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FEYNMAN’S PATH INTEGRALS AND
HENSTOCK’S NON-ABSOLUTE

INTEGRATION
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Abstract. R. Feynman formulated quantum mechanics in terms of in-
tegrals over spaces of paths (Feynman path integrals). But the absolute
value of Feynman’s integrand is not integrable. And his integrand does
not generate a measure. So Lebesgue integration theory could not be
used by Feynman. To establish the equivalence of his theory with the
traditional formulation of quantum mechanics, Feynman gave an argu-
ment that his path integral satisfies Schrödinger’s equation. This paper
gives a proof of this part of Feynman’s theory. To justify Feynman’s and
other investigators’ use of the language and concepts of integration and
probability theory, and to justify taking limits under the integral sign
in Feynman’s integral, we use R. Henstock’s approach to non-absolute
integration, which does not require the measure concept, and for which
the absolute value of the integrand need not be integrable.

1. Introduction

Feynman describes his paper as follows [2]:
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“Non-relativistic quantum mechanics is formulated here in a different
way. It is, however, mathematically equivalent to the familiar formula-
tion. In quantum mechanics the probability of an event which can happen
in several different ways is the absolute square of a sum of complex contri-
butions, one from each alternative way. The probability that a particle will
be found to have a path x(t) lying somewhere within a region of space time
is the square of a sum of contributions, one from each path in the region.
The contribution from a single path is postulated to be an exponential whose
(imaginary) phase is the classical action (in units of ~) for the path in ques-
tion. The total contribution from all paths reaching x, t from the past is the
wave function ψ(x, t). This is shown to satisfy Schroedinger’s equation.”

Feynman’s demonstration of Schrödinger’s equation involves taking limits
of the sum over a space of paths of a functional of the action for each path.
He did not provide proofs.

This paper provides appropriate definitions and proofs. Aspects of some
of the probabilistic features of Feynman’s thesis are discussed in Muldowney
[13].

We modify slightly the notation used by Feynman. Feynman argues that
the probability that an “ideal measurement” will determine that a particle
moving in one dimension has a path x contained in

J = {x : x(τ ′) = ξ′, uj ≤ xj < vj , x(τ) = ξ},

where τ0 = τ ′, ε = n−1(τ − τ ′), τj = τj−1 + ε for j = 1, 2, . . . , n, and xj
denotes the position of the particle at time τj , is the square of the absolute
value of∫ v1

u1

· · ·
∫ vn−1

un−1

exp
n∑
j=1

[
ιε

~

{
m
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(
xj − xj−1

ε

)2

− V (xj)

}]
dx1
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· · · dxn−1

A
. (1)

This corresponds to Equation (23) of Feynman’s paper [2, p. 375].
(ι =

√
−1, and A is a normalising constant.) Feynman calls (1) the proba-

bility amplitude for J .
Feynman then argues, in effect, that the state function ψ(ξ, τ) of the

particle, conditional on displacement ξ′ at time τ ′ and displacement ξ at
time τ is

lim
ε→0

∫ ∞
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, (2)
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where A = (2πει)1/2. This corresponds to Equation (9) of Feynman
[2, p. 371]. The number n − 1 of partition points τ1, . . . , τn−1 increases
as ε decreases.

On pages 375 and 376, Feynman outlines an argument that ψ, defined by
this limit, satisfies Schrödinger’s equation.

In a footnote on page 371, Feynman says:
“There are very interesting mathematical problems involved in the attempt
to avoid the subdivision and limiting process. Some sort of complex measure
is being associated with the space of functions x(t). Finite results can be
obtained under unexpected circumstances because the measure is not posi-
tive everywhere, but the contributions from most of the paths largely cancel
out. These curious mathematical problems are sidestepped by the subdivi-
sion process. However, one feels as Cavalieri must have felt calculating the
volume of a pyramid before the invention of calculus.”

In a letter to the author, dated March 30 1982, Feynman wrote:
“I didn’t know how to define the measure of the space of paths that was
independent of the nature of what I was integrating. So I had to divide the
interval of t into steps of size ε and define the measure as the product over
all ε of dx1/A(ε) where

A(ε) =

√
2πι~ε
m

for the one-dimensional example where the kinetic energy is m
:
x

2
/2. (xi is

the coordinate at the kth point, e.g., at time = original time plus kε.) Only
if A has this form will the limit as ε→ 0 exist. This is all necessary because
paths which are not differentiable are the important paths.”

Problems associated with Feynman’s subdivision process include the fol-
lowing.

1. Is the multi-dimensional integral in (2) above an approximation to an
integral over the infinite-dimensional space of paths whose end points
are (ξ′, τ ′) and (ξ, τ)?

2. And, for such infinite-dimensional integrals, is there a suitable theorem
on taking limits under the integral sign which will enable us to deduce
Schrödinger’s equation?

If the answer to each question is yes, it may be possible to accomplish
Feynman’s programe in the manner set out in his paper.

As Kac [8] showed, the analogous problem with ι replaced by −1 in
Feynman’s expressions for the probability amplitude and state function, (1)
and (2), is solvable by Lebesgue integration.1 But the solution in this case

1Suppose that ι is replaced by −1. A semi-algebra of cylinder sets, and a pre-measure
corresponding to Feynman’s probability amplitude 1 defined on them, are extended to a
σ-algebra and measure (the Wiener measure), respectively.
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depends on the absolute integrability of the Wiener pre-measure, and if we
replace the expression

exp

[
ιε

h

{
m

2

(
xj − xj−1

ε

)2

− V (xj)

}]
in the Feynman pre-measure (1) by its absolute value, all sums diverge.

A non-absolute method of integration is required in order to allow the
cancellation effects described by Feynman to come into play. So, instead of
Lebesgue integration, we use the non-absolute integral of Henstock.

2. The Henstock integral

Instead of a fixed ε = n−1(τ − τ ′), replace τ1, . . . , τn−1 by arbitrary
partition points, τ ′ = t0 < t1 < . . . < tn = τ , and let J be a cylinder set in
R]τ ′, τ [,

J = {x : x(τ ′) = ξ′, uj ≤ x(tj) < vj , j = 1, 2, . . . , n− 1, x(τ) = ξ}.

Let xj denote x(tj), and let∫ v1

u1

· · ·
∫ vn−1

un−1

exp

λ n∑
j=1

(xj − xj−1)2

2(tj − tj−1)

 n∏
j=1

(
2π
−λ

(tj − tj−1)
)−1/2

dx1

. . . dxn−1 (3)

be a pre-measure defined on cylinder sets.
As discussed above, if λ = −1, this pre-measure can be extended to a

measure on the measure space generated by the cylinder sets in R]τ ′, τ [.
This is the Wiener measure, which is, in turn, equivalent in a certain sense
to a measure w which is concentrated on the subset of continuous functions
C(]τ ′, τ [) in R]τ ′, τ [. For a discussion of this, see Muldowney [13].

So

φ(ξ, τ) :=
∫
C(]τ ′, τ [)

(∫ τ

τ ′
exp(−V (x(t))dt

)
dw (4)

is defined as a Lebesgue integral with respect to the measure w.
Kac [8] showed that a programme analogous to Feynman’s can be ac-

complished in this case, leading to a diffusion equation for φ analogous to
Schrödinger’s.

But Lebesgue integration requires that the absolute value of the integrand
be integrable. And if λ = ι :=

√
−1, then the expression inside the integral

sign in the above pre-measure takes an absolute value of 1, so (3) is not
integrable as tj − tj−1 tends to zero. Taking the absolute value of the
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integrand in (3) causes the loss of the cancellation effects which are present
in sums containing the expression as it stands.

Therefore we approach the problem using the non-absolute integral of
Henstock, also known as the generalised Riemann integral.

We give a definition of the generalised Riemann integral in R. If I is a
bounded real interval [u, v[ let |I| be v−u. If I is an unbounded interval, let
|I| be 0. Let δ(x) be a positive function defined for x ∈ R = R∪{−∞,∞}.
The function δ is called a gauge. Given x ∈ [−∞,∞], and −∞ < u < v <
∞, we say that the real interval I is attached to x if

I =

 [u, v[ and x = u or v, or
]−∞, v[ and x = −∞, or
[u,∞[ and x =∞,

Taking each of these three cases in turn, if I is attached to x we say the
point-interval pair (x, I) is δ-fine if

v − u < δ(x); or v < − 1
δ(x)

; or u >
1

δ(x)
, respectively.

A finite collection of attached point-interval pairs

E = {(x, I)} = {(x(1), I(1)), . . . , (x(m), I(m))}

is a division of R if the finite set of intervals I(j) form a non-intersecting
cover for R. The division Eδ is δ-fine if each (x, I) in Eδ is δ-fine. Note that
as δ(x) decreases, the number of partition points of R increases.

Now suppose h is a real- or complex-valued function of point-interval
pairs (x, I), with h(x, I) := 0 if x = −∞ or ∞. For example, h(x, I) could
be a point function f(x) multiplied by the interval length |I| = v−u. Then
h is integrable over R in the generalised Riemann sense, and has integral
α, if, given ε > 0, there exists a gauge δ such that∣∣∣(Eδ)∑h(x, I)− α

∣∣∣ < ε

for every δ-fine division Eδ of R. (Eδ)
∑
h(x, I) denotes the Riemann sum

over any δ-fine division Eδ, and
∫
R h(x, I) denotes the generalised Riemann

integral α of h. Note that the generalised Riemann integral over the domain
]−∞,∞[ does not require use of the Cauchy extension.

Suppose h has the form f(x)µ(I), and µ is a measure. Whenever f
is finite, real-valued, µ-measurable and Lebesgue integrable over R with
respect to µ, then f(x)µ(I) is generalised Riemann integrable, and∫

R
f(x)µ(I) =

∫ ∞
−∞

f(x)dµ,

where the latter integral is the Lebesgue, and the former is the generalised
Riemann integral. The sense of the notation

∫
f(x)µ(I) is that the space
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in which the integration is performed is divided into intervals I, and the in-
tegral is approximated by Riemann sums

∑
f(x)µ(I). (We will frequently

use notation of the form
∫
f(x)µ(I) to indicate Henstock or generalised Rie-

mann integration,
∫
f(x)dµ to indicate Lebesgue integration and

∫
f(x)dx

for ordinary Riemann integration.)
For the Henstock integral in infinite-dimensional spaces, let B be an in-

dexing set with infinitely many elements. We start by considering cylindrical
intervals in RB. Let I(N) be any n-dimensional interval, or parallelepiped,
in RN ,

I(N) := Ib1 × . . .× Ibn
where each Ibj is a real interval of the form [u, v), (−∞, v), or [u,+∞); and
I(N) is attached to x(N) := (x(b1), . . . , x(bn)) if x(bj) = u or v, −∞, or
∞, respectively. Let

I = I[N ] := I(N)×RB\N .

In another notation, I is

{x : x ∈ RB, x(bj) ∈ Ibj , 1 ≤ j ≤ n}.

Let |I(N)| denote |Ib1 | × . . . × |Ibn |, and let |I[N ]| := |I(N)|. |I[N ]| is
the volume of the finite dimensional interval I(N) obtained when I[N ] is
projected into the dimensions N in which the infinite dimensional cylindrical
interval is restricted. We write I[N ] instead of I whenever we wish to
emphasise that N is the set of dimensions in which the cylindrical interval
I is restricted.

We say that I[N ] is attached to x if I(N) is attached to x(N).
An elementary set E is an interval or a finite union of intervals. RB is

an elementary set.
If f is a functional of x ∈ RB and µ is a volume function defined on

cylindrical intervals I[N ], we consider Riemann sums∑
f(x)µ(I[N ])

which will, in some sense, approximate an integral in RB which we wish
to define. Each I[N ] is attached to the corresponding x in the Riemann
sum. f(x) is zero by definition if x(N) has any infinite component. The
cylindrical intervals I[N ] in the Riemann sum form a disjoint finite cover
for RB. Note that the dimension sets N are variable in the Riemann sum.

More generally, we consider functionals h(x, I[N ]), and Riemann sums∑
h(x, I[N ])

approximating the integral
∫
RB h, which we have yet to define.

To obtain convergence of the Riemann sums, we must examine sequences
of Riemann sums in which the cylindrical intervals I[N ] “shrink” according
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to some rule. Suppose the cylindrical interval J [M ] ⊆ I[N ] has M ⊇
N and each restricted edge of J [M ] is no greater than the corresponding
edge of I[N ]. Then J [M ] is a proper subset of I[N ] if M contains N as a
proper subset, or each restricted edge of J [M ] is strictly shorter than the
corresponding edge of I[N ], or both.

Guided by this, we obtain a “shrinking rule” or gauge for the Riemann
sums as follows. For each x ∈ RB (that is, RB with points at infinity
adjoined), let δ(x) be a positive number. If B is uncountable, let A be a
countable subset of B. If B is countable take A = B. Let LA be the family
of finite subsets of A, and, for each x ∈ RB, let LA(x) be a member of LA.
So

δ : RB 7−→ R+,

LA : RB 7−→ LA.

A gauge γ is defined as
γ := (δ, LA).

Suppose I[N ] is attached to x. We say that (x, I[N ]) is γ-fine if N contains
L(x), and if, taking δ(x(b)) = δ(x), the one-dimensional intervals Ib in R
are δ-fine for each b ∈ N.

Thus, any gauge γ depends on a choice of positive numbers δ(x), one for
each x ∈ RB, a choice of a countable dimension set A ⊂ B, and a choice of
finite subsets LA(x) of A, one for each x ∈ RB.

(If B were a finite set with n elements, then we would take LA (x) = A =
B for every x, and likewise N = B, so that every cylindrical interval I[N ]
and every parallelepiped I(N) is just the usual rectangular interval in the
fixed n-dimensional space Rn; and a gauge γ reduces to the familiar gauge
δ defined at each point of Rn. For more details of this, see Muldowney
[10, pp. 8–10].)

The role of the countable set A in the definition of a gauge is to ensure
that RB (or any other elementary set E) can be covered by a finite set of
mutually exclusive γ-fine cylindrical intervals I[N ]. See Muldowney [12] for
a proof.

So, given a gauge γ we can find a finite collection of attached point-
interval pairs

Eγ = {(x, I[N ])}
in which each (x, I[N ]) is γ-fine, and the cylindrical intervals I[N ] are mu-
tually exclusive and have union RB (or E). We call Eγ a γ-fine division of
RB (or E) and denote the Riemann sum by (Eγ)

∑
h(x,N, I[N ]).

Taking h to be zero by definition if x(N) is a point at infinity; that is,
if x(N) has an infinite component, we say that h is integrable in RB with
generalised Riemann integral α if given ε > 0 we can choose a gauge γ so
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that, for every γ-fine division Eγ of RB, we have

|(Eγ)
∑

h(x,N, I[N ])− α| < ε,

and we write

α =
∫

RB

h(x,N, I), or just
∫

RB

h.

Likewise for the integrability of h in an elementary set E, and
∫
E h. If X is

a subset of RB which is not an elementary set, let 1X denote the indicator
function of X and define

∫
X h(x,N, I) to be∫

RB

1X(x)h(x,N, I)

if 1X(x)h(x,N, I) is integrable.
Note that the functions (or functionals) hmay depend explicitly on the di-

mension sets N , as in (3), which is why we use the functional form h(x,N, I)
instead of h(x, I). The integrability of such functions is demonstrated in
Muldowney [10, Chapters 3 and 4]. For proofs of Fubini’s theorem, the
dominated convergence theorem and other properties of the integral, see
Muldowney [10, Chapter 2].

Henstock formulated the theory of integration in function spaces in
[4, pp. 210–249], [5] and [6].

3. Henstock’s criteria

We state and prove Henstock’s necessary and sufficient conditions for
taking limits under the integral sign.

The problems are as follows. If hn is integrable and hn → h as n → ∞,
then

1. When is h integrable?
2. When does limn→∞

∫
hn exist?

3. When does
∫
h = limn→∞

∫
hn?

Let E be an elementary set in RB. E may be unbounded in some or all
dimensions, for instance, if E = RB. So, when we say that hn → h, it is not
sufficient that n > n0 implies |hn(x,N, I)− h(x,N, I)| < ε for each x,N, I.

Instead we need the following. hm converges boundedly to h if there exist
a positive function β(x,N, I), a gauge γ0 and integers m0 = m0(x,N, I) de-
fined for each γ0-fine (x, I[N ]) so that, firstly, (Eγ0)

∑
β(x,N, I) is bounded
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for all γ0-fine divisions Eγ0 of E and, secondly, m > m0(x,N, I) implies2

|hn(x,N, I)− h(x,N, I)| < εβ(x,N, I) (5)

for all γ0-fine (x, I[N ]).
The following proposition gives Henstock’s criteria for taking limits under

the integral sign. The statement and proof are adapted from Henstock
[7, pp. 120–125]. B(a, b) denotes a ball with centre a and radius b.

Proposition 1 (Henstock’s criteria). Suppose hn(x,N, I) converges
boundedly to h(x,N, I).

1. h is integrable in E if and only if there exist a ball B1 of arbitrar-
ily small radius, and, correspondingly, a gauge γ, and integers p =
p(x,N, I) so that m = m(x,N, I) > p(x,N, I) and for each Eγ

(Eγ)
∑

hm(x,N,I)(x,N, I) ∈ B1. (6)

2. limn→∞
∫
E hn exists if and only if there exist a ball B2 of arbitrarily

small radius, a corresponding integer n0 and, for each n > n0, a gauge
γn so that for each Eγn

(Eγn)
∑

hn(x,N, I) ∈ B2. (7)

3. Given the existence of
∫
E h and limn→∞

∫
E hn, the two are equal if

and only if

B1 ∩B2 6= ∅. (8)

(In other words, if and only if B1 and B2 are concentric.)

Proof. 1. If h is integrable, with
∫
E h = a, then let ε > 0 be given, take

γ = γ0, take p(x,N, I) = m0(x,N, I), and let K be an upper bound for
(Eγ0)

∑
β(x,N, I) for all Eγ0 , so that

(Eγ0)
∑

hm(x,N,I)(x,N, I) ∈ B(a,Kε).

Conversely, if there exist B1, γ and p(x,N, I) so that

(Eγ)
∑

hm(x,N,I)(x,N, I) ∈ B1,

then with K as before, take γ′ = γ0 ∧ γ and

m(x,N, I) ≥ max{p(x,N, I), m0(x,N, I)}
for (x, I[N ]) γ′-fine, so that for each Eγ′ ,

(Eγ′)
∑

h(x,N, I) ∈ B1 +B(0,Kε),
2If hn = fn(x,N)p(I), and if p(I) is VBG∗ (has generalised bounded variation), then

bounded convergence of hn is equivalent to pointwise convergence of fn(x,N), as we shall
see.
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giving the integrability of h.

2. If limn→∞
∫
E hn, = b, exists, then there exists n0 so that n > n0

implies
∫
E hn ∈ B(b, ε). In other words, there exists γn so that for all Eγn ,

(Eγn)
∑

hn(x,N, I) ∈ B(b, 2ε).

Conversely, suppose there exist B2, n0 and γn, with n > n0, so that
(Eγn)

∑
hn ∈ B2. Since each hn is integrable there exist gauges γ′n so that

for all Eγ′n |(Eγ′n)
∑
hn−

∫
E hn| < ε. Now take γ′′n ≺ γn∧γ′n and take γ′′n-fine

divisions. Then, for n > n0,
∫
E hn ∈ B2 +B(0, ε), so limn→∞

∫
E hn exists.

3. If ε is an arbitrary positive number then, given the existence of a =∫
E h and b = limn→∞

∫
E hn, we have a = b if and only if B1 = B(a,Kε)

and B2 = B(b, 2ε) have non-empty intersection.

4. The Feynman integral

The first stage in the construction of the Lebesgue integral in function
spaces (see [13]) is to consider cylinder sets on which a pre-measure is de-
fined. In the second stage the cylinder sets and pre-measure generate, re-
spectively, a σ-algebra of sets in the function space, and a measure defined
on these which is used to integrate measurable functions of points in the
function space.

In the preceding sections, we have described the corresponding construc-
tion of Henstock’s generalised Riemann integral. The definition in this case
needs only the machinery of the first stage of the Lebesgue definition, that
is, cylinder sets and the pre-measures or volume functions defined on them.
It is possible at this stage to restrict our discussion to integrands which con-
form to the traditional structure of point function multiplied by set function,
f(x)×µ(I). The analysis of Feynman integrals which we are engaged upon
can be conducted in these terms. But it is more comprehensive and, ar-
guably, simpler, to treat the integrand, not as a product, but as a joint
function h(x, I) (or functional) of points x in the function space and of
cylinder sets I. The latter approach also has the psychological benefit of re-
ducing the measure theoretic “feel” of the subject, and this is an advantage
in the Feynman problem where measure theory has little to contribute.

Our starting point in Feynman integration is the expression (1) above∫ v1

u1

· · ·
∫ vn−1

un−1

exp
n∑
j=1

[
ιε

~

{
m

2

(
xj − xj−1

ε

)2

− V (xj)

}]
dx1

A
· · · dxn−1

A
,
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which, taking V = 0, we have modified to the form (3)∫ v1

u1

· · ·
∫ vn−1

un−1

exp

λ n∑
j=1

(xj − xj−1)2

2(tj − tj−1)

 n∏
j=1

(
2π
−λ

(tj − tj−1)
)−1/2

dx1

. . . dxn−1.

This is to be read as a volume function defined on cylinder sets in R]τ ′,τ [, but
can also be interpreted as a volume function defined on the finite dimensional
space RN , with x(N) = (x1, . . . , xn−1).

With λ = a + ιb, a ≤ 0, b ≥ 0, λ 6= 0, and V a real-valued function of a
single real variable, let gV (x,N) denote

exp

λ
2

n∑
j=1

(xj − xj−1)2

tj − tj−1
− V (xj−1)(tj − tj−1)

 n∏
j=1

(
2π
−λ

(tj − tj−1)
)−1/2

,

so, in the free particle case, with V identically zero,

g0(x,N) = exp

λ
2

n∑
j=1

(xj − xj−1)2

tj − tj−1

 n∏
j=1

(
2π
−λ

(tj − tj−1)
)−1/2

.

The above expressions also define the functions gV (x(N), N), g0(x(N), N)
on the finite dimensional space RN , where N is now taken to be a fixed set
of dimensions. Let

gV (x,N, I) := gV (x,N)|I[N ]|, gV (x(N), I(N)) := gV (x(N), I(N))|I(N)|.
The latter is the finite dimensional version of the former. Each of the two
functions takes the same complex values.

Let J [N ] be a cylinder set in the function space R]τ ′, τ [, so J(N) is an
interval in the finite dimensional space RN . Let

GV (J(N)) :=
∫
J(N)

gV (x(N), I(N)),

where N is fixed and the integral is finite dimensional, and is approximated
by Riemann sums in which J(N) is partitioned by sub-intervals I(N). As
a finite dimensional expression with fixed N , gV is integrable, for instance,
if V is continuous. Now let

GV (J [N ]) := GV (J(N)),

so GV is now defined for infinite dimensional cylinder sets as well as finite
dimensional intervals. An obvious corollary of Muldowney [10, Proposition
68, p. 84] is that, taking M to be a fixed dimension set and J [M ] a fixed
cylinder set,

G0(J [M ]) =
∫
J [M ]

g0(x,N, I),
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where the latter integral is infinite dimensional and is approximated by
Riemann sums in which J [M ] is partitioned into subintervals I[N ] with
N ⊇M . When V is not identically zero, the relationship betweenGV (J [M ])
and

∫
J [M ] gV (x,N, I) is less simple. Sometimes we want to integrate GV .

In such situations we require GV to be defined for each associated x, N , I,
so we take

GV (x,N, I) = GV (I[N ]).

Note thatGV (J) corresponds to Feynman’s probability amplitude (1) above,
with the τj ’s replaced by tj ’s, with the fixed ε = τj−τj−1 replaced by variable
εj = tj − tj−1, and with units chosen so that m = ~ = 1. G0(J) is (3) in an
alternative notation. We turn now to an interpretation of the state function
ψ(ξ, τ) corresponding to Feynman’s expression (2). Let

v(x,N) := exp

λ n∑
j=1

V (xj−1)(tj − tj−1)

 .

Assume V is a continuous function of a single real variable. Let C denote
the set of continuous x in R]τ ′, τ [ and let D denote R]τ ′, τ [ \ C. Let

v(x) :=
{

exp
(
λ
∫ τ
τ ′ V (x(t))dt

)
if x ∈ C,

0 if x ∈ D. (9)

Let v(x(N)) := v(x,N) whenever we need a finite dimensional version of v.
Let m = 2q and let τ0 = τ ′, τj = τj−1 + 2−q(τ − τ ′) for 1 ≤ j ≤ m − 1 so
τm = τ . Let M denote the fixed set of dimensions {τ1, . . . , τm−1} and let

v(x(M)) = v(x; M) = exp

λ m∑
j=1

V (x(τj−1))(τj − τj−1)

 .

Let

vm(x) :=
{
v(x; M) if x ∈ C,
0 if x ∈ D. (10)

For x ∈ C, vm(x)→ v(x) as m→∞.
Let ψV (ξ, τ) denote the infinite dimensional integral of v(x,N)G0(I)

whenever it exists;

ψV (ξ, τ) =
∫

R]τ ′,τ [
v(x.N)G0(I). (11)

The integrability of v(x,N)G0(I) is discussed in Muldowney [10, Chap-
ter 4, pp. 77–88]. By Muldowney ([10, Proposition 60, p. 79]), each of
v(x,N)G0(I), GV (x,N, I), gV (x,N)|I| is integrable in R]τ ′, τ [ whenever any
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one of them is, and then we have

ψV (ξ, τ) =
∫

R]τ ′, τ [
v(x,N)G0(I) =

∫
R]τ ′, τ [

GV (x,N, I) =
∫

R]τ ′, τ [
gV (x,N)|I|.

It is shown in Muldowney [10, Proposition 68, p. 84, and Proposition 60,
p. 79], that G0(x,N, I) and g0(x,N)|I| are integrable and∫

R]τ ′, τ [
G0(x,N, I) =

∫
R]τ ′, τ [

g0(x,N)|I| =
(
π

−λ
(τ − τ ′)

)−1/2

exp
λ(ξ − ξ′)2

τ − τ ′
,

which is, therefore, ψ0(ξ, τ). Thus Henstock’s integral gives the correct
form of the quantum mechanical state function in the case of a single free
particle moving in one dimension (V identically 0), and so justifies the use
of ψ notation in this case. A fuller justification is given later.

As before, take 1X to be the indicator function of any set X, so

1X(x) =
{

1 if x ∈ X,
0 otherwise.

Let CM denote the set of x in R]τ ′, τ [ which are continuous at each t in M
so 1CM is the indicator functional of CM .

It is shown in Muldowney ([10, Proposition 77, p. 91]), that R]τ ′, τ [ \CM
is a null set relative to G0, and

ψV (ξ, τ) =
∫

R]τ ′, τ [
gV (x,N)|I|1CM (x)

=
∫

R]τ ′, τ [
v(x,N)G0(I)1CM (x) (12)

whenever ψV (ξ, τ) exists. See also Muldowney [11, pp. 131–135].
C is the set of continuous x in R]τ ′, τ [ and is a subset of CM which is,

in a sense, much smaller than CM . Nonetheless, it is possible to define a
cylinder function F0 which is, in the terminology of probability theory, a
continuous modification of G0, so that

ψV (ξ, τ) =
∫

R]τ ′, τ [
v(x,N)F0(I)1C(x).

Consider Riemann sums which, in the limit, give the left hand side of (12).
By (12), we can remove all those terms containing I[N ] which are attached
to points (or paths) x which are discontinuous at some t ∈ N without
affecting, in the limit, the value of the Riemann sums.

But how will the overall limiting value of the Riemann sums be affected
if we remove from the Riemann sums all those terms containing I[N ] which
are attached to those x which are discontinuous at any t ∈]τ ′, τ [, a much
larger set?
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Following the classical method of construction of Brownian motion, we
adjust or modify the pre-measure G0 in a way which leaves the values of
the Riemann sums unaffected by this procedure, just as it is unaffected in
(12).

Suppose t′, t′′, t′′′, . . . ∈]τ ′, τ [ are “close together”. Then for the continu-
ous x of Brownian motion, the values x(t′), x(t′′), x(t′′′), . . . will be “close
together”, — nearly equal but rarely equal. When we represent the t’s by
a system of Cartesian co-ordinates, such x’s will be “fairly close” to a di-
agonal axis which is equi-angular to the t′, t′′, t′′′, . . . axes. This is how the
familiar jagged path picture of an everywhere continuous and nowhere differ-
entiable element of Brownian motion translates into a point in a Cartesian
co-ordinate scenario.

These properties of Brownian motion carry over into the Feynman set-
ting. See Muldowney ([10, Propositions 47, p. 62, and 88, p. 103]); and
Muldowney ([11, pp. 131–135]).

For those x’s which are not close to the diagonal axis, differences between
the values x(t′), x(t′′), x(t′′′) . . . will be larger, and the terms of Riemann
sum which are evaluated at such x’s, when grouped together, will be sub-
ject to the cancellation effects described by Feynman — provided we are
using a non-absolute method of integration such as Henstock’s. They will
contribute, in aggregate, little or nothing to the net value of their Riemann
sum.

By (12) we know that this will work for x which are removed from the
Riemann sum for failing the test of continuity at t ∈ N . To ensure that
it works for those x which may, in addition, fail the test of continuity at
t ∈]τ ′, τ [ \N , we modify G0 in such a way that the latter terms get included
in the Riemann sum in a different guise. That is the rationale for the
following. Let

F0(y,M, J) :=
{ ∫

J [M ]G0(I[N ])1CM (x) for y ∈ C,
0 for y /∈ C. (13)

Let
F0(J [M ]) :=

∫
R]τ ′, τ [

F0(x,M, I), F0(J(M)) := F0(J [M ]).

Then the random processes induced on the sample space R]τ ′, τ [ by the finite
dimensional distribution F0(I) is a continuous modification of the process
induced by G0(I). We shall prove that F0(I) corresponds to a random
process with continuous sample paths, See also Muldowney [13, Theorem 5].

The Feynman volume or pre-measure G0(I) is VBG∗ (i.e. has generalised
bounded variation). That is, there exist sets Xk in R]τ ′, τ [, positive numbers
αk, and a gauge γ1 so that, for every Eγ1 ,

(Eγ1)
∑
|G0(I)|1Xk(x) < αk, k = 1, 2, . . . . (14)
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For proof, see Muldowney [10, Propositions 83, 84 and 85, pp. 97–98].
For ease of reference, we now gather together some of the results that

have been examined in this section. Reviewing the notation, g refers to
the Gaussian kernel of the Feynman theory; the upper-case G refers to
integrated versions of g; the subscript V specifies the potential function
applied to the system; and the subscript 0 indicates the important V = 0
case. F designates the continuous modification of G.

Proposition 2. ψ0(ξ, τ) =
∫
R]τ,τ [ G0([N ]) exists and equals(

π

−λ
(τ − τ ′)

)−1/2

exp
λ(ξ − ξ′)2

τ − τ ′
.∫

E G0(x,N, I) exists for every elementary set E.

Proposition 3. If v(x,N)G0(I) is integrable then gV (x,N, I) and
GV (x,N, I) are integrable, and

ψV (ξ, τ) =
∫

R]τ,τ [
v(x,N)G0(I) =

∫
R]τ,τ [

gV (x,N, I) =
∫

R]τ,τ [
GV (x,N, I).

Proposition 4. gV (x,N, I), GV (x,N, I) are VBG∗.

Proposition 5. For any cylinder set J [M ], F0(J [M ]) = G0(J [M ]).

Proof. This follows from (13) and Proposition 2.

Proposition 6. F0(x,N, I) is VBG∗.

Proof. Follows from Proposition 5 since G is VBG∗.

Proposition 7. If v(x,N)G0 is integrable then so is v(x,N)F0, and

ψV (ξ, τ) =
∫

R]τ,τ [
v(x,N)G0(I) =

∫
R]τ,τ [

v(x,N)F0(I) =
∫
C
v(x,N)F0(I).

Proof. Follows from (13) and (5).

Recalling the definition of v(x) in (9), we prove a version of the Feynman-
Kac formula.

Proposition 8. If V is continuous and ψV (ξ, τ) exists, then

ψV (ξ, τ) =
∫

R]τ,τ [
1C(x)v(x)F0(I) =

∫
C
v(x)F0(I).
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Proof. Since F0 is VBG∗; we can choose γ1 in (14) so that for each x ∈ Xj ,
N ⊃ LA(x) implies |v(x,N)− v(x)| < ε2−jαj . Then for each Eγ1 ,∣∣∣(Eγ1)

∑
(v(x,N)− v(x))F0(I)

∣∣∣ ≤ (Eγ1

∑
|v(x,N)− v(x)||F0(I)|

=
∞∑
j=1

∑
x∈Xj

|v(x,N)− v(x)||F0(I)|

<

∞∑
j=1

ε2−jα−1
j αj = ε.

The result follows by Proposition 7.

The corresponding result for Brownian motion (λ = −1) is (4) above. If
we were to use the notation of (4) here, we would write

ψV (ξ, τ) =
∫
C(]τ ′,τ [)

(∫ τ

τ ′
exp (λV (x(t))) dt

)
dF0.

However the dF0 notation is unsuitable in our terms, since it implies F0 is
a measure, which it is not.

5. Feynman’s limit

We have defined ψV (ξ, τ) as a Henstock integral over the function space,
and, having done so, are interested in establishing the conditions for which
Feynman’s limit (2) is, in our terms, valid3. In other words, we want to show
that the existence of Feynman’s limit implies the existence of the Henstock
integral (11) and the equality of the two.

With τj = τ + j2−q(τ − τ ′), j = 1, . . . ,m− 1, where m = 2q, let

M := {τ1, . . . , τm−1}.
For y = (y1, . . . , ym−1) ∈ Rm−1, yj = y(τj) for 1 ≤ j ≤ m− 1, y0 = ξ′ and
ym = ξ, let g(m)

V (y) denote

exp

λ m∑
j=1

1
2

(yj − yj−1)2

τj − τj−1
− V (yj−1)(τj − τj−1)

 m∏
j=1

(
2π
−λ

(τj − τj−1)
)−1/2

.

In effect, Feynman defined the state function ψV (ξ, τ) to be the following
limit:

lim
m→∞

∫
Rm−1

g
(m)
V (y)dy. (15)

3It is obviously valid when the potential V is identically zero (the free particle case).
See Muldowney [10, Proposition 68, page 84].
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(15) is (2) in an alternative notation. Note that Feynman used τj = τj−1 +
m−1(τ − τ ′) (see (1) and (2) above), whereas we find it convenient to use
m = 2q and τj = τj−1 +2−q(τ−τ ′), so we will be dealing with a subsequence
of Feynman’s sequence of finite dimensional integrals.

Proposition 9. If V is continuous and
∫
Rm−1 g

(m)
V (y)dy exists, and equals

fm, then ∫
R]τ ′, τ [

v(x;M)G0(I)

exists and equals fm. So∫
R]τ ′, τ [

v(x;M)G0(I) = fm, (16)

and there exists γ2 so that, for every Eγ2 ,

|(Eγ2)
∑

v(x;M)G0(I)− fm| < ε. (17)

Proof. Follows from Muldowney [10, Proposition 69, p. 87].

Suppose hm(y(m)) is defined for y(m) ∈ RM . We say that hm is uni-
formly integrable to Hm, m = 1, 2, 3, . . . , if, given ε > 0, there exist pos-
itive functions {δ0} defined for y(m) ∈ RM , with δ0(y(m)) = δ0(y(m+1)),
m = 1, 2, 3, . . . , such that, for all δ0-fine divisions Eδ0 of RM ,∣∣∣(Eδ0)

∑
hm(y(m))|I(M)| −Hm

∣∣∣ < ε.

Proposition 10. If V is continuous, G(m)
V (y) is uniformly integrable in

RM , m = 2, 3, . . . , and fm =
∫
RM G

(m)
V (y)dy converges to a limit f as

m→∞, then ψV (ξ, τ), =
∫
R]τ ′, τ [ v(x, N)G0(I), exists and equals f .

Proof. The first of Henstock’s criteria (6) is the one which gives this result.
Let ε > 0 be given. We need to define a gauge γ and integers p(x) so that
for m(x) > p(x) and all Eγ ,

|(Eγ)
∑

vm(x)(x)F0(I)− f |

is of order ε. Choose s0 so that s > s0 implies |fs−f | < ε. For each x ∈ Xk,
choose p(x) > s0 so that m(x) > p(x) implies

|vm(x)(x)− v(x)| < εα−1
k 2−k.

Then ∣∣vm(x)(x)F0(I)− v(x)F0(I)
∣∣ < εα−1

k 2−k|F0(I)|,



18 P. Muldowney

so, taking γ0 ≺ γ1 in (14) above, and

β(x,N, I) = |F0(I)|α−1
k 2−k,

we have

(Eγ0)
∑

β(x,N, I) <
∞∑
k=1

2−k = 1,

so vm(x)F0(I) converges boundedly (see (5)) to v(x)F0(I). Choose γ ≺
γ0 ∧ γ2 (where the gauge γ2 is defined in (17) above), and let γ = (δ, LA)
satisfy, in addition,

A ⊇ ∪∞r=0{τj : j = 1, . . . , r − 1},
LA(x) ⊇ {τ1, . . . , τp(x)},
δ(x) ≤ δ0(x(τj)),

where δ0 is the gauge of uniform integrability of G(m)
V . Given a division Eγ

and a Riemann sum (Eγ)
∑
vm(x)(x)F0(I) with m(x) > p(x), let

m = max{m(x) : (x, I[N ]) ∈ Eγ}, M = {τ1, . . . , τm−1}.
Then

|(Eγ)
∑

vm(x)(x)F0(I)− f | ≤ a+ b+ c+ d,

where

a = |(Eγ)
∑

vm(x)(x)F0(I)− (Eγ)
∑

vm(x)F0(I)|,

b = |(Eγ)
∑

vm(x)F0(I)− (Eγ)
∑

v(x; M)F0(I)|,

c = |(Eγ)
∑

v(x; M)F0(I)− fm|,
d = |fm − f |.

We have

a < 2ε since m > p(x) and m(x) > p(x),
b = 0,
c < ε, by uniform integrability, and
d < ε.

This completes the proof.

Essentially, this proposition establishes that Feynman’s definition ((2) or
(15)) of the state function coincides with the definition (11) provided by
the Henstock theory, under conditions of continuity and smoothness of V .
For instance, if V is constant the hypotheses of the proposition are valid,
and the conclusion of the proposition is confirmed in this simple case by
Proposition 68 of Muldowney [10, p. 84].
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It also gives conditions of a finite dimensional character for the existence
of Feynman integrals, giving access to the computation and evaluation of
such integrals. See, for example, Montroll [9] and Gelfand and Yaglom [3].

As in the following section, simpler and more familiar methods of proof
will give the results for the special case λ = −1 (Brownian motion). See
Muldowney [10, Proposition 53, p. 67, and Proposition 57, p. 70].

6. Schrödinger’s equation

We wish to prove that ψV (ξ, τ) satisfies Schrödinger’s equation. That is,

∂ψV
∂τ
− λ

2
∂2ψV
∂ξ2 + λV (ξ)ψV = 0.

This is clearly true for some simple classes of V . See Muldowney [10, Propo-
sition 68, p. 84, and pp. 100–103] .

What is involved in the various partial derivatives? We have

ψV =
∫

R]τ ′, τ [
gV (x,N, I),

∂ψV
∂τ

=
∂

∂τ

∫
R]τ ′, τ [

gV (x,N, I),

where the integrand

gV (x,N, I) = gV (x,N, I; ξ, τ)

depends on ξ and τ . We demonstrate below that gV satisfies

∂gV
∂τ
− λ

2
∂2gV
∂ξ2 + λV (xn−1)gV = 0,

with xn−1 approaching ξ, and we may be able to use some theorem on
differentiation under the integral sign. But the space R]τ ′, τ [, over which we
are integrating, also varies when we vary τ . Methods such as dominated
convergence or Henstock’s criteria cannot be applied straightforwardly in
such a situation.

We avoid this difficulty by embedding R]τ ′, τ [ in R]τ ′, τ̄ [ where τ̄ > τ . We
let x̄, N̄ , Ī denote objects in R]τ ′, τ̄ [, corresponding to x, N , I in R]τ ′, τ [,
where N = {t1, . . . , tn−1} with tn = τ , N̄ = {t1, . . . , tn−1, tn, . . . , tm−1}
with tm = τ̄ , and so on. Given h(x,N, I) defined in R]τ ′, τ [, extend h to
R]τ ′, τ̄ [ as follows.

h(x̄, N̄ , Ī) =
{

0 if t ∈ N̄ \N and x̄(t) 6= 0;
h(x,N, I) if t ∈ N̄ \N and x(t) = 0.

In the analysis below, we assume such an embedding has been performed,
so limits involving τ can be taken independently of the space in which
integration is performed.
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Recall that gV (x, N, I) (or gV (x, N, I; ξ, τ)) denotes

exp

λ n∑
j=1

(
1
2

(xj − xj−1)2

tj − tj−1
− V (xj−1)(tj − tj−1)

) n∏
j=1

(
2π
−λ

(tj − tj−1)
)−1/2

,

where
x0 = ξ′, xn = ξ, t0 = τ ′, tn = τ.

By differentiation,

∂gV
∂τ

= −1
2

(τ − tn−1)−1gV −

(
λ

2

(
ξ − xn−1

τ − tn−1

)2

+ λV (xn−1)

)
gV ,

∂gV
∂ξ

= λ
ξ − xn−1

τ − tn−1
gV ,

∂2gV
∂ξ2 =

λ

τ − tn−1
gV −

(
ξ − xn−1

τ − tn−1

)2

gV .

Thus
∂gV
∂τ
− λ

2
∂2gV
∂ξ2 + λV (xn−1)gV = 0.

Now recall that

ψV =
∫

R]τ ′, τ [
gV (x,N, I[N ]) =

∫
R]τ ′, τ̄ [

gV (x̄, N̄ , Ī[N̄ ]).

Then, provided we can reverse the order of integration and differentiation,
we get

∂ψV
∂τ
− λ

2
∂2ψV
∂ξ2 + λV (ξ)ψV = 0,

since the sample paths are continuous and xn−1 → ξ, V (xn−1) → V (ξ) as
n→∞ provided V is continuous at ξ. In the case λ = −1, we can use the
dominated convergence theorem to justify changing the order of integration
and differentiation, and the equation is a diffusion equation for Brownian
motion. See Muldowney [10, Proposition 57, p. 70], also [10, pp. 101–103].
The method used there is similar to that used by Kac [8].

If λ has an imaginary component, or λ = ι, such a simple approach is
generally impossible, and we must use Henstock’s criteria for taking limits
under the integral sign. For brevity, we make some notational short cuts.
Given h(ξ, τ), let

Dabch(ξ, τ) :=
1
a
ha(ξ, τ)− λ

bc
hbc(ξ, τ)

where

ha(ξ, τ) = h(ξ, τ + a)
hbc(ξ, τ) = h(ξ + b+ c, τ)− h(ξ + b, τ)− h(ξ + c, τ) + h(ξ, τ)
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for non-zero real numbers a, b, c. Then

lim
a, b, c→0

Dabch(ξ, τ)

exists and equals
∂h

∂τ
− λ

2
∂2h

∂ξ2

if and only if the partial derivatives

∂h

∂τ
,
∂2h

∂ξ2

exist. From the differentiation above we have

lim
a,b,c→0

DabcgV = −λV (xn−1)gV ,

and we assume that gV (x̄, N̄ , Ī) is integrable in R]τ ′, τ̄ [ for a range of values
of ξ and τ .

Then, provided V is continuous at ξ, V (xn−1)gV is integrable in R]τ ′, τ̄ [,
and

∫
V (xn−1)gV = V (ξ)ψV . See Muldowney [10, Proposition 86, p. 98],

for a proof of this. Thus, provided V is continuous at ξ,∫
R]τ ′, τ̄ [

lim
a,b,c→0

DabcgV

exists and equals −λV (ξ)ψV .
By assumption,

∫
DabcgV , = Dabc

∫
gV , exists for a range of a, b, c. The

questions we must resolve are:
1. Does lima,b,c→0Dabc

∫
gV exist? That is, do the partial derivatives

∂ψV
∂τ

,
∂2ψV
∂ξ2

exist?
2. Is lima,b,c→0Dabc

∫
gV (when it exists) equal to

∫
lima,b,c→0DabcgV ? In

other words, does the following hold?(
∂

∂τ
− λ

2
∂2

∂ξ2

)
ψV = −λV (ξ)ψV .

Proposition 11. If V is continuous at ξ, and provided we have ξ0 and τ0
with gV (x̄, N̄ , Ī) integrable in R]τ ′, τ̄ [ for each ξ and τ in a neighbourhood
of ξ0 and τ0, then

∂ψV
∂τ
− λ

2
∂2ψV
∂ξ2 + λV (ξ)ψV = 0.
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Proof. In this case, the second of Henstock’s criteria (7) is the one we need.
First we consider the convergence of Dabc

∫
gV , (=

∫
DabcgV ) as a, b, c→ 0.

Let ε > 0 and a, b, c (with τ ′ − τ < a < τ̄ − τ and τ in the appropriate
neighbourhood of τ0) be given. Let E and D denote divisions of R]τ ′, τ̄ [, and
consider

Dabc(E)
∑

gV (ξ, τ)−Dabc(D)
∑

gV (ξ, τ).

This expression can be re-arranged so that it consists of
1
a

(E)
∑

gV (ξ, τ + a)− 1
a

(D)
∑

gV (ξ, τ + a)

and five similar terms. By the assumed integrability of gV , a gauge γ1 can
be chosen so that

|1
a

(Eγ1)
∑

gV (ξ, τ + a)− 1
a

(Dγ1)
∑

gV (ξ, τ + a)| < ε.

Similarly define
γ2, . . . , γ6

for the other five terms, respectively. Now let γ satisfy

γ ≺ γ1 ∧ γ2 ∧ . . . ∧ γ6.

So
|Dabc(Eγ)

∑
gV (ξ, τ)−Dabc(Dγ)

∑
gV (ξ, τ)| < 6ε.

Thus
∂ψV
∂τ

,
∂2ψV
∂ξ2

exist whenever gV is integrable for a suitable range of ξ, τ . Now consider
the equality of lima,b,c→0

∫
gV and

∫
lima,b,c→0DabcgV . We have(

∂

∂τ
− λ ∂

2

∂ξ2

)∑
gV (ξ, τ) =

∑
−V (xn−1)gV (ξ, τ).

γ can be chosen so that

|(Eγ)
∑

(−V (xn−1)gV )− (−V (ξ)ψV ) | < ε,

and, given ε, we can find a0, b0, c0 > 0 so that

|a|, |b|, |c| < a0, b0, c0

imply ∣∣∣Dabc(Eγ)
∑

gV − (Eγ)
∑

(−V (xn−1)gV )
∣∣∣ < ε.

So ∣∣∣Dabc(Eγ)
∑

gV − V (ξ)ψV
∣∣∣ < 2ε.

Therefore the requirements of Henstock’s criteria are satisfied and the propo-
sition is proved.
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7. Conclusion

To sum up, we have taken Feynman’s concept of probability amplitude
and used it to define the state function of quantum mechanics, in a manner
which is consistent with, and is an extension of, the probabilistic analysis
of Brownian motion.

We have established conditions for which Feynman’s limit of finite di-
mensional integrals gives the state function as we have defined it.

This solution to the Feynman problem depends on Henstock’s theory of
non-absolute integration in function spaces, and on Henstock’s criteria for
taking limits under the integral sign.
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