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Abstract. The notion of even-outer-semicontinuity for set-valued maps
is introduced and compared with related ones from [4] and [11]. The
coincidence of these notions provides a new characterization of com-
pactness and of local compactness. The following result is proved: Let
X be a topological space, Y a uniform space, {Fσ : σ ∈ Σ} be a net of
set-valued maps from X to Y and F be a set valued map from X to Y .
Then any two of the following conditions imply the third: (1) the net
{Fσ : σ ∈ Σ} is evenly-outer semicontinuous; (2) the net {Fσ : σ ∈ Σ} is
graph convergent to F ; (3) the net {Fσ : σ ∈ Σ} is pointwise convergent
to F . This theorem generalizes some results from [4] and [11].

Graph convergence (that is Painlevé-Kuratowski convergence of graphs)
of set-valued maps was studied in many books and papers (see for exam-
ple [1, 2, 4, 9, 11]). In this topic we can include also graph convergence
of single-valued maps [5, 12, 13], epiconvergence of lower semicontinuous
functions [4, 6, 7] as well as Painlevé-Kuratowski convergence of graphs
of partial maps [8] . In the books of Attouch [1], Aubin-Frankowska [2]
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and Rockafellar-Wets [14] can be found many applications of this conver-
gence to variational and optimization problems, differential equations and
approximation theory. Graph convergence of preference relations is used
also in mathematical economics [3]. However graph convergence of maps,
even when they are single valued, is not always easy to verify. In our paper
we study the relationship between graph convergence and pointwise one in-
troducing the notion of even-outer-semicontinuity which allows us to pass
from one convergence to the other. Other notions of joint continuity (see
for example [4, 9, 11]) are compared with ours. The relationship between
the notions of continuous convergence and graph convergence is analysed
too.

1. Preliminaries

If Y is a topological space and y ∈ Y , Uy ( or U if there is no possibility
of confusion) will denote a general nbd (neighborhood) of y and U(y) the
set of all open nbds of y. K(Y ) and 2Y will denote the sets of all compact
and all closed subsets of Y respectively.

Let us recall [5] that a net {Aσ : σ ∈ Σ} of subsets of Y is said to be:
• K+-convergent to a subset A of Y if Ls Aσ ⊂ A, where Ls Aσ =
{y ∈ Y : each nbd of y intersect Aσ for all σ in some cofinal subset
of Σ};
• K−-convergent to A if A ⊂ Li Aσ, where Li Aσ = {y ∈ Y : each nbd

of y intersect Aσ in some residual subset of Σ};
• topologically convergent (or Painlevé-Kuratowski convergent) toA, (and

we will write Lt Aσ = A) if Li Aσ = Ls Aσ = A.
If Y is completely regular, γ is a compatible uniformity on Y and A is

closed, it is easy to prove that:
• Ls Aσ ⊂ A if and only if for every y ∈ Y and every V in γ there is a

nbd Uy of y and σ0 ∈ Σ such that for every σ ≥ σ0

Aσ ∩ Uy ⊂ V [A] ;

• A ⊂ Li Aσ if and only if for every y ∈ Y and every V in γ there is a
nbd Uy of y and σ0 ∈ Σ such that for every σ ≥ σ0

A ∩ Uy ⊂ V [Aσ].

If X is a topological space, C(X, 2Y ) will be the family of all continuous
set-valued maps from X to Y with closed values and, if F is a set-valued
map from X to Y , Gr F will denote the graph of F, that is

Gr F = {(x, y) ∈ X × Y : y ∈ F (x)}.
If F and Fσ are set-valued maps from X to Y , we will say that:
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• the net {Fσ : σ ∈ Σ} is pointwise convergent at x ∈ X to F if F (x) =
Lt Fσ(x); is pointwise convergent in X if this holds for every x ∈ X,
• the net {Fσ : σ ∈ Σ} is graph-convergent to F if Gr F = Lt Gr Fσ.
For any undefined terms see [6, 10].
It can be proved that if X is a discrete topological space, graph con-

vergence coincides with pointwise one (see [11] for sequences of set-valued
maps), while in general neither graph nor pointwise convergence implies the
other. We can even characterize discreteness by this coincidence, as the
following theorems show.

First we recall that C([0, 1], 2Y ) is non-trivial if there exists a continuous
set-valued function satisfying the condition F (0) 6= F (1).

The following example shows that there is such a topological space Y for
which C([0, 1], 2Y ) is non-trivial but C([0, 1], Y ) is trivial.

Example 1.1. If X = [0, 1] is equipped with the natural topology, Y =
{0, 1, 2} is equipped with the topology T , having as open sets {0} and
{1, 2}, then C([0, 1], Y ) is trivial while C([0, 1], 2Y ) is non-trivial, since F
defined by

F (x) =

{
{0, 1} if x ∈ [0, 1)

{0, 1, 2} if x = 1

is continuous and non trivial.

Now we can prove:

Proposition 1.2. Let X be a Tychonoff non discrete space and Y be such
that C([0, 1], 2Y ) is not trivial. There is a net {Fσ : σ ∈ Σ} in C(X, 2Y )
pointwise convergent to F ∈ C(X, 2Y ) which fails to be graph convergent to
F .

Proof. Let x0 be a non-isolated point in X and for every open nbd U of
x0 choose a point xU ∈ U\{x0}. There is a continuous function hU from
X to [0, 1] satisfying the conditions hU (xU ) = 1 and hU (x) = 0 for every
x ∈ (X\U) ∪ {x0}. There is a continuous set-valued map H from [0, 1] to
2Y such that H(1)\H(0) 6= ∅. For every open nbd U of x0 the set-valued
map FU = H ◦ hU is continuous and the net {FU : U ∈ U(x0)} is pointwise
convergent to F where F (x) = H(0) at every x. Indeed if x 6= x0 and U
is an open nbd of x0 such that x 6∈ U , for every nbd U ′ ≥ U it results
FU ′(x) = H(0). If x = x0, then FU (x0) = H(0) for every nbd U . However
Lt Gr FU 6= Gr F, since (x0, y) ∈ Li Gr FU if y ∈ H(1)\H(0).
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Proposition 1.3. Let X be a Tychonoff non discrete space and Y be a
normal space such that C([0, 1], 2Y ) is not trivial. There is a net {Fσ :
σ ∈ Σ} in C(X, 2Y ) graph convergent to F ∈ C(X, 2Y ) which fails to be
pointwise convergent to F .

Proof. There is h ∈ C([0, 1], 2Y ) such that h(1)\h(0) 6= ∅. It is easy to
prove that the set-valued map, from [0, 1] to Y , H(x) =

⋃
s≤x h(s) is con-

tinuous. Let x0 be a non-isolated point in X. For every open nbd U of x0,
let fU be a continuous function from X to [0, 1] such that fU (x0) = 0
and fU (X\U) = 1. If we put FU = H ◦ fU , {FU : U ∈ U(x0)} is
a net of continuous set-valued maps which graph converges to F , where
F (x) = H(1) for every x ∈ X, but does not pointwise converges to F since
Lt FU (x0) = h(0).

2. Continuity and equicontinuity

In this part, for nets of set-valued maps, we introduce the notion of even-
outer-semicontinuity and even-inner-semicontinuity and compare them with
others known in the literature.

It is well known that for closed-valued maps between topological spaces
there are various notions of continuity connected with the convergence or
topology supported by 2Y . If the values belong to a uniform space (Y, γ),
when 2Y is equipped with K+ or K− convergence we obtain the following
definitions:

Remark 2.1. A set-valued map F from X to Y , closed-valued in x, is
outer-semicontinuous at x if for every V in γ and for every y ∈ Y there is
a nbd Ux of x, a nbd Uy of y such that, for every z ∈ Ux it results:

F (z) ∩ Uy ⊂ V [F (x)].

Remark 2.2. A set-valued map F from X to Y , closed-valued in x, is lower
or inner-semicontinuous at x if for every V in γ and for every y ∈ Y there
is a nbd Ux of x, a nbd Uy of Y such that, for every z ∈ Ux it results

F (x) ∩ Uy ⊂ V [F (z)].

In the literature there are many definitions of joint continuity for single-
valued or set-valued maps [9, 10, 14]. For nets of set-valued maps with
values in a uniform space we give the following definitions which absorb
the classical definitions of equicontinuity and even-continuity for a family of
functions due to Kelley [10].



GRAPH CONVERGENCE OF SET-VALUED MAPS 217

Definition 2.3. A net {Fσ : σ ∈ Σ} is evenly-outer-semicontinuous at x if
for every V in γ and for every y ∈ Y there is a nbd Ux of x, a nbd Uy of y
and a σ0 ∈ Σ such that, for every σ ≥ σ0 and for every z ∈ Ux it results:

Fσ(z) ∩ Uy ⊂ V [Fσ(x)].

Definition 2.4. A net {Fσ : σ ∈ Σ} is evenly-inner-semicontinuous at x if
for every V in γ and for every y ∈ Y there is a nbd Ux of x, a nbd Uy of y
and a σ0 ∈ Σ such that, for every σ ≥ σ0 and for every z ∈ Ux it results:

Fσ(x) ∩ Uy ⊂ V [Fσ(z)]. (∗)

Definition 2.5. A net {Fσ : σ ∈ Σ} is evenly-semicontinuous at x if it is
evenly-outer and evenly-inner-semicontinuous at x.

If the above definitions are verified for every x ∈ X we will say that
the net is evenly-inner-semicontinuous or evenly-outer-semicontinuous or
evenly-semicontinuous (in X).

Remark 2.6. Notice that if we require that the condition (∗) is satisfied
for every σ ∈ Σ, our Definition 2.4 restricted on a net {fσ : σ ∈ Σ} of single-
valued functions is equivalent to the classical notion of even continuity at x
[10].

Let {fσ : σ ∈ Σ} be evenly continuous at x. If V ∈ γ and y ∈ Y there is
V1 ∈ γ symmetric, open and such that V1 ◦ V1 ⊂ V . By even continuity of
{fσ : σ ∈ Σ}, starting from x, y and V1[y], we can find a nbd Ux of x and a
nbd Uy of y such that fσ(Ux) ⊂ V1[y] whenever fσ(x) ∈ Uy and whenever
σ ∈ Σ. We can prove that for every z ∈ Ux and σ ∈ Σ it results:

{fσ(x)} ∩ Uy ∩ V1[y] ⊂ V [fσ(z)].

Indeed, if {fσ(x)} ∩Uy ∩ V1[y] is non empty, fσ(x) belongs to Uy and fσ(z)
belongs to V1[y] for every z ∈ Ux. So we obtain (fσ(x), fσ(z)) ∈ V since
(fσ(x), y) ∈ V1 and (fσ(z), y) ∈ V1.

To prove the opposite, let {fσ : σ ∈ Σ} be evenly-outer-semicontinuous
at x with respect to all σ. If y ∈ Y and Uy is a nbd of y, there is V in γ
with V [y] ⊂ Uy and V1 in γ such that V1 ◦ V1 ⊂ V . By assumption there is
a nbd Ux of x and a nbd U ′y of y such that for every z ∈ Ux it results

{fσ(x)} ∩ V1[y] ∩ U ′y ⊂ V1[fσ(z)].

Now, if for a σ fσ(x) ∈ V1[y] ∩ U ′y, it results fσ(x) ∈ V1[fσ(z)], therefore
(fσ(x), y) belongs to V1 and fσ(z) ∈ V [y] ⊂ Uy for every z ∈ Ux.

In the literature we can find notions stronger than even-continuity. Due
to Kowalczyk [11], there are the following notions concerning a family F of
set-valued maps with values in a uniform space (Y, γ).
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Definition 2.7. F is upper equicontinuous at x ∈ X if for every V ∈ γ
(∗∗) there exists a nbd Ux of x such that whenever F ∈ F and z ∈ Ux then

F (z) ⊂ V [F (x)].

Definition 2.8. F is lower equicontinuous at x ∈ X if for every V ∈ γ
there exists a nbd Ux of x such that whenever F ∈ F and z ∈ Ux then
F (x) ⊂ V [F (z)].

Definition 2.9. F is equicontinuous at x ∈ X if it is lower and upper
equicontinuous at x.

All definitions given in 2.7, 2.8 and 2.9 applied to a family F of single-
valued functions coincide with the classical notion of equicontinuity. It is
easy to prove that if a net of set-valued maps is upper-equicontinuous then
it is also even-outer-semicontinuous. We will say that a net {Fσ : σ ∈
Σ} is asymptotically upper equicontinuous if the condition (∗∗) is satisfied
for all σ sufficiently large. This notion can be found for example in [9]
under the name quasi equi-semicontinuity. If Y is compact then this notion
coincides with the notion of even-outer-semicontinuity. In general, however
this notion turns out to be too constringent for applications purposes [4].

We have the following characterization of compact spaces.

Theorem 2.10. If X is a non discrete topological space and Y is a Ty-
chonoff space, the following conditions are equivalent:

a) Y is compact;
b) every net of set-valued maps from X to Y is asymptotically upper

equicontinuous iff it is evenly-outer-semicontinuous.

Proof. If Y is compact, it is easy to verify that both of the definitions
coincide. Let us prove the converse. Suppose Y is not compact, then there
is a net {yσ : σ ∈ Σ} of points of Y having no cluster point and a point x0
in X which is not isolated, therefore in every nbd U of x0 we can choose a
point xU ∈ U\{x0}. Without loss of generality we can suppose that there
is a point y ∈ Y different from all yσ. Consider the set U(x0) × Σ with
the natural order (that is (U, σ) ≥ (U ′, σ′) iff U ⊂ U ′ and σ ≥ σ′). The net
{F(U,σ) : (U, σ) ∈ (U(x0)× Σ)} defined by

F(U,σ)(x) =

{
{y} if x 6= xU

{y, yσ} if x = xU

is not upper equicontinuous at x0 with respect to any compatible uniformity
γ on Y . Indeed, if V ∈ γ there is σ0 in Σ such that yσ 6∈ V [y] for all σ ≥ σ0;
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thus F(U,σ)(xU ) 6⊂ V [F(U,σ)(x0)] for every nbd U of x0 and every σ ≥ σ0. We
can prove that this net is evenly-outer-semicontinuous. Indeed, if V ∈ γ,
z ∈ Y and Uz is a nbd of z which does not contain yσ for all σ ≥ σ0, we
have

Uz ∩ F(U,σ)(x) ⊂ V [F(U,σ)(x0)]

for all x ∈ X and for all σ ≥ σ0.

Due to [4] are the following definitions concerning set-valued maps from
a topological space X to a metric space Y . If I is an index space, H a filter
on I and {Fi : i ∈ I} a collection of set-valued maps it states:

Definition 2.11. {Fi : i ∈ I} is equi-outer-semicontinuous at x0 if for
every compact set B ⊂ Y and every ε ≥ 0 there exists a nbd V of x0 and
H ∈ H such that for every x ∈ V and every i ∈ H

Fi(x) ∩B ⊂ εFi(x0) .

Definition 2.12. {Fi : i ∈ I} is equi-inner-semicontinuous at x0 if for
every compact set B ⊂ Y and every ε ≥ 0 there exists a nbd V of x0 and
H ∈ H such that for every x ∈ V and every i ∈ H

Fi(x0) ∩B ⊂ εFi(x) .

Definition 2.13. {Fi : i ∈ I} is equi-semicontinuous at x0 if it is both
equi-upper and equi-inner semicontinuous at x0.

Obviously if the above conditions are verified for every x ∈ X, {Fi :
i ∈ I} will be said equi-outer or equi-inner or equi-semicontinuous. Of
course we can naturally extend the above Definitions 2.11, 2.12, 2.13 for
any net with values in uniform spaces. It is easy to verify that if a net of
set-valued maps is evenly-outer (inner)-semicontinuous then it is also equi-
outer (inner)-semicontinuous and if Y is locally compact then these notions
coincide. We can even characterize local compactness by this coincidence
as the following theorem states.

Theorem 2.14. If X is a non discrete topological space and Y is a Ty-
chonoff space, the following conditions are equivalent:

a) Y is locally compact;
b) every net of set-valued maps from X to Y is equi-outer-semicontinuous

iff it is evenly-outer-semicontinuous.
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Proof. If Y is locally compact, it is easy to verify that condition b) is
verified. Now, suppose Y is not locally compact. There is y ∈ Y which has
no compact nbd. Thus, for every open nbd U of y and every K ∈ K(Y ),
there is yU,K ∈ U\K. Let x ∈ X be a non-isolated point and z ∈ Y be a
point different from y. For every open nbd W of x choose xW ∈W\{x}.

If we consider L = U(x) × U(y) ×K(Y ) with the natural direction (i.e.
(W,U,K) ≤ (W ′, U ′,K ′) iff W ′ ⊂ W , U ′ ⊂ U , K ⊂ K ′) and for every
(W,U,K) we put

F(W,U,K)(t) =

{
{z} if t 6= xW

{z, yU,K} if t = xW

we can prove that the net {F(W,U,K) : (W,U,K) ∈ L} is equi-outer-semi-
continuous at every point with respect to any compatible uniformity γ. It
is sufficient to verify this only at the point x. Let V ∈ γ and K ∈ K(Y ).
Then for every v ∈ X and (W,U,C) ≥ (X,Y,K) we have

F(W,U,C)(v) ∩K ⊂ V [F(W,U,C)(x)] .

However {F(W,U,K) : (W,U,K) ∈ L} is not evenly-outer-semicontinuous at
x. Let G ∈ γ be such that G[z] ∩ G[y] = ∅ and G is open and symmetric.
Now for every nbd W of x, every nbd U of y and every (C,D,K) ∈ L we
have

F(W∩C,U∩D∩G[y],K)(xW∩C) ∩ U = {z, yU∩D∩G[y],K} ∩ U 6⊂ G[z] .

If X and Y are first countable topological spaces then a sequence of
set-valued maps is equi-outer-semicontinuous iff it is evenly-outer semicon-
tinuous.

Theorem 2.15. Let X and Y be first countable topological spaces and (Y, γ)
be a uniform space. A sequence {Fn : n ∈ Z+} of set-valued maps from X
to Y , is equi-outer-semicontinuous iff it is evenly-outer-semicontinuous.

Proof. Of course it is sufficient to prove that if {Fn : n ∈ Z+} is equi-
outer-semicontinuous at x then it is also even-outer-semicontinuous at x.
Suppose that this is not true. This means that there is V ∈ γ and y ∈ Y
such that for every nbd W of x, U of y and for every m ∈ Z+ there exists
n(W,U,m) ≥ m and a point xn(W,U,m) in W such that

Fn(W,U,m)(xn(W,U,m)) ∩ U 6⊂ V [Fn(W,U,m)(x)] .

Let {Wn} and {Un} be a countable base of nbds of x and y respectively.
Thus for every n ∈ Z+ there is mn ≥ n, xn and yn such that xn ∈ Wn,
yn ∈ Fmn(xn) ∩ Un\V [Fmn(xn)]. Of course {xn : n ∈ Z+} converges to x
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and {yn : n ∈ Z+} converges to y. Consider the compact set B = {yn :
n ∈ Z+}∪{y}. By assumption there must exist a nbd W ′ of x and n0 ∈ Z+

with
Fn(r) ∩B ⊂ V [Fn(x)]

for every n ≥ n0 and for every r ∈ W ′, but this is a contradiction since, if
n ≥ n0 is such that Wn ⊂W ′, we have

yn ∈ Fmn(xn) ∩B\V [Fmn(x)] .

3. Pointwise and graph convergence

In this part we prove the main result of our paper. We show that even-
outer-semicontinuity allows us to pass from the pointwise convergence to
the graph convergence and vice versa. We also prove that if a net is simul-
taneously pointwise and graph convergent then it has to be evenly-outer-
semicontinuous.

Theorem 3.1. Let X be a topological space and (Y, γ) be a uniform space.
Suppose that {Fσ : σ ∈ Σ} is evenly-outer-semicontinuous and pointwise
convergent to F . Then it is also graph convergent to F .

Proof. Of course Gr F ⊂ Li Gr Fσ. To prove that Ls Gr Fσ ⊂ Gr F , we
will show that if (x, y) ∈ Ls Gr Fσ then y ∈ Ls Fσ(x). If Uy is a nbd of
y and σ an element of Σ, we will find η ≥ σ such that Fη(x) ∩ Uy 6= ∅.
There is V1 (open and symmetric) in γ satisfying V1[y] ⊂ Uy and V2 (open
and symmetric) in γ satisfying V2 ◦ V2 ⊂ V1. Since {Fσ : σ ∈ Σ} is evenly-
outer-semicontinuous there is a nbd Ux of x, a nbd U ′y of y and σ0 ∈ Σ
with

Fσ(z) ∩ U ′y ⊂ V2[Fσ(x)] (2)

for every z ∈ Ux and every σ ≥ σ0. Without loss of generality we can
suppose that U ′y ⊂ V2[y]. Since Ux × U ′y is a nbd of (x, y) ∈ Ls Gr Fσ, there
is η ≥ σ, η ≥ σ0 with

Gr Fη ∩ (Ux × U ′y) 6= ∅ .
If we choose (zη, yη) ∈ Gr Fη ∩ (Ux × U ′y), from (2) we obtain

yη ∈ Fη(zη) ∩ U ′y ⊂ V2[Fη(x)] .

Thus there is vη ∈ Fη(x) with (yη, vη) ∈ V2, and, being (yη, y) ∈ V2, it
results that

(vη, y) ∈ V2 ◦ V2 ⊂ V1 ,

i.e. V1[y] ∩ Fη(x) 6= ∅.
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Theorem 3.2. Let X be a topological space and (Y, γ) be a uniform one.
Suppose that {Fσ : σ ∈ Σ} is evenly-outer-semicontinuous and graph con-
vergent to F . Then it is also pointwise convergent to F .

Proof. Of course Ls Fσ(x) ⊂ F (x). Now let y ∈ F (x) and let Uy be a nbd
of y. We will show that there is σ0 ∈ Σ for which

Fσ(x) ∩ Uy 6= ∅

for every σ ≥ σ0. There are V1 and V2 (both open and symmetric) in γ
satisfying V1[y] ⊂ Uy and V2 ◦ V2 ⊂ V1. Since {Fσ : σ ∈ Σ} is evenly-
outer-semicontinuous, there is a nbd Ux of x, a nbd U ′y of y and σ0 ∈ Σ
with

Fσ(z) ∩ U ′y ⊂ V2 [Fσ(x)]

for every z ∈ Ux and every σ ≥ σ0. Without loss of generality we can
suppose that U ′y ⊂ V2[y]. Since Ux ×U ′y is a nbd of (x, y) ∈ Li Gr Fσ, there
is σ1 ∈ Σ such that for every σ ≥ σ1

Gr Fσ ∩ (Ux × U ′y) 6= ∅ .

For σ ≥ σ0 and σ ≥ σ1, choose

(xσ, yσ) ∈ Gr Fσ ∩ (Ux × U ′y) .

We obtain that (yσ, y) ∈ V2 and

yσ ∈ Fσ(xσ) ∩ U ′y ⊂ V2 [Fσ(x)] .

We can conclude that there is vσ ∈ Fσ(x) satisfying (yσ, vσ) ∈ V2 that is
vσ ∈ V1[y] ⊂ Uy.

Theorem 3.3. Let X be a topological space and (Y, γ) be a uniform one.
Suppose that {Fσ : σ ∈ Σ} graph and pointwise converges to F . Then it is
evenly-outer-semicontinuous.

Proof. Suppose this is not true for a point x ∈ X. There is V in γ and
y ∈ Y such that for every nbd U of x, every nbd O of y and every σ ∈ Σ,
there is η(U,O, σ) ∈ Σ, η(U,O, σ) ≥ σ and xη(U,O,σ) ∈ U for which

Fη(U,O,σ)(xη(U,O,σ)) ∩O 6⊂ V [Fη(U,O,σ)(x)] .

This allows us to choose a net

yη(U,O,σ) ∈ Fη(U,O,σ)(xη(U,O,σ)) ∩O \V [Fη(U,O,σ)(x)] (4)

converging to y. It is easy to verify that

L = {η(U,O, σ) : U ∈ U(x), O ∈ U(y), σ ∈ Σ}
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is a cofinal family in Σ, thus

{Fη(U,O,σ) : U ∈ U(x), O ∈ U(y), σ ∈ Σ}

is a subnet of {Fσ : σ ∈ Σ}.
We will show that (x, y) ∈ Ls Gr Fη(U,O,σ). Let G ∈ U(x), H ∈ U(y)

and η(U,O, σ) ∈ L. By the assumption we can find η(G,H, η(U,O, σ)) ≥
η(U,O, σ) and the related points satisfying the conditions:

xη(G,H,η(U,O,σ)) ∈ G

and
yη(G,H,η(U,O,σ)) ∈ H ∩ Fη(G,H,η(U,O,σ))(xη(G,H,η(U,O,σ))) .

Since (x, y) ∈ Ls Fη(U,O,σ) ⊂ Ls Fσ, we have y ∈ F (x). There is V1 ∈ γ such
that V1 is open, symmetric and V1 ◦ V1 ⊂ V . Being F (x) = Li Fσ(x), there
is σ0 ∈ Σ with Fσ(x)∩ V1 [y] 6= ∅ for every σ ≥ σ0. Then for η(X,V1 [y], σ0)
we have

Fη(X,V1[y],σ0)(x) ∩ V1 [y] 6= ∅
and

yη(X,V1[y],σ0) ∈ Fη(X,V1[y],σ0)(xη(X,V1[y],σ0))∩V1[y] ⊂ (V1◦V1)[Fη(X,V1[y],σ0)(x)]

which is in contradiction with (4).

For nets of single-valued functions we obtain the following result ([5, 12,
13]):

Corollary 3.4. Let X be a topological space and Y be a uniform one. Let
f be a single-valued function from X to Y and {fσ : σ ∈ Σ} be a net of
single-valued functions from X to Y . Consider the following conditions:

a) {fσ : σ ∈ Σ} converges pointwise to f ;
b) {fσ : σ ∈ Σ} graph converges to f ;
c) {fσ : σ ∈ Σ} is evenly-outer-semicontinuous.

Then any two of these conditions imply the other.

The following example shows that even if we consider a sequence of contin-
uous single-valued functions the condition c) in the above corollary cannot
be replaced by

c’) {fσ : σ ∈ Σ} is evenly-continuous.
Let X = {0} ∪ {1/n;n ∈ Z+} with the usual topology and, for every n,

put

fn(x) =

{
0 if x 6= 1/n

n if x = 1/n .
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Then {fn} is a sequence of continuous functions pointwise and graph
convergent to f, where f(x) = 0 at every x ∈ X. Of course {fn} is not
evenly continuous.

Let us observe also that for sequences of continuous single-valued func-
tions the notions of even continuity and even-outer-semicontinuity are in-
dependent. It is easy to prove that the sequence ([13])

fn(x) =

{
0 if 1/n ≤ x ≤ 1

n− xn2 if 0 ≤ x < 1/n

is evenly continuous but not evenly-outer-semicontinuous.

4. Continuous convergence

Definition 4.1. Let X and Y be topological spaces. A net {Fσ : σ ∈ Σ}
of set-valued maps from X to Y converges continuously to a set-valued map
F if for every x ∈ X and every net {xα : α ∈ A} convergent to x, the net
{Fσ(xα) : (σ, α) ∈ Σ×A} Painlevé-Kuratowski converges to F (x).

Obviuosly continuous convergence implies pointwise and graph conver-
gence (and therefore even-outer-semicontinuity).

The following proposition shows that this convergence implies as well
even-inner-semicontinuity.

Proposition 4.2. If a net {Fσ : σ ∈ Σ} continuously converges to F , then
{Fσ : σ ∈ Σ} is evenly-semicontinuous.

Proof. It is sufficient to prove that the net {Fσ : σ ∈ Σ} is evenly-inner-
semicontinuous. If it is not true at a point x ∈ X, then there exists V in
γ and y ∈ Y such that for every nbd U of x, every nbd O of y and every
σ ∈ Σ there is η(U,O, σ) ∈ Σ , η(U,O, σ) ≥ σ, x(U,O,σ) ∈ U for which

Fη(U,O,σ)(x) ∩O 6⊂ V [Fη(U,O,σ)(x(U,O,σ))] .

This allows us to choose a net

yη(U,O,σ) ∈ Fη(U,O,σ)(x) ∩O \V [Fη(U,O,σ)(xη(U,O,σ))]

converging to y. It is easy to verify that

L = {η(U,O, σ) : U ∈ U(x), O ∈ U(y), σ ∈ Σ}
is a cofinal family in Σ, thus

{Fη(U,O,σ) : U ∈ U(x), O ∈ U(y), σ ∈ Σ}

is a subnet of {Fσ : σ ∈ Σ}.
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Since (x, y) ∈ Ls Fη(U,O,σ) we obtain y ∈ F (x). Let V1 be a symmetric
open element from γ with V1 ◦ V1 ⊂ V . The net

{x(U,O,σ) : (U,O, σ) ∈ U(x)× U(y)× Σ}
converges to x (considering the natural direction on U(x)×U(y)×Σ) thus

{Fσ(x(U,O,σ)) : σ ∈ Σ, (U,O, σ) ∈ U(x)× U(y)× Σ}
Painlevé-Kuratowski converges to F (x) by assumption. Thus we can find
σ0 ∈ Σ and (U,O, σ) ∈ U(x) × U(y) × Σ; such that for every σ ≥ σ0 and
every (U ′, O′, σ′) ≥ (U,O, σ)

Fσ(x(U ′,O′,σ′)) ∩ V1[y] 6= ∅ .
Let σ′ ∈ Σ be such that σ′ ≥ σ and σ′ ≥ σ0. If we put η′ = η(U,O ∩
V1 [y], σ′), it results that η′ ∈ L and

yη′ ∈ V1 [y] ⊂ V1 ◦ V1[Fη′(x(U,O∩V1 [y],σ′))] ⊂ V [Fη′(x(U,O∩V1 [y],σ′))]

and this is a contradiction.
Since the continuous convergence at x implies that {Fσ : σ ∈ Σ} is

evenly-outer-semicontinuous at x, the net has to be evenly-semicontinuous.

Proposition 4.3. If a net {Fσ : σ ∈ Σ} graph converges to F and is enenly-
semicontinuous then {Fσ : σ ∈ Σ} converges continuosly to F .

Proof. Let {xα : α ∈ A} be a net in X convergent to x. It is sufficient to
prove that F (x) ⊂ Li Fσ(xα). Let y ∈ F (x) and O be a nbd of y (we will
find σ0 ∈ Σ and α0 ∈ A such that for every σ ≥ σ0 and α ≥ α0 it results
Fσ(xα) ∩O 6= ∅).

Let U ∈ γ be such that U [y] ⊂ O, let further V1 be an open symmetric
element from γ with V1 ◦ V1 ⊂ U . Since {Fσ : σ ∈ Σ} is evenly-inner-
semicontinuous at x, there exist a nbd W of y satisfying W ⊂ V1 [y], a nbd
I of x, an index σ1 ∈ Σ such that

Fσ(x) ∩W ⊂ V1 [Fσ(z)] (3)

for every z ∈ I and every σ ≥ σ1.
Since F (x) = Li Fσ(x), there is σ2 ∈ Σ such that for every σ ≥ σ2

Fσ(x) ∩W 6= ∅ .
There is α0 ∈ A such that xα ∈ I for every α ≥ α0. Let σ0 ∈ Σ be such
that σ0 ≥ σ1 and σ0 ≥ σ2. We claim that for every α ≥ α0 and σ ≥ σ0

Fσ(xα) ∩O 6= ∅ .
Indeed if α ≥ α0 and σ ≥ σ0 take yσ ∈ Fσ(x) ∩W , by using condition (3)
it results yσ ∈ V1 [Fσ(xα)]. Let zσ,α ∈ Fσ(xα) with (yσ, zσ,α) ∈ V1. Since



226 I. DEL PRETE, M. DI IORIO AND L̆. HOLÁ

yσ ∈ V1 [y] we have (zσ,α, y) ∈ V1 ◦ V1 that is zσ,α ⊂ U [y] ⊂ O. Thus
zσ,α ∈ Fσ(xα) ∩O.
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