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Abstract. A theorem on the existence of separable supports of σ-finite
Borel measures given on metric spaces with small topological weights
is applied to constructions of certain analogues of special subsets of the
real line.

A well-known result from topological measure theory states that every
σ-finite Borel measure on a metric space whose weight is not real-valued
measurable possesses a separable support (cf. [7] and [10]). The main goal
of the present article is to demonstrate several applications of this result to
some generalized analogues of classical subsets of the real line R (e.g. Luzin
sets, Sierpiński sets and so on).

We assume that all topological spaces E under consideration below sat-
isfy the following condition: all one-element subsets of E are Borel (in E).
The symbol ω denotes, as usual, the first infinite cardinal, ω1 — the first
uncountable cardinal and c denotes the cardinality continuum.

We recall that E is a universal measure zero space (or universally negli-
gible space) if there is no nonzero σ-finite diffused Borel measure on E.

The so-called Luzin subsets of the real line R yield nontrivial examples
of uncountable universal measure zero spaces. According to the classical
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universal measure zero space.

ISSN 1425-6908 c©Heldermann Verlag.



78 A.B. Kharazishvili

definition, a set X ⊂ R is a Luzin set (respectively, a generalized Luzin set)
if X is uncountable (respectively, card(X) = c) and, for each first category
set Z ⊂ R, we have card(X ∩ Z) ≤ ω (respectively, card(X ∩ Z) < c).

It is well known (see, e.g., [6]–[10]) that the Continuum Hypothesis (re-
spectively, Martin’s Axiom) implies the existence of Luzin sets (respectively,
of generalized Luzin sets). In addition, if Martin’s Axiom and the negation
of the Continuum Hypothesis hold, then there are no Luzin subsets of the
real line. In particular, the question of the existence of Luzin sets on R is
undecidable in the theory ZFC (for more details, see [6]).

Many years ago Luzin showed that every Luzin set on R is universal
measure zero. This evidently implies that, under certain set-theoretical
assumptions, there are uncountable universal measure zero subspaces of R.
Later on, Luzin also demonstrated in ZFC, by using some methods of the
theory of analytic sets, that there exist universal measure zero subspaces
of R having cardinality ω1 (see, e.g., [7] and [8]). This classical result
is sharp because, as established by Baumgartner and Laver, some models
of set theory are possible where the cardinality of each universal measure
zero subset of R is less than or equal to ω1 (cf. [8] and the references
therein). Also, as mentioned above, if Martin’s Axiom holds, then there
are generalized Luzin subsets of R being simultaneously universal measure
zero spaces of cardinality continuum. On the other hand, if the cardinality
continuum is real-valued measurable, then there is no universal measure
zero set in R of cardinality c.

It is interesting to note that, replacing R by some natural nonseparable
spaces, we obtain an essentially different situation. The statement below
illustrates this fact.

Theorem 1. Let H be a Hilbert space over R whose Hilbert dimension is
c (i.e. any orthonormal basis in H has cardinality c). The following two
assertions are true:

1) if c is not real-valued measurable, then there exists a universal mea-
sure zero subspace X of H which is everywhere dense in H (in particular,
card(X) = c);

2) if c is a regular cardinal and the negation of the Continuum Hypothesis
is fulfilled, then there exists no generalized Luzin subset of H, i.e. there
exists no subset X of H with card(X) = c such that, for any first category
set Z ⊂ H, the inequality card(X ∩ Z) < c is satisfied.

Proof. Notice that, since Hilbert dimension of H is c, the cardinality of
H is also equal to c. Moreover, it is not hard to see that each everywhere
dense subset of H has cardinality c.

First, we are going to show that 1) is true. For every natural number
n > 0, let us denote by (Ui,n)i∈I a covering of H by open balls with radius
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1/n. We may suppose without loss of generality that the set I is well ordered
by � and that

Ui,n \
⋃
{Uj,n : j ≺ i} 6= ∅

for all i ∈ I (indeed, if the latter set-theoretical difference is empty, then
we can withdraw Ui,n from our covering). Pick any point xi,n from Ui,n \⋃
{Uj,n : j ≺ i} and put

Xn = {xi,n : i ∈ I}.
It is not difficult to check that the set Xn is σ-discrete in the space H (cf.
[7] or [10]) and forms a (2/n)-net in H. Further, we put

X =
⋃
{Xn : 0 < n < ω}

and we assert that X is the required subset of H. The density of X in H
is evident. Consider now an arbitrary Borel diffused probability measure µ
on H. Since c is not real-valued measurable, there exists a closed separable
set F in H such that µ(F ) = 1. In virtue of our construction, we may write

card(Xn ∩ F ) ≤ ω,
for each n > 0, because Xn is σ-discrete and F is separable. Consequently,
we get card(X ∩ F ) ≤ ω. This immediately implies that

µ∗(X ∩ F ) = 0

and hence
µ∗(X) ≤ µ∗(X ∩ F ) + µ∗(X ∩ (H \ F )) = 0

which, in particular, shows that X is universal measure zero.
Now, let us establish that 2) is true, too. Let the assumption of 2) be

satisfied, and suppose to the contrary that there exists a generalized Luzin
subset X of H. It is not hard to check that H can be represented in the
form

H =
⋃
{Vξ : ξ < ω1}

where all Vξ are proper closed vector subspaces of H. Indeed, H is the
orthogonal sum of two its Hilbert subspaces H ′ and H ′′ where H ′ has Hilbert
dimension ω1. Let {eξ : ξ < ω1} be an orthogonal basis ofH ′. Then, for any
ordinal ξ < ω1, we put Vξ = the Hilbert space generated byH ′′∪{eζ : ζ < ξ}.

Evidently, each set Vξ is nowhere dense in H. Consequently,

c = card(X) =
∑
ξ<ω1

card(X ∩ Vξ).

In other words, we obtain that c is a singular cardinal. But this is impos-
sible.

In particular, we see that, assuming Martin’s Axiom and the negation of
the Continuum Hypothesis there are no generalized Luzin subsets of H.
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The theorem has thus been proved. 2

We shall say that a topological space E is a Sierpiński space if E does
not contain a universal measure zero subspace whose cardinality is equal to
card(E).

It immediately follows from this definition that all Sierpiński spaces are
uncountable.

The classical Sierpiński subset of the real line R (see, e.g., [6]–[10]) may
be regarded as a standard example of a Sierpiński space. The existence of
such a subset of R can be established under the Continuum Hypothesis.
If one assumes Martin’s Axiom, then there exists a so-called generalized
Sierpiński subset of R which is a Sierpiński space, too. It is well known
that the existence of a classical Sierpiński set on R cannot be proved within
the theory ZFC. For instance, if Martin’s Axiom and the negation of the
Continuum Hypothesis hold, then there is no Sierpiński set on R (see, e.g.,
[6]). On the other hand, it is not hard to construct uncountable Sierpiński
spaces within the theory ZFC (see, e.g., the papers [4] and [5] where it is
shown that, for any infinite cardinal ωβ whose cofinality is strictly greater
than ω, there exists a Sierpiński space E with card(E) = ωβ). Some general
properties of Sierpiński spaces are discussed in these papers, too. In partic-
ular, it is demonstrated there that the union of a finite family of Sierpiński
subspaces of a given topological space is also a Sierpiński space; at the same
time, the topological sum of a countable family of Sierpiński spaces is not,
in general, a Sierpiński space. In the present article, we shall deal with some
other properties of Sierpiński spaces (in this connection, let us remark that
no purely topological characterization of Sierpiński spaces is known).

We begin with the following statement.

Theorem 2. Let E be a Sierpiński space, let E′ be a topological space with
card(E′) = card(E), such that there exists a Borel surjection from E onto
E′. Then E′ is a Sierpiński space, too.

Proof. Let g : E → E′ be a Borel surjection. Suppose to the contrary
that E′ is not a Sierpiński space. Then there exists a set Y ⊆ E′ with
card(Y ) = card(E′) which is a universal measure zero space. Consider the
family

{g−1(y) : y ∈ Y }
of nonempty sets and denote by X a selector of this family. Clearly, we have

card(X) = card(Y ) = card(E′) = card(E)

and the mapping g|X is a Borel bijection f between X and Y . Since E is
a Sierpiński space, X is not universal measure zero. Hence there exists a
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Borel diffused probability measure µ on X. But, starting with this measure,
we can define a Borel diffused probability measure ν on Y by

ν(Z) = µ(f−1(Z)) (Z ∈ B(Y ))

where B(Y ) denotes, as usual, the Borel σ-algebra of Y . We thus obtain a
contradiction with our assumption that Y is a universal measure zero space.
2

Consider the real line R equipped with its standard topology. The ques-
tion whether R is a Sierpiński space cannot be decided in the theory ZFC.
Indeed, if Martin’s Axiom holds, than there exists a generalized Luzin sub-
set of R which is a universal measure zero space. Since the cardinality of
this subset is equal to the cardinality continuum c, we conclude that, under
Martin’s Axiom, R is not a Sierpiński space. On the other hand, suppose
that the cardinality continuum is real-valued measurable and that R is not
a Sierpiński space. Then there exists a universal measure zero subspace Z
of R whose cardinality equals c. But this is impossible, because, taking
into account the real-valued measurability of c, we can easily define a Borel
diffused probability measure on Z. Thus, the real-valued measurability of
c implies that R is a Sierpiński space.

The topological product of two Sierpiński spaces is not, in general, a
Sierpiński space. To see this, let us construct, under Martin’s Axiom, a
generalized Sierpinski subset X of R with the property that

X +X = {y + z : y ∈ X, z ∈ X} = R.

The construction of X is very similar to the ones presented in [8] and [1].
Let α denote the smallest ordinal number of cardinality c. Let {xξ : ξ < α}
be the family of all points of R and let {Bξ : ξ < α} be the family of all
Lebesgue measure zero Borel subsets of R. Suppose that, for an ordinal
ζ < α, two partial sequences

{yξ : ξ < ζ}, {zξ : ξ < ζ}

of points of R have already been defined. Denote

B′ζ =
⋃
{Bξ : ξ < ζ}

and take the point xζ . Since B′ζ is of Lebesgue measure zero, we infer that
the set

(xζ − (R \B′ζ)) ∩ (R \B′ζ)
is the complement of a Lebesgue measure zero set. Hence there are two
distinct points yζ and zζ from R \B′ζ belonging to the set

R \ ({yξ : ξ < ζ} ∪ {zξ : ξ < ζ})
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and satisfying the relation
xζ = yζ + zζ .

We thus have defined the sequences

{yξ : ξ ≤ ζ}, {zξ : ξ ≤ ζ}.

Proceeding in such a way, we finally obtain the α-sequences

{yξ : ξ < α}, {zξ : ξ < α}.

Now, putting
X = {yξ : ξ < α} ∪ {zξ : ξ < α},

we get a generalized Sierpiński subset X of R such that X +X = R. The
last property immediately implies that there exists a continuous mapping
from the product space X×X onto R. As mentioned above, under Martin’s
Axiom, R is not a Sierpiński space. Applying Theorem 2, we conclude that
X×X, being the product of two Sierpiński spaces, is not a Sierpiński space.

Let E be a topological space which is not universal measure zero. A
natural question arises: does there exist a Sierpiński subspace E′ of E with
card(E′) = card(E)? It is shown in [4] and [5] that the answer to this
question is negative. Suppose now that E is a non-universal measure zero,
metrizable space whose weight is not real-valued measurable. Hence there
exists a Borel diffused probability measure µ on E. This measure is con-
centrated on some separable subspace F of E. Then, assuming Martin’s
Axiom and applying the construction similar to the one of a generalized
Sierpiński subset of R (where the standard Lebesgue measure λ plays the
role of the restriction of µ to F ), we come to a Sierpiński subspace E′ of F
associated with µ. In other words, E′ is separable, card(E′) = c and, for
any µ-measure zero set Z ⊂ E, the relation

card(Z ∩ E′) < c

is satisfied. We thus conclude that, under Martin’s Axiom, the answer to the
question formulated above is positive for the class of all metrizable spaces
of cardinality c.

Assuming Martin’s Axiom, we also have the following

Theorem 3. Let E be a metrizable space of cardinality c equipped with a
Borel diffused probability measure µ, and let X be a generalized Sierpiński
subset of E associated with µ. Then, under Martin’s Axiom, X is of first
category on each nonempty perfect subset of E, i.e. for any nonempty
perfect set P ⊆ E, the intersection X ∩ P is of first category in P .
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Proof. Let F denote a separable closed subset of E for which µ(F ) = 1
and X ⊂ F . Take an arbitrary nonempty perfect subset P of E.

Suppose first that µ(P ) = 0. Then, in view of the construction of X, we
have X ∩ P ⊂ F and card(X ∩ P ) < c. But, under Martin’s Axiom, any
separable subset of P with cardinality strictly less than c is of first category
in P .

Suppose now that µ(P ) > 0. Then, considering µ only on P and applying
to P the existence of a separable support of µ, we infer that there exists a
partition {A,B} of P into two Borel sets, such that µ(A) = 0 and B is of
first category in P . Consequently, we have again card(X ∩ A) < c which
implies that the separable set X ∩ A is of first category in P . Finally, we
obtain that the set

X ∩ P = (X ∩A) ∪ (X ∩B)

is of first category in P , too, and the proof is complete. 2

Another proof of this statement, for a classical Sierpiński subset of R, can
be found in [7] and [8]. In addition, it is proved in [7] that, each Borel subset
of a Sierpiński set is simultaneously Gδ-set and Fσ-set. In other words, the
Borel hierarchy in a Sierpiński set is almost trivial. So, it is not surprising
the fact that (under the Continuum Hypothesis) the family of all analytic
subsets of a Sierpiński set coincides with the family of all its Borel subsets.
This statement remains true for any Sierpiński space having cardinality
ω1 (note that such a space contains no uncountable discrete subspace; in
particular, it satisfies the countable chain condition).

For a topological space E, let the symbol A(E) denote the family of all
analytic subsets of E. In other words, A(E) consists of all those sets which
can be obtained as a result of (A)-operation applied to an (A)-system of
Borel subsets of E.

Theorem 4. Let E be an arbitrary Sierpiński space of cardinality ω1. Then
we have the equality

A(E) = B(E).

Proof. Let X be an analytic subset of E, i.e. X is obtained as a result of
(A)-operation applied to some (A)-system of Borel subsets of E. Suppose
for a moment that X is not Borel. Then, according to the classical theorem
of Luzin and Sierpiński (cf. [7] or [8]), there exists a canonical representation
of X in the form

X =
⋃
{Xξ : ξ < ω1},
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where all Xξ are Borel subsets of E. Since X is not Borel, there are un-
countably many nonempty sets in the family

(Xξ \
⋃
{Xζ : ζ < ξ})ξ<ω1 .

Consequently, there exists an uncountable set Y ⊂ X whose intersection
with each set of the above-mentioned family is either empty or one-element.
As demonstrated by Luzin and Sierpiński (see, e.g., [7] and [8]), the set Y is
universal measure zero (it should be noted here that their argument works
in general situation, not only for Polish spaces). So we get a contradiction
with our assumption that E is a Sierpiński space. This contradiction shows
us that all analytic subsets of E must be Borel in E. 2

The classical construction of a Sierpiński set can be applied not only to R
(or, more generally, to an uncountable Polish space equipped with a nonzero
σ-finite Borel measure) but also to some other canonical spaces. Consider,
for example, the commutative compact topological group Γ = 2c equipped
with the Haar probability measure µ. Let I(µ) denote the σ-ideal generated
by the family of all µ-measure zero subsets of Γ. It is well known that
there exists a base of I(µ) whose cardinality equals c (see, e.g., [2] or [3]).
Hence, by assuming the Continuum Hypothesis and utilizing the classical
argument, it is not hard to construct in Γ a Sierpiński set X of cardinality
c. The set X will be a Sierpiński space in the sense of our definition.
Moreover, it can easily be observed that X is nonmeasurable with respect
to the completion of µ. Indeed, on the one hand, it is clear that µ∗(X) > 0.
On the other hand, since card(X) < card(Γ), there are uncountably many
pairwise disjoint translates of X in Γ. So, taking into account the countable
chain condition for µ, we must have µ∗(X) = 0. Consequently, X (and,
moreover, each uncountable subset of X) is nonmeasurable with respect to
the completion of µ, and thus X does not contain uncountable universal
measure zero subspaces.

The same argument can be applied (under the Continuum Hypothesis)
to the commutative compact topological group Sc where S denotes the one-
dimensional torus. We recall that each of the above-mentioned spaces 2c

and Sc is nonmetrizable but separable.
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