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Abstract. We prove here the existence of a bounded, radial solution
in unbounded domain of the nonlinear elliptic problem

∆u = f(‖x‖ , u) for ‖x‖ > 1, x ∈ Rn
u(x) = 0 for ‖x‖ = 1

under some asymptotic and sign condition on f . Under stronger as-
sumptions it is proved that this solution must be of constant sign. The
existence of radial solutions, vanishing at ∞, of some semilinear equa-
tion is also established here.

1. Introduction

The paper is concerned with the existence of bounded solutions of

∆u = f(‖x‖ , u) for ‖x‖ > 1, x ∈ Rn
u(x) = 0 for ‖x‖ = 1 (1)
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where nonlinearity f : [1,∞) × R → R is continuous and satisfies the fol-
lowing sign-condition: there exists a positive constant M such that

f(r, u)u ≥ 0 for |u| ≥M, r ∈ [1,∞)

and asymptotic condition:

lim
r→∞

sup
|u|≤M

|f(r, u)| = 0 for each M > 0

Boundary value problems on unbounded domains present specific diffi-
culties. In variational approach the methods, working well in the case of
bounded domain, break down because of lack of compactness, therefore
other methods have to be used (cf. [1], [9], [18]). One way to observe this
is the fact that the compact embedding H1

0 ↪→ L2 is no longer valid when
we consider problems in unbounded domains.
A good survey of known results on the existence of positive solutions is
[6]. Only solutions convergent to 0 at infinity are considered there. Similar
results have been obtained in [8], [13]. The existence of radial solutions is
proved in [3], [5]. In [12], [17] the authors consider bounded solutions of
some specific elliptic equations. In this paper we consider general nonlin-
earity under above-mentioned assumptions. We use perturbation method
together with some fixed point theorem (which follows from Leray-Schauder
degree theory).
Fix n ≥ 3. Substitution r = ‖x‖ leads to the following boundary value
problem involving ordinary differential equation:

v′′ +
n− 1
r

v′ = f(r, v)
v(1) = 0
v — bounded on [1,∞)

(2)

Similar problems for ordinary differential equations have been considered
in [14]. Solutions vanishing at infinity are also considered there. We can
reformulate (2) in the following fashion:

Lv = N(v) (3)

where L is the linear differential operator defined by the left-hand side of
(1) (with the boundary condition taken into account) on the subspace of
BC([1,∞)) (the space of bounded and continuous functions) and N(v)(r) =
f(r, v(r)) is a Nemitski operator. For n ≥ 3 L has one dimensional kernel
spanned by the function: v1(r) = 1 − r2−n so the problem is at resonance.
The theory of coincidence-degree developed in [4] and [11] does not work,
because the image of the operator L is not closed so it is not a Fredholm
operator. Instead we use here perturbation technique — all the eigenvalues
of L are in (−∞, 0]. Therefore for λ > 0 the operator L− λI is injective so
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the problem:

Lv − λv = N(v) (4)

may be replaced by

v = (L− λI)−1N(v) (5)

and some fixed point theorem can be applied.

2. Auxiliary theorems

We shall apply the Schaefer fixed point theorem (see [10, Corollary 4.4.12,
p. 71]):

Theorem 1. Let X be a Banach space and let A : X 7→ X be a completely
continuous operator, such that the set

{x ∈ X : x = µAx, for some µ ∈ [0, 1)}

is bounded. Then A has a fixed point.

The equation (4) can be rewritten as:

v′′ +
n− 1
r

v′ − λv = f(r, v)
v(1) = 0
v — bounded on [1,∞)

(6)

while the equation (5) can be expressed as

v(r) =
∫ ∞

1
Gλ(r, s)f(s, v(s)) ds (7)

where v ∈ BC([1,∞)) and Gλ is a Green function for (4).
In order to apply Theorem 1 we shall use the following compactness criterion
(for more general version see [15]):

Theorem 2. Define an integral operator A on BC([1,∞)) by

Av(r) =
∫ ∞

1
G(r, s)f(s, v(s)) ds.

Assume that
(a) functions G : [1,∞)× [1,∞)→ R and f : R× [1,∞)→ R are contin-

uous,
(b) there exist positive constants v, N such that

|G(r, s)| ≤ Ne−v|r−s|, (8)
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(c) there exists a function b ∈ BC([1,∞)) such that, for each M > 0,

lim
r→∞

sup
|v|≤M

|f(r, v)− b(r)| = 0.

Then A maps BC([1,∞)) into BC([1,∞)) and is completely continuous.

3. Existence result

Theorem 3. Let n ≥ 3. Assume that f : [1,∞) × R → R is continuous
and satisfies:

(i) there exists M > 0 such that for all |v| ≥M and r ∈ [1,∞)

f(r, v)v ≥ 0, (9)

(ii) for each M > 0

lim
r→∞

sup
|v|≤M

|f(r, v)| = 0. (10)

Then boundary value problem (2) has at least one solution.

Proof. The proof of this theorem will be divided into three steps:
1 — the complete continuity of integral operator defined by right-hand side

of (7) (with λ fixed)
2 — a priori bound for solutions of (7) or equivalently (6) independent of

parameter µ from Theorem 1 (λ still fixed) and in consequence the
existence of solution for (6)

3 — extraction from the sequence of solutions for (6) vλn (λn → 0+) a
subsequence convergent to a solution v0 for (2).

1st step
First we shall show the complete continuity of Aλ defined by the right hand
side of (7). In order to find the Green function Gλ for (6) we consider
another equation

z′′ + z(
k

r2 − λ) = 0 (11)

(where k = −(n− 1)(n− 3)/4 ≤ 0) obtained from (6) by substitution
v(r)r(n−1)/2 = z(r). From the linear theory (see [2]) one obtains two solu-
tions φλ,1, φλ,2 of the equation (11) such that:∣∣∣φλ,1(r)e

√
λr − 1

∣∣∣→ 0 as r →∞∣∣∣φλ,2(r)e−
√
λr − 1

∣∣∣→ 0 as r →∞.
(12)

Therefore any linear combination of φλ,1, φλ,2 satisfying

z(1) = 0 and z(r)r(1−n)/2 — bounded for r ∈ [1,∞)
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must be identically 0. The same holds for homogeneous problem (6). So we
are ready to construct the Green function for (6). Taking (if necessary) φλ,2
as a combination of the above solutions we can assume that φλ,2(1) = 0.
Moreover

|φλ,1(r)| ≤ N̂λe
−
√
λr

|φλ,2(r)| ≤ N̂λe
√
λr

(13)

for some positive constant N̂λ. Thus the functions: ϕλ,1(r) = r(1−n)/2φλ,1(r),
ϕλ,2(r) = r(1−n)/2φλ,2(r) are solutions for the homogeneous problem (6).
Moreover, by (13) there exist positive constants N̄λ, µ̄λ such that

|ϕλ,1(r)| ≤ N̄λe
−µ̄λr

|ϕλ,2(r)| ≤ N̄λe
µ̄λr (14)

ϕλ,2(1) = 0. (15)

Multiplying ϕλ,1 by some constant, we can assume that

ϕλ,1(1)ϕ′λ,2(1) = 1. (16)

(none of them cannot be zero, since otherwise it would be a non-zero solution
to homogenous problem (6)). The existence of solutions ϕλ,1, ϕλ,2 with the
above properties can be also derived after (6) is transformed to the Bessel
equation and then solutions are given by the modified Bessel functions of
order (N/2)−1 of the first and second kind (cf. [7], [16], in the case of N = 3
we can explicitly write formulas for ϕλ,1 and ϕλ,2). The Green function for
the problem (6) has the following form:

Gλ(r, s) =
{
−sn−1ϕλ,1(s)ϕλ,2(r) for s > r
−sn−1ϕλ,2(s)ϕλ,1(r) for s ≤ r (17)

since it satisfies the following conditions:
1◦ For any s ∈ [1,∞), G(·, s) satisfies the homogenous equation, i.e.

∂2G

∂r2 (r, s) +
n− 1
r

∂G

∂r
(r, s)− λG(r, s) = 0

for any r 6= s,

2◦ lim
s→r−

∂G

∂r
(r, s)− lim

s→r+

∂G

∂r
(r, s) = 1 for any s ∈ (1,∞),

3◦ G(·, s) satisfies the boundary condition for any s ∈ R (i.e. is bounded
on [1,∞) and G(1, s) = 0 for every s ∈ [1,∞)).

The first and the third follow immediately from the properties of ϕλ,1, ϕλ,2.
The second one is ascertained by the fact that Wronskian of homogeneous
equation satisfies

W ′(r) =
1− n
r

W (r)
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so W (r) = ar1−n. Considering (15) and (16) we obtain

W (1) = ϕλ,1(1)ϕ′λ,2(1)− ϕλ,2(1)ϕ′λ,1(1) = 1

so a = 1. The conditions (i)–(iii) ensure the equivalence of the problems (6)
and (7).
From (14) it easily follows that there exist some positive constants Nλ, µλ
such that

|G(r, s)| ≤ Nλe
−vλ|r−s|. (18)

So the assumptions of Theorem 2 on the function Gλ are satisfied. Further-
more (10) implies (c) from Theorem 2 with b ≡ 0 so we have obtained the
complete continuity of the operator Aλ.

2nd step
Now, with λ fixed, we shall prove that solutions for the family of problems

v(r) =
∫ ∞

1
Gλ(r, s)µf(s, v(s)) ds (19)

or

v′′ +
n− 1
r

v′ − λv = µf(r, v)
v(1) = 0
v — bounded

(20)

are a priori bounded independently of µ in BC([1,∞)). Suppose that for
some µ there exists a solution v (for convenience we omit the dependence
of v on µ) for the problem (20) such that ‖v‖∞ := supr∈[1,∞) |v(r)| > M ,
with M from assumption (ii). Then there exists r0 such that v(r0) = M .
Now we shall consider two cases:

1◦ v is strictly increasing for r > r0 or
2◦ there exists r1 ≥ r0 such that v(r1) ≥M , v′(r1) = 0 and v′′(r1) ≤ 0.

In the first case for all r such that v(r) ≥M

v′′(r) +
n− 1
r

v′(r) = λv(r) + µf(r, v(r)) ≥Mλ (21)

and multiplying by rn−1 and integrating on the interval [r0, r] we get

v′(r) ≥ v′(r0)(
r0

r
)n−1 +Mλ

1
n

(r − rn0
rn−1 )

v′(r) ≥ Mλ
1
n

(r − r0)

so v′(r)→∞ as r →∞, which contradicts boundedness of v.
In the second case we have

f(r1, v(r1)) = v′′(r1) +
n− 1
r

v′(r1)− λv(r1) < 0 (22)
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which contradicts (9).
So we have proved that v(r) ≤ M . In a similar fashion we prove that
v(r) ≥ −M , thus obtaining a priori bound for ‖v‖∞.
As we have announced using Theorem 1 we obtain the existence of the
solution for (7).

3rd step
Now we shall prove that the sequence vλm has a subsequence that converges
(uniformly on compacts) as λm → 0+ to the solution v0 for (2). From the
first part it follows that solutions for (6) are bounded independently of λm
by the constant M, so the sequence vλm is bounded. Fix k > 1. After
substituting zλm(r) = vλm(r)r(n−1)/2 we obtain equivalent equation to (6)
i.e.

z′′λm + zλm(
k

r2 − λm) = r(n−1)/2f(r, zλmr
(1−n)/2). (23)

Since f is bounded on [1, p] × [−M,M ] from (23) we get an estimate for
supr∈[1,p]

∣∣z′′λm(r)
∣∣. Then for r ∈ [1, p+1

2 ] we have the following Taylor for-
mula

zλm(p) = zλm(r) + z′λm(r)(p− r) + z′′λm(r + θ(p− r))(p− r)2

2 (24)

and for r ∈ [(p+ 1)/2, p] we have

zλm(1) = zλm(r) + z′λm(r)(1− r) + z′′λm(r + θ(1− r))(1− r)2

2
.

(25)

Since in both cases the coefficient at z′λm(r) is bounded away from zero, we
also obtain bound on supr∈[1,p] |z′(r)|. In consequence from Ascoli-Arzelá
theorem we obtain that the sequences: zλm and z′λm have convergent sub-
sequences in C([1, p]). Since p was arbitrary by diagonal procedure we can
extract a subsequence zλmn convergent with its derivative (uniformly on
compacts) to some z0. Then from the equation (23) we get uniform conver-
gence of z′′λmn on compacts. Therefore z0 is a solution of (2) with λ = 0.
Then v0(r) = z0(r)r(1−n)/2 is a solution for (2) for all r ∈ [1,∞). Moreover
it is bounded since the sequence vλmn was bounded independently of λmn
by the constant M .

Corollary 1. From the integral equation (7) it follows any solution vλ (λ >
0) satisfies

lim
t→∞

|vλ(t)| = 0
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thus we have established the existence of solution for semilinear boundary
value problem:

∆u− λu = g(‖x‖)h(u) for ‖x‖ > 1
u(x) = 0 for ‖x‖ = 1
lim‖x‖→∞ u(‖x‖) = 0.

(26)

Note however that the solution of problem (2) does not have to converge to
zero at infinity.

Corollary 2. If we assume that the nonlinearity f satisfies the assumptions
of Theorem 3 with (9) replaced by the following condition: there exist
positive constants M1, M2 such that

f(r, u) ≥ 0 for u ≥M1 and r ∈ [1,∞)

and

f(r, u) ≤ 0 for u ≤ −M2 and r ∈ [1,∞)

then from the proof of Theorem 3 there exists a non-zero solution u of (2)
such that −M2 ≤ u(t) ≤M1 for all r ∈ [1,∞).

Remark 1. If f satisfies the above condition with M1 = 0 or M2 = 0 then
there exists a negative or positive solution of (2), respectively.

Example 1. Let n ≥ 3. The following boundary value problem:

∆u = g(‖x‖)h(u) for ‖x‖ > 1
u(x) = 0 for ‖x‖ = 1
u — bounded

(27)

has a non-zero solution provided that g is a non-negative function satisfying

lim
t→∞
|g(t)| = 0

and h is a polynomial of odd degree l such that h(0) 6= 0 and coefficient at
l-th power is positive.
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 Lódź University

Banacha 22

90–238  Lódź

Poland


