ε > 0, and x is not a limit point of Q
from the left, then g̃i = gi on (x − ε0, x] for some ε0 > 0, so by (13)
and (1), we obtain

c-lim
(
min{hi + τ, f}, x−

)
≥ c-lim

(
min{gi(x), f}�A, x−)

≥ gi(x) = hi(x).

2We define g̃1 = · · · = g̃k = f/k on R, and Q = ∅.
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• Finally if x ∈ A \ {min J} and |||A ∩ (x − ε0, x)||| < c for some ε0 > 0,
then by (8) and (1), we obtain

c-lim
(
min{hi + τ, f}, x−

)
≥ lim

ε→0+
c-sup

(
hi, (x− ε, x)

)
≥ lim

ε→0+
sup
{
c-sup(hi, In) : In ⊂ (x− ε, x)

}
≥ lim

ε→0+
sup
{
c-sup(min{gi + Γ, f}, In)− η/n : In ⊂ (x− ε, x)

}
= c-lim

(
min{gi + Γ, f}, x−

)
≥ gi(x) = hi(x).

Similarly we can show that c-lim
(
min{hi + τ, f}, x+

)
≥ hi(x), and that

condition (4) holds for each x ∈ J . The condition “h1 + · · ·+ hk = f on J”
is evident. C

Using Claims 4 and 2 one can easily prove the assertion of the lemma.

Theorem 2.2. Let k > 1. For each Baire one function f the following
conditions are equivalent:

(i) f is the sum of k nonnegative Darboux functions;
(ii) f is nonnegative and f fulfills the following condition:

min
{
c-lim (f, x−), c-lim (f, x+)

}
≥ f(x)/k for each x ∈ R; (14)

(iii) f is the sum of k nonnegative Darboux Baire one functions.

Proof. The implication (i)⇒ (ii) follows by [11, Proposition 3.2], and the
implication (iii)⇒ (i) is obvious.

(ii)⇒ (iii)
Set τ0 = ∞ and τn = 2−n for n ≥ 1. Let g1,0 = · · · = gk,0 = f/k.

For each n use Lemma 2.1 to construct nonnegative Baire one functions
g1,n, . . . , gk,n such that g1,n + · · · + gk,n = f on R, and that for each i ≤ k
and x ∈ R we have:

min
{
c-lim (min{gi,n + τn, f}, x−), c-lim (min{gi,n + τn, f}, x+)

}
≥ gi,n(x), (15)

max
{
c-lim (max{gi,n − τn, 0}, x−), c-lim (max{gi,n − τn, 0}, x+)

}
≤ gi,n(x), (16)

|gi,n(x)− gi,n−1(x)| < τn−1.

(17)
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Fix an i ≤ k. Put gi = limn→∞ gi,n. By (17), the sequence (gi,n) is
uniformly convergent, so gi belongs to Baire class one. Meanwhile by (15)
and (16), we obtain

min
{
c-lim (gi, x−), c-lim (gi, x+)

}
≥ gi(x) ≥ max

{
c-lim (gi, x−), c-lim (gi, x+)

}
.

So by Theorem 1.1, gi is Darboux. Clearly f = g1 + · · ·+ gk on R.

3. Products of bounded Darboux Baire one functions

Theorem 3.1. Let k > 1. For each Baire one function f the following
conditions are equivalent:

(i) f is the product of k bounded Darboux functions;
(ii) f is bounded,

for all x, t ∈ R, if x < t and f(x)f(t) < 0,

then [[[f = 0]]] ∩ (x, t) 6= ∅, (18)

and there is a T ≥ k
√
‖f‖ such that for each x ∈ R we have

max
{
c-lim (|f |, x−), c-lim (|f |, x+)

}
≤ T k−1 k

√
|f(x)|; (19)

(iii) f is the product of k bounded Darboux Baire one functions.

Proof. The implication (iii)⇒ (i) is obvious.
(i)⇒ (ii)

Let f = g1 . . . gk, where g1, . . . , gk are bounded Darboux functions. The
boundedness of f is obvious, and condition (18) follows by [4]. Put T =
max{‖gi‖ : i ≤ k}. Fix an x ∈ R. There is an i ≤ k such that |gi(x)| ≤
k
√
|f(x)|. Using the fact that gi is Darboux, we obtain

c-lim (|f |, x−) ≤
∏
j 6=i ‖gj‖ · c-lim (|gi|, x−) ≤ T k−1 · |gi(x)| ≤ T k−1 k

√
|f(x)|.

Similarly c-lim (|f |, x+) ≤ T k−1 k
√
|f(x)|.

(ii)⇒ (iii)
Let J denote the family of all intervals J = [a, b] for which there ex-

ist Darboux Baire one functions g1, . . . , gk such that g1 . . . gk = f on J ,
T sgn f(a) ∈ g1[J ], T ∈ |g1|[J ] ∩ g2[J ] ∩ · · · ∩ gk[J ], and for each i: gi(x) =
k
√
|f(x)| · (sgn f(x))1+sgn(i−1) for x ∈ fr J , and |gi| ≤ T on J . Moreover let

G denote the set of all x ∈ R for which there is a δx > 0 such that [a, b] ∈ J
whenever a, b ∈ (x− δx, x+ δx) and a < b.
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Claim 1. Let K be a nonempty perfect set such that K ∩ [[[f = 0]]] is dense
in K. There exist Baire one functions g1, . . . , gk such that f = g1 . . . gk
on K, and for each i:

gi[K] = [−T, T ], (20)

gi(x) = k
√
|f(x)| · (sgn f(x))1+sgn(i−1)

whenever x ∈ K and x is not a bilateral limit point of K, (21)

c-lim
(
|gi − gi(x)|�K,x−) = 0

whenever x ∈ K and x is not isolated in K from the left, (22)

c-lim
(
|gi − gi(x)|�K,x+) = 0

whenever x ∈ K and x is not isolated in K from the right. (23)

Let K̃ be the set of all points of continuity of f�K which are bilateral
limit points of K. Observe that K̃ is a dense Gδ subset of K ∩ [[[f = 0]]]. For
each n ∈ N ∪ {0} define τn = T/2n. Put F0 = ∅.

Assume that for some n ∈ N we have constructed a nowhere dense in K
closed set Fn−1. Put An =

{
x ∈ K : ω(|f |�K,x) ≥ τkn

}
. Notice that

An is nowhere dense in K and closed. Let In,1, In,2, . . . be nonoverlap-
ping compact intervals disjoint from An, such that each x /∈ An belongs
to int(In,m ∪ In,p) for some m, p ∈ N. For each m ∈ N, if K̃ ∩ In,m 6=
∅, then find pairwise disjoint nonempty nowhere dense in K perfect sets
P1,n,m, . . . , Pk,n,m ⊂ K̃ ∩ int In,m \ Fn−1, and for i ≤ k construct a Dar-
boux Baire one function ḡi,n,m such that ḡi,n,m = 0 outside of Pi,n,m, and
ḡi,n,m[Pi,n,m] = [−τn−1, τn−1]; otherwise let Pi,n,m = ∅ and ḡi,n,m = 0 for
each i. Observe that the set Fn = Fn−1∪An∪

⋃
m∈N

⋃k
i=1 Pi,n,m is nowhere

dense in K and closed.
Fix an i ≤ k. It is clear that ḡi,n =

∑
m∈N ḡi,n,m is a Baire one function

for each n. So ḡi =
∑

n∈N ḡi,n belongs to the first class of Baire, too.

Define g̃i = k
√
|f | ·(sgn f)1+sgn(i−1) ·χK . Obviously g̃i is Baire one if i > 1.

Let y ∈ R. If y ≤ 0, then [[[g̃1 < y]]] = [[[f − yg̃k−1
2 < 0]]], and y > 0 implies

[[[g̃1 < y]]] = [[[fχK < yk]]]. Similarly we can express the set [[[g̃1 > y]]]. Thus g̃1
belongs to Baire class one. (See also [5, p. 82].)

Define gi = ḡi+ g̃i. Clearly gi is a Baire one function, and conditions (20)
and (21) hold. (Notice that ḡi(x) = 0 whenever x /∈

⋃
n∈N Fn.) To prove (22)

suppose that x ∈ K and x is not isolated in K from the left. We consider
three cases.
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• If gi(x) = 0, then since
⋃
n∈N Fn is a meager subset of K̃, so for

each ε > 0 we have |||K̃ ∩ (x− ε, x)∩ [[[gi = 0]]]||| = c. Hence c-lim
(
|gi|�K,

x−
)

= 0.
• If x ∈ Pj,n,m for some j ≤ k and n,m ∈ N, and gi(x) 6= 0, then x is

not isolated in Pj,n,m from the left. Consequently, by [10, Lemma 6.1],
we have c-lim

(
|gi − gi(x)|�K,x−) = 0.

• Finally if x ∈ An \An−1 for some n ∈ N, then ω
(
|f |�K,x) ≤ τkn−1 and

|gi(x)| = k
√
|f(x)| ≤ τn−1. Meanwhile for each ε > 0 there is an m ∈ N

with ∅ 6= Pi,n,m ⊂ (x− ε, x), whence gi[K ∩ (x− ε, x)] ⊃ [−τn−1, τn−1].
Thus c-lim

(
|gi − gi(x)|�K,x−) = 0.

Similarly we can show that condition (23) is fulfilled.

Observe that if x ∈ K̃, then g̃1(x) = · · · = g̃k(x) = 0, and x /∈ K̃ yields
ḡ1(x) = · · · = ḡk(x) = 0. Thus f = g1 . . . gk = on K. C
Claim 2. If a < b, and (a, b) ⊂ [[[f > 0]]] or (a, b) ⊂ [[[f < 0]]], then [a, b] ∈ J .

Without loss we may suppose that (a, b) ⊂ [[[f > 0]]]. Define f̃(x) =
k lnT − ln f(x) if x ∈ (a, b), and f̃(x) = 0 if x ∈ R \ (a, b). By (19), for each
x ∈ (a, b) we have

c-lim
(
f̃ , x−

)
= k lnT − c-lim (ln f, x−) ≥ lnT − k−1 ln f(x) = f̃(x)/k,

and similarly c-lim
(
f̃ , x+

)
≥ f̃(x)/k. Since f̃ is nonnegative and f̃ vanishes

outside of (a, b), so f̃ fulfills condition (14).
Let {az : z ∈ Z} be an arbitrary strictly increasing sequence with limit

points a and b. Construct nonnegative Darboux Baire one functions g̃1, . . . ,
g̃k such that f̃ = g̃1 + · · ·+ g̃k on R, and

g̃i
[
[az, az+1]

]
⊃
[
0, ln

(
T k/
(
c-inf(f, [az, az+1]) + 2−|z|

))]
(24)

for each i. (Cf. condition (8) in the proof of Lemma 2.1.)

Fix an i ≤ k. Define gi(x) = T/exp
(
g̃i(x)

)
if x ∈ (a, b), let gi(x) = k

√
f(x)

if x ∈ {a, b}, and let gi be constant on (−∞, a] and [b,∞). Then by (24),
we have

gi
[
[an, b]

]
⊃
[
inf
{(
c-inf(f, [az, az+1]

)
+ 2−z)/T k−1 : z ≥ n

}
, T
]

⊃
[(
c-inf(f, [an, b]) + 2−n

)
/T k−1, T

]
for each n ∈ N. So, the left cluster set of gi at b contains

[
c-lim (f, b−)/T k−1,

T
]
. Similarly the right cluster set of gi at a contains

[
c-lim (f, a+)/T k−1, T

]
.

By (18), we have {a, b} ⊂ [[[f ≥ 0]]]. So by (19) and Theorem 1.1, gi is
Darboux. C

Claims 3 and 4 are easy to prove. (Cf. also Claim 2 in the proof of
Lemma 2.1.)
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Claim 3. If [a0, a1] ∈ J and [a1, a2] ∈ J , then [a0, a2] ∈ J . C
Claim 4. If a < b and [a, b] ⊂ G, then [a, b] ∈ J . C
Claim 5. If a < b and (a, b) ⊂ G, then [a, b] ∈ J .

Let c ∈ (a, b). By Claim 3, it suffices to show that [a, c] ∈ J and [c, b] ∈ J .
We will show only that [a, c] ∈ J , the proof of the other case being similar.

If [[[f = 0]]] ∩ (a, d] = ∅ for some d ∈ (a, c), then either (a, d] ⊂ [[[f > 0]]], or
(a, d] ⊂ [[[f < 0]]], whence [a, c] ∈ J . (Cf. Claim 2.) So suppose f(c) = 0 and
a ∈ cl

(
[[[f = 0]]] ∩ (a, c)

)
. Let (an) ⊂ [[[f = 0]]] ∩ (a, c) be such that an ↘ a.

Put a0 = c. For each n let g1,n, . . . , gk,n witness [an, an−1] ∈ J . (See
Claim 4.) One can easily construct sequences (t1,n), . . . , (tk,n) ⊂ {−1, 1} so
that t1,n . . . tk,n = 1 for each n, and that for each i and each n we have

{−T, T} ⊂ (ti,ngi,n)
[
[an, an−1]

]
∪ · · · ∪ (ti,n+3gi,n+3)

[
[an+3, an+2]

]
.
(25)

Fix an i ≤ k. Define gi(x) = ti,ngi,n(x) if x ∈ [an, an−1] for some n ∈ N,
let gi(a) = k

√
|f(a)| · (sgn f(a))1+sgn(i−1), and let gi be constant on (−∞, a]

and [b,∞). By (25), the right cluster set of gi at a equals [−T, T ]. Hence
by Theorem 1.1, gi is Darboux. C
Claim 6. If P = R \G, then P ⊂ cl[[[f = 0]]].

Indeed, if x /∈ cl[[[f = 0]]], then by (18), we have either (x − δ, x + δ) ⊂
[[[f > 0]]] or (x − δ, x + δ) ⊂ [[[f < 0]]] for some δ > 0. Hence by Claim 2,
x ∈ G = R \ P . C
Claim 7. The set P is perfect.

Clearly G is open. If P ∩ (s− δ, s+ δ) = {s} for some s ∈ P and δ > 0,
then by Claims 5 and 3, we obtain s ∈ G, an impossibility. C
Claim 8. The set P ∩ [[[f = 0]]] is dense in P .

By way of contradiction suppose ∅ 6= P ∩ (s, t) ⊂ [[[f 6= 0]]] for some s < t.
Since f is Baire one, we may assume that either P ∩ (s, t) ⊂ [[[f > 0]]] or
P ∩ (s, t) ⊂ [[[f < 0]]]. We will consider the first case only, the other one being
analogous. We will show that (s, t) ⊂ G, which is impossible.

Fix an interval J = [a, b] ⊂ (s, t). By Claims 7, 5, and 3, we may assume
that P ∩ J is perfect, and a, b ∈ P . Let I be the family of all components
of J \ P .

Let I = (c, d) ∈ I. If [[[f = 0]]] ∩ I 6= ∅, then by Claims 5 and 3, there
are Darboux Baire one functions g1,I , . . . , gk,I such that f = g1,I . . . gk,I
on I, and for each i: |gi| ≤ T on I, gi(x) = k

√
f(x) for x ∈ {c, d}, and

{0, T} ⊂ gi
[
[c, d]

]
. Otherwise let g1,I , . . . , gk,I witness [c, d] ∈ J .
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Fix an i ≤ k. Define gi(x) = gi,I(x) if x ∈ I for some I ∈ I, let
gi(x) = k

√
f(x) if x ∈ P ∩ J , and let gi be constant on (−∞, a] and [b,∞).

If x ∈ P ∩ J and x is not isolated in P from the left (from the right), then
by Claim 6, the left (right) cluster set of gi at x contains [0, T ]. Thus by
Theorem 1.1, gi is Darboux. Hence J ∈ J and P ∩ G ⊃ P ∩ (s, t) 6= ∅, an
impossibility. C
Claim 9. We have G = R.

By way of contradiction suppose that P is nonempty. We will show that
P ⊂ G, which is impossible.

Let J = [a, b] be a compact interval. We may assume that P ∩ J is
perfect, and a, b ∈ P . Apply Claim 1 with K = P ∩ J to construct Baire
one functions g̃1, . . . , g̃k with f = g̃1 . . . g̃k on K, fulfilling conditions (20)–
(23). (Cf. Claims 7 and 8.) Let I be the family of all components of J \P .
For each I ∈ I let g1,I , . . . , gk,I witness cl I ∈ J .

Fix an i ≤ k. Define gi(x) = gi,I(x) if x ∈ I for some I ∈ I, let gi(x) =
g̃i(x) if x ∈ P ∩ J , and let gi be constant on (−∞, a] and [b,∞). By (22)
and (23), the graph of gi is bilaterally dense in itself, so by Theorem 1.1,
gi is Darboux. Hence J ∈ J and ∅ 6= P ⊂ G, an impossibility. C

Using Claims 9 and 4 one can easily prove the assertion of the theorem.

Theorem 3.2. Let k > 1. For each Baire one function f the following
conditions are equivalent:

(i) f is the product of k bounded Darboux quasi-continuous functions;
(ii) f is bounded, f fulfills condition (18), the set [[[f = 0]]] \ int[[[f = 0]]] is

nowhere dense, and there is a T ≥ k
√
‖f‖ such that for each x ∈ R we

have

lim
ε→0+

max
{

inf |f |[Cf ∩ (x− ε, x)], inf |f |[Cf ∩ (x, x+ ε)]
}

≤ T k−1 k
√
|f(x)|; (26)

(iii) f is the product of k bounded Darboux quasi-continuous Baire one
functions.

Proof. The implication (iii)⇒ (i) is obvious.
(i)⇒ (ii)

Let f = g1 . . . gk, where g1, . . . , gk are bounded Darboux quasi-continuous
functions. The boundedness of f is obvious, condition (18) follows by [4],
and the set [[[f = 0]]] \ int[[[f = 0]]] is nowhere dense by [13]. Put T =
max{‖gi‖ : i ≤ k}. Fix an x ∈ R. There is an i ≤ k such that |gi(x)| ≤
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k
√
|f(x)|. By [14, Lemma 2], there is a sequence (xn) ⊂ Cf such that xn ↗ x

and gi(xn)→ gi(x). Hence for each ε > 0 we have

inf |f |[Cf ∩ (x− ε, x)] ≤
∏
j 6=i ‖gj‖ · inf |gi|[Cf ∩ (x− ε, x)]

≤ T k−1 · |gi(x)| ≤ T k−1 k
√
|f(x)|.

Similarly we can prove that inf |f |[Cf ∩ (x, x + ε)] ≤ T k−1 k
√
|f(x)| for each

ε > 0.
(ii)⇒ (iii)

For each η > 0 let Jη denote the family of all compact intervals J for
which there exist Darboux quasi-continuous Baire one functions g1, . . . , gk
and a θ ∈ {−1, 1} such that g1 . . . gk = f on J , and for each i: gi(x) =
k
√
|f(x)| · (sgn f(x))1+sgn(i−1) for x ∈ frJ , |gi| ≤ T on J , and

(θ1+sgn(i−1)gi)[Cgi ∩ J ] ⊃
[
inf |f |[Cf ∩ J ]/T k−1 + η, T

]
.

Moreover let J =
⋂
η>0 Jη, and let G denote the set of all x ∈ R for which

there is a δx > 0 such that [a, b] ∈ J whenever a, b ∈ (x − δx, x + δx)
and a < b.

Claim 1 is evident, Claim 2 follows easily by (18) and [12, Lemma 4.4],
and Claims 3–7 are easy to prove. (Cf. also Claims 2–8 in the proof of
Theorem 3.1.)

Claim 1. If a < b and (a, b) ⊂ [[[f = 0]]], then [a, b] ∈ J . C
Claim 2. If a < b and (a, b) ⊂ [[[f > 0]]] or (a, b) ⊂ [[[f < 0]]], then [a, b] ∈
J . C
Claim 3. If [a0, a1] ∈ J and [a1, a2] ∈ J , then [a0, a2] ∈ J . C
Claim 4. If a < b and (a, b) ⊂ G, then [a, b] ∈ J . C
Claim 5. If P = R \G, then P ⊂ fr[[[f = 0]]]. C
Claim 6. The set P is perfect. C
Claim 7. The set P ∩ [[[f = 0]]] is dense in P . C
Claim 8. Let K be a nowhere dense compact perfect set such that K∩[[[f =
0]]] is dense inK, and let I be the family of all components of [minK,maxK]\
K. There are pairwise disjoint families I1, I2, I3 ⊂ I such that:

if we put f̃(x) = f(x) for x ∈
⋃
I∈I1∪I2 fr I, and f̃(x) = 0

otherwise, then f̃ belongs to Baire class one,
(27)

for each j ≤ 3 and x ∈ K, if x is not isolated in K from
the left (from the right), then there is a sequence (Im) ⊂
Ij such that min Im ↗ x and f(min Im) → 0 (such that
max Im ↘ x and f(max Im)→ 0, respectively).

(28)
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Without loss we may assume that K 6= ∅. For j ≤ 3 put Ij,0 = ∅. We
proceed by induction. Fix an n ∈ N, and assume that the family

⋃
j≤3 Ij,n−1

is finite. Find pairwise disjoint open intervals Vn,1, . . . , Vn,pn of diameter
less than n−1 such that K ∩ Vn,s 6= ∅ for each s, and K ⊂

⋃
s≤pn Vn,s. For

each s ≤ pn and j ≤ 3, observe that the family

Ĩj,n,s =
{
I ∈ I\

(⋃
i≤3 Ii,n−1∪{Ii,n,s : i < j}

)
: I ⊂ Vn,s and fr I ⊂ [[[|f | < 2−n]]]

}
is nonempty (recall that K is perfect, and Cf�K ⊂ [[[f = 0]]]), and pick Ij,n,s ∈
Ĩj,n,s. For j ≤ 3 define Ij,n = Ij,n−1 ∪

{
Ij,n,s : s ≤ pn

}
. This completes the

induction step.
For j ≤ 3 put Ij =

⋃
n∈N Ij,n. Clearly these families are pairwise disjoint,

and condition (27) is evident. To prove condition (28) fix a j ≤ 3 and
an x ∈ K, and suppose that x is not isolated in K from the left. (The
other case is similar.) Fix an m ∈ N. Let t ∈ K ∩ (x − m−1/2, x) be a
bilateral limit point of K, and let n > (x − t)−1. Let s ≤ pn be such that
t ∈ Vn,s, and define Im = Ij,n,s. Since the diameter of Vn,s is less than x− t,
so Im ⊂ (x−m−1, x). Moreover f(min Im) < 2−m. C
Claim 9. We have G = R.

By way of contradiction suppose that P is nonempty. We will show that
P ⊂ G, which is impossible.

Let J = [a, b] be a compact interval. We may assume that P ∩ J is
perfect, and a, b ∈ P . Let I = {In : n ∈ N} be the family of all components
of J \ P . Apply Claim 8 with K = P ∩ J to find pairwise disjoint families
I1, I2, I3 ⊂ I fulfilling conditions (27) and (28). (Cf. Claims 5–7.) Define f̃
as in (27).

Let n ∈ N. Let Baire one functions g1,n, . . . , gk,n and θn ∈ {−1, 1} witness
cl In ∈ J1/n. (Cf. Claim 4.) Set t1,1,n = θn and t1,2,n = −θn. For j ≤ 2
define t2,j,n, . . . , tk,j,n ∈ {−1, 1} so that t1,j,n . . . tk,j,n = 1.

Fix an i ≤ k. Define the function gi so that:
• if x ∈ cl In and In ∈ Ij for some n ∈ N and j ≤ 2, then gi(x) =
ti,j,ngi,n(x),
• if x ∈ In and In ∈ I \ (I1 ∪ I2) for some n ∈ N, then gi(x) = gi,n(x),
• if x ∈ P ∩ J \

⋃
I∈I1∪I2 fr I, then gi(x) = k

√
|f(x)| · (sgn f(x))1+sgn(i−1),

• gi is constant on (−∞, a] and [b,∞).
Observe that if x ∈ K, then∣∣gi(x)− k

√
|f(x)| · (sgn f(x))1+sgn(i−1)∣∣ ≤ 2

∣∣f̃(x)
∣∣.

Since f is Baire one, so the function k
√
|f | · (sgn f)1+sgn(i−1) belongs to Baire

class one, too. (Cf. the proof of Claim 1 in Theorem 3.1.) But f̃ is a Baire
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one function which vanishes outside of a countable set, so gi is also a Baire
one function.

Let x ∈ K. If x is isolated in K from the left, then gi�[x − ε0, x] is
Darboux and quasi-continuous for some ε0 > 0. In the other case by (28)
and the definition of gi, there is a sequence (xp) ⊂ Cgi such that xp ↗ x
and gi(xp)→ gi(x). Similarly for each x ∈ K there is a sequence (tp) ⊂ Cgi
such that tp ↘ x and gi(tp) → gi(x). Clearly gi is Darboux and quasi-
continuous on R \K. Thus gi is both Darboux and quasi-continuous on R.
(Cf. Theorem 1.1 and [7] or [8, Lemma 2].) Hence J ∈ J and ∅ 6= P ⊂ G,
an impossibility. C

Using Claims 9 and 4 one can easily prove the assertion of the theorem.
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