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Abstract. We consider a cancer started with a single cancerous cell
which spreads through an epithelial basal layer according to the Williams–
Bjerknes tumour model on the lattice Z2. We prove that the expected

number µ(t) of cancerous cells at time t satisfies lim
t→+∞

µ(t)
tρ

= 0 for all

ρ > 2.

1. Introduction

Based on chemical tests and mitotic patterns, Williams and Bjerknes
proposed in [8] a model for the cancer spread through an epithelial basal
layer (see also [5]). Independently, the Williams–Bjerknes tumour model
was formulated within the field of interacting particle systems as the biased
voter model (see [7]).

We consider the spread of cancerous cells started with a single cancer-
ous cell at the origin through the basal layer of an epithelium modeled on
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the lattice Z2. The set ξAt of sites occupied by cancerous cells at time t,
given that the initial state is A, is a Markov proces on the state space
{finite subsets of Z2} thoroughly studied in [1–3], [6]. Bramson and Grif-
feath showed that the tumour has a linear rate of radial growth and this
suggests that the expected number of cancerous cells has a quadratic rate
of growth. In this paper we give a very basic proof, without involve the
outstanding results of Bramson and Griffeath, of the following theorem on
the asymptotic behaviour of the mean tumour growth.

Theorem. Let µ(t) be the expected number of cancerous cells at time t
for the Williams–Bjerknes tumour model starting from a single cancerous
cell. Then

lim
t→+∞

µ(t)
tρ

= 0

for all ρ > 2.

2. The tumour growth model

Cells are assumed to be of two types, normal and cancerous, and are
located on a suitable lattice, one at each site. With each celular division,
one daughter remains in the site, while the other displaces a neighbouring
cell which is pushed out of the basal layer. Cancerous cells are assumed to
divide at a faster rate than normal cells. Splitting times for both normal
and cancerous cells are assumed to be independent and have exponential
distributions with parameter 1 and κ > 1, respectively. This makes the
probability that a normal cell will split in the time interval [t, t+ ∆t] equals
∆t, irrespective of the time since its last division. For the cancerous cells,
this event occurs with probability κ∆t.

3. Differential inequalities for the tumour model

Cells are situated on the lattice Z2. For each i ∈ Z2 the neighbours of i
are given by

ωi = {(i1 − 1, i2), (i1, i2 − 1), (i1 + 1, i2), (i1, i2 + 1)},

pi(t) stands for the probability that the cell situated at i is cancerous at
time t and µ(t) =

∑
i∈Z2 pi(t) is the expected number of cancerous cells at

time t.
For the cell situated at i to be cancerous at time t + ∆t, either it is

cancerous at time t and no normal neighbouring cell displaces it in the time
interval [t, t+∆t], or else it is normal at time t and a cancerous neighbouring
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cell splits and displaces it in [t, t + ∆t]. Consequently, for each i ∈ Z2, the
probability of the cell i to be cancerous at time t+ ∆t can be expressed as

pi(t+ ∆t) = pi(t)ui(t) + (1− pi(t))

κ∆t
4

∑
j∈ωi

vj(t)

+ o(∆t),

where we write ui(t) for the conditional probability that no normal neigh-
bouring cell displaces the cell located at i in the time interval [t, t+∆t] given
that the cell i is cancerous and, for j ∈ ωi, we write vj(t) for the conditional
probability that the cell located at j is cancerous at time t given that the
cell located at i is normal at time t. Since ui(t) ≤ 1, we have

pi(t+ ∆t) ≤ pi(t) + (1− pi(t))

κ∆t
4

∑
j∈ωi

vj(t)

+ o(∆t).

On the other hand, for each j ∈ ωi, we have

(1− pi(t))vj(t) + pi(t)wj(t) = pj(t),

where wj(t) is the conditional probability that the cell located at j is can-
cerous at time t given that the cell located at i is cancerous at time t. Thus
(1− pi(t))vj(t) ≤ pj(t). Consequently,

1
4

∑
j∈ωi

vj(t) ≤ pi(t)
1
4

∑
j∈ωi

vj(t) +
1
4

∑
j∈ωi

pj(t).

Since
1
4

∑
j∈ωi

vj(t) ≤ 1, we have

1
4

∑
j∈ωi

vj(t) ≤ pi(t) +
1
4

∑
j∈ωi

pj(t)

and so

pi(t+ ∆t)− pi(t)
∆t

≤ (1− pi(t))κ

pi(t) +
1
4

∑
j∈ωi

pj(t)

+
o(∆t)

∆t
.

Assume that the functions pi are differentiable for all i ∈ Z2 and let ∆t
approach zero. This yields the following family of differential inequalities

p′i(t) ≤ κ(1− pi(t))

pi(t) +
1
4

∑
j∈ωi

pj(t)

 ,∀t ∈ [0,+∞[,∀i ∈ Z2.

The initial state of the epithelium is given by p0(0) = 1 and pi(0) = 0 for
all i ∈ Z2 \ {0}.
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Lemma. pi(t) ≤ 1− exp (−2nκntn/n!) for all t ∈ [0,+∞[, i ∈ Z2 \Ωn−1,
and n ∈ N, where we write Ωn for the set {j ∈ Z2 : |j1|+ |j2| ≤ n}.

Proof. For all t ∈ [0,+∞[ and i ∈ Z2, we have
1
4

∑
j∈ωi

pj(t) ≤ 1, and hence

p′i(t) ≤ 2κ(1− pi(t)).

From this we deduce that

pi(t) ≤ 2κt− 2κ
∫ t

0
pi(s)ds,

and Gronwall lemma [4, 10.5.1.3] gives pi(t) ≤ 1− e−2κt for all t ∈ [0,+∞[
and i ∈ Z2 \ Ω0.

Assume that pi(t) ≤ 1− e−2nκntn/n! for all t ∈ [0,+∞[ and i ∈ Z2 \Ωn−1.
Let i ∈ Z2 \ Ωn. Then ωi ⊂ Z2 \ Ωn−1 and hence

p′i(t) ≤ κ(1− pi(t))

pi(t) +
1
4

∑
j∈ωi

pj(t)



≤ κ(1− pi(t))

(1− e−2nκntn/n!
)

+
1
4

∑
j∈ωi

(
1− e−2nκntn/n!

)
= 2κ(1− pi(t))

(
1− e−2nκntn/n!

)
≤ 2κ(1− pi(t))

2nκntn

n!
which gives

pi(t) ≤
2n+1κn+1tn+1

(n+ 1)!
−
∫ t

0

2n+1κn+1sn

n!
pi(s)ds

for all t ∈ [0,+∞[. Finally, Gronwall lemma [4, 10.5.1.3] yields pi(t) ≤
1− e−2n+1κn+1tn+1/(n+1)! for all t ∈ [0,+∞[, which proves the result.

Proof of the Theorem. Since, for every n ∈ N, the cardinality of the set
Ωn \ Ωn−1 is 4n, the preceding lemma shows that

µ(t) ≤ 1 +
∞∑
n=1

4n
(

1− e−τntn/n!
)

(1)

for all t ∈ [0,+∞[, where we write τ = 2κ.
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Let ρ > 2 and fix ρ > η > 2. For every n ∈ N with n > η let ϕn and ϑn
be the functions from ]0,+∞[ into R defined by

ϕn(t) =
1− e−τntn/n!

tη

ϑn(t) =
τntn

(n− 1)!
e−τ

ntn/n! + ηe−τ
ntn/n! − η

and let
tn = τ−1[(n− η)(n− 1)!]1/n.

It is a simple matter to show that ϑn is strictly increasing on ]0, tn] and
therefore

0 = lim
t→0

ϑn(t) < ϑn(t)

for all t ∈]0, tn]. ϑn is easily checked to be strictly decreasing on [tn,+∞[ and
obviously limt→+∞ϑn(t) = −η. Hence ϑn(sn) = 0 for some sn ∈]tn,+∞[.
Since ϕ′n(t) = t−η−1ϑn(t) ∀t ∈]0,+∞[, it may be concluded that ϕn is
strictly increasing on ]0, sn] and it is strictly decreasing on [sn,+∞[. Con-
sequently, we have

0 = lim
t→0

ϕn(t) < ϕn(t) ≤ ϕn(sn) ∀t ∈]0, sn],

0 = lim
t→+∞

ϕn(t) < ϕn(t) ≤ ϕn(sn) ∀t ∈ [sn,+∞[

and therefore

0 < ϕn(t) ≤ 1− e−τnsnn/n!

sηn
≤ 1
sηn

<
1
tηn

=
τη

[(n− η)(n− 1)!]η/n

for all t ∈]0,+∞[ and n > η. On the other hand,
∑∞

n=1n
1−η < +∞ and by

the Stirling formula

lim
n→+∞

τηnη

[(n− η)(n− 1)!]η/n
= (τe)η.

Consequently,

M =
∞∑
n=1

4n
τη

[(n− η)(n− 1)!]η/n
=
∞∑
n=1

4n1−η τηnη

[(n− η)(n− 1)!]η/n
< +∞.

Set m ∈ N with m > η. From (1) it may be concluded that

µ(t)
tρ

≤ 1 + 4(1 + · · ·+m)
tρ

+
1

tρ−η

∞∑
n=m+1

4nϕn(t)

≤ 1 + 4(1 + · · ·+m)
tρ

+
M

tρ−η

for all t ∈]0,+∞[ and therefore lim
t→+∞

µ(t)
tρ

= 0.
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