QUOTIENTS OF QUASI-CONTINUOUS FUNCTIONS

J. JAŁOCHA

Received March 23, 2000 and, in revised form, June 15, 2000

Abstract. The main goal of this paper is to characterize both the quotients of quasi-continuous and the quotients of Darboux quasi-continuous functions. We prove also theorems concerning common divisor for the families of the quotients of quasi-continuous (Darboux quasi-continuous) functions with respect to quasi-continuity (Darboux property and quasicontinuity, respectively).

1. Introduction

The letters \mathbb{R} , \mathbb{Q} , \mathbb{Z} , and \mathbb{N} denote the real line, the set of rationals, the set of integers, and the set of positive integers, respectively. The word *function* denotes a mapping from \mathbb{R} to \mathbb{R} unless otherwise explicitly stated. For each set A we use the symbols int A, cl A, bd A, χ_A , and card A to denote the interior, the closure, the boundary, the characteristic function, and the cardinality of A, respectively. We say that a set $A \subset \mathbb{R}$ is *semi-open* [8], if $A \subset cl$ int A.

Let $f : \mathbb{R} \to \mathbb{R}$. The symbol C(f) denotes the set of points of continuity of f. For each $y \in \mathbb{R}$ let $[f < y] = \{x \in \mathbb{R} : f(x) < y\}$. Similarly we define

ISSN 1425-6908 (c)Heldermann Verlag.

¹⁹⁹¹ Mathematics Subject Classification. Primary 26A15; Secondary 54C08.

 $Key\ words\ and\ phrases.$ Darboux function, quasi-continuous function, quotient of functions.

the symbols [f > y], [f = y], etc. If $A \subset \mathbb{R}$ is nonempty, then let osc(f, A) be the oscillation of f on A, i.e., $osc(f, A) = sup\{|f(x) - f(t)| : x, t \in A\}$.

The following denote classes of functions:

- \mathcal{D} : consists of all *Darboux* functions, i.e., $f \in \mathcal{D}$ iff it has the intermediate value property;
- \mathcal{Q} : consists of all quasi-continuous functions in the sense of Kempisty [7]; recall that $f \in \mathcal{Q}$ iff for each $x \in \mathbb{R}$ there is a sequence $(x_n) \subset C(f)$ such that $x_n \to x$ and $f(x_n) \to f(x)$ (see, e.g., [5] or [6, Lemma 2]);
- \mathcal{DQ} : denotes the family of Darboux quasi-continuous functions;
 - $\dot{\mathcal{S}}_s$: consists of all *strong* $\dot{\mathcal{S}}wiqtkowski$ functions [9], i.e., $f \in \dot{\mathcal{S}}_s$ iff for all a < b and y between f(a) and f(b), there is an $x \in (a,b) \cap C(f)$ with f(x) = y; one can easily see that $\dot{\mathcal{S}}_s \subset \mathcal{DQ}$;
 - C_q : consists of all *cliquish* functions [15]; recall that $f \in C_q$ iff $cl C(f) = \mathbb{R}$ (see, e.g., [14]).

There are several papers concerning theorems on a common summand [4], [3], or factor [12]. In this paper we deal with theorems on a common divisor. In particular we characterize the cardinal

$$q(\mathcal{A}) \stackrel{\text{df}}{=} \min\left(\left\{\operatorname{card} \mathcal{F} : \mathcal{F} \subset \mathcal{A}_{\mathcal{A}} \& \neg \left(\exists_g \forall_{f \in \mathcal{F}} f/g \in \mathcal{A}\right)\right\} \cup \left\{\left(\operatorname{card} \mathcal{A}_{\mathcal{A}}\right)^+\right\}\right)$$

for the families \mathcal{Q} and \mathcal{DQ} , where

$$\mathcal{A}_{\mathcal{A}} \stackrel{\text{df}}{=} \{ f/g : f, g \in \mathcal{A} \& g(x) \neq 0 \text{ for each } x \in \mathbb{R} \}.$$

In the above definition it is quite natural to restrict ourselves to subfamilies of $\mathcal{A}_{\mathcal{A}}$ only. Indeed, if there is a function g such that both f/g and 1/g are in \mathcal{A} , then $f \in \mathcal{A}_{\mathcal{A}}$. Therefore, before we can examine the value of $q(\mathcal{A})$, we should know what the family $\mathcal{A}_{\mathcal{A}}$ is.

2. Quasi-continuous functions

Denote by \mathcal{B} the family of all cliquish functions f such that the set $[f \neq 0]$ is semi-open. We start with a simple proposition.

Proposition 2.1. $\mathcal{Q}_{\mathcal{O}} \subset \mathcal{B}$.

Proof. Let f = g/h, where $g, h \in Q$. Then the cliquishness of f is obvious. By [14], the set $[g \neq 0]$ is semi-open. Clearly $[f \neq 0] = [g \neq 0]$.

Our next goal is to show that $\mathcal{Q}_{\mathcal{Q}} = \mathcal{B}$.

Lemma 2.2. Let I = [a, b] and m < M. Suppose that $f_1, \ldots, f_l \in C_q$, and $\max\{\operatorname{osc}(f_i, I) : i \in \{1, \ldots, l\}\} < 1$. There is a Baire one function g such that g = 0 on $\operatorname{bd} I$, and for each i, $(f_i + g)[I] \supset [m, M]$ and $(f_i + g) \upharpoonright I$ is strong Świątkowski.

Proof. Put

$$\widetilde{m} = m - \max\left\{\sup|f_i|[I]: i \in \{1, \dots, l\}\right\} - 1,$$

$$\widetilde{M} = M + \max\left\{\sup|f_i|[I]: i \in \{1, \dots, l\}\right\} + 1.$$

Let φ be a continuous function such that $\varphi[I] \supset [\widetilde{m}, M]$ and $\varphi = 0$ on bd I. For each i define $\tilde{f}_i = (f_i + \varphi)\chi_I + f_i(a)\chi_{(-\infty,a)} + f_i(b)\chi_{(b,\infty)}$. By [10, Theorem 4], there is a Baire one function \widetilde{g} such that $\widetilde{f}_i + \widetilde{g} \in S_s$ for each i, and $\sup |\widetilde{g}|[\mathbb{R}] < 1$; by its proof, we can conclude that $\widetilde{g} = 0$ on bd I.

Put $g = \varphi + \tilde{g}$. Then for each $i, (f_i + g) \upharpoonright I$ is strong Świątkowski and

$$(f_i + g)[I] \supset \left(\inf(f_i + g)[I], \sup(f_i + g)[I]\right)$$
$$\supset \left[\sup f_i[I] + \widetilde{m} + 1, \inf f_i[I] + \widetilde{M} - 1\right] \supset [m, M].$$

Clearly g is Baire one and g = 0 on bd I.

Lemma 2.3. Let $f_1, \ldots, f_l \in C_q$, and assume that each f_i is either positive or negative on (a,b). There is a Baire one function $g: (a,b) \to \mathbb{R} \setminus \{0\}$ such that for each $i, (f_i/g)[(a,c)] = (f_i/g)[(c,b)] = \mathbb{R} \setminus \{0\}$ for each $c \in (a,b)$, and f_i/g is quasi-continuous.

Proof. For each i define

$$\widetilde{f}_i(x) = \begin{cases} \ln |f_i|(x) & \text{if } x \in (a,b), \\ 0 & \text{otherwise.} \end{cases}$$

Clearly each \tilde{f}_i is cliquish. So by [10, Theorem 4], there is a Baire one function \bar{g} such that $\tilde{f}_i - \bar{g} \in \hat{S}_s$ for each *i*. Let $\{a_z : z \in \mathbb{Z}\} \subset \bigcap_{i=1}^l C(\tilde{f}_i - \bar{g})$ be an increasing sequence with limit points *a* and *b*. Fix $z \in \mathbb{Z}$. Choose $b_z \in (a_z, a_{z+1})$ such that $\max\{\operatorname{osc}(\tilde{f}_i - \bar{g}, [a_z, b_z]) : i \in \{1, \ldots, l\}\} < 1$. Use Lemma 2.2 to construct a Baire one function g_z such that $g_z = 0$ on $\{a_z, b_z\}$, and for each *i*, $(\tilde{f}_i - \bar{g} - g_z) \upharpoonright [a_z, b_z]$ is strong Świątkowski and $(\tilde{f}_i - \bar{g} - g_z) [[a_z, b_z]] \supset [-|z|, |z|]$. Define

$$\tilde{g}(x) = \begin{cases} \bar{g}(x) + g_z(x) & \text{if } x \in [a_z, b_z], \ z \in \mathbb{Z}, \\ \bar{g}(x) & \text{otherwise,} \end{cases}$$

and let $g(x) = (-1)^z \exp(\tilde{g}(x))$ if $x \in [a_z, a_{z+1}), z \in \mathbb{Z}$. We will prove that g has all required properties. Clearly g is Baire one.

Fix $i \in \{1, \ldots, l\}$. Notice that for each z, $f_i/g = (-1)^z \exp \circ (\tilde{f}_i - \tilde{g}) \operatorname{sgn} \circ f_i$ on $[a_z, a_{z+1})$ and $(\tilde{f}_i - \tilde{g}) \upharpoonright [a_z, a_{z+1})$ is quasi-continuous. It follows that f_i/g is quasi-continuous on $(a, b) = \bigcup_{z \in \mathbb{Z}} [a_z, a_{z+1})$.

Finally let $c \in (a, b)$ and $y \neq 0$. Choose a $z \in \mathbb{Z}$ with $|\ln |y|| \leq |z|$ such that $[a_z, b_z] \subset (a, c)$ and $(-1)^z = \operatorname{sgn} y \cdot \operatorname{sgn} \circ f_i$ on (a, b). Since $(\tilde{f}_i - \tilde{g})[[a_z, b_z]] \supset [-|z|, |z|]$, there is an $x \in [a_z, b_z]$ such that $\ln |y| = \ln |f_i|(x) - \tilde{g}(x)$. Thus

$$y = |y|\operatorname{sgn} y = \left(|f_i|/\operatorname{exp}\circ\widetilde{g}\right)(x)(-1)^z\operatorname{sgn} f_i(x) = (f_i/g)(x).$$

Similarly we can show that $y = (f_i/g)(x')$ for some $x' \in (c, b)$.

Remark. We say that a set $A \subset \mathbb{R}$ is simply open [1] if bd A is nowhere dense. It is easy to show that each semi-open set is simply open. So by [2], if $f \in \mathcal{B}$, then the set int $[f = 0] \cup \operatorname{int} [f > 0] \cup \operatorname{int} [f < 0]$ is dense in \mathbb{R} .

Theorem 2.4. Let $f_1, \ldots f_k \in \mathcal{B}$. There is a Baire one function $g: \mathbb{R} \to \mathbb{R} \setminus \{0\}$ such that $f_i/g \in \mathcal{Q}$ for each *i*.

Proof. Let $\{(a_n, b_n) : n < r\}$, where $r \le \omega$, be a sequence of all components of the set

$$U = \bigcap_{i=1}^{k} (\inf[f_i = 0] \cup \inf[f_i > 0] \cup \inf[f_i < 0]).$$
(1)

By the remark preceding this theorem, U is dense in \mathbb{R} . Clearly $\operatorname{sgn} \circ f_i$ is constant on (a_n, b_n) for each i and n. By Lemma 2.3, for each n there is a Baire one function $g_n: (a_n, b_n) \to \mathbb{R} \setminus \{0\}$ such that for each $i, f_i/g_n$ is quasi-continuous on (a_n, b_n) and if f_i is nonzero on (a_n, b_n) , then

$$(f_i/g_n)[(a_n, c)] = (f_i/g_n)[(c, b_n)] = \mathbb{R} \setminus \{0\} \text{ for each } c \in (a_n, b_n).$$

$$(2)$$

Define

$$g(x) = \begin{cases} g_n(x) & \text{if } x \in (a_n, b_n), \ n < r \\ 1 & \text{otherwise.} \end{cases}$$

Fix $i \in \{1, \ldots, k\}$. Clearly f_i/g is quasi-continuous on U. So, let $x \in \mathbb{R} \setminus U$. We consider two cases.

If $x \notin \operatorname{clint}[f_i \neq 0]$, then since $[f_i \neq 0]$ is semi-open, $x \notin \operatorname{cl}[f_i \neq 0]$. Hence $x \in \operatorname{int}[f_i = 0] = \operatorname{int}[(f_i/g) = 0]$, and f_i/g is continuous at x.

In the opposite case, there is a sequence $(I_m) \subset \{(a_n, b_n) \cap [f_i \neq 0] : n < r\}$ such that $\varrho(x, I_m) \to 0$, where $\varrho(x, I_m) \stackrel{\text{df}}{=} \inf\{|x - t| : t \in I_m\}$. (We use the fact that U is dense in \mathbb{R} , and the definition of \mathcal{B} .) Notice that f_i/g is quasi-continuous on each I_m . So by (2), there is a sequence $(x_m) \subset C(f_i/g)$ such that $x_m \to x$ and $(f_i/g)(x_m) \to (f_i/g)(x)$. So, f_i/g is quasi-continuous at x.

Corollary 2.5. $\mathcal{Q}_{\mathcal{Q}} = \mathcal{B}$.

Proof. Let $f \in \mathcal{B}$. By Theorem 2.4, there is a function g such that $f/g \in \mathcal{Q}$ and $1/g \in \mathcal{Q}$. Hence $f = (f/g)/(1/g) \in \mathcal{Q}/\mathcal{Q}$.

The opposite inclusion follows by Proposition 2.1.

Proposition 2.6. For each function $g: \mathbb{R} \to \mathbb{R} \setminus \{0\}$ there is a $q \in \mathbb{Q}$ such that $(\exp \circ \chi_{\{q\}})/g \notin Q$.

Proof. If $C(g) = \emptyset$, then $C((\exp \circ \chi_{\{0\}})/g) \subset \{0\}$, so $(\exp \circ \chi_{\{0\}})/g \notin Q$.

Otherwise by [11, Proposition 3.3], $\chi_{\{q\}} - \ln |g| \notin \mathcal{Q}$ for some $q \in \mathbb{Q}$. Hence

$$\exp \circ (\chi_{\{q\}} - \ln |g|) = (\exp \circ \chi_{\{q\}})/|g| \notin \mathcal{Q},$$

and consequently, $(\exp \circ \chi_{\{q\}})/g \notin Q$.

Theorem 2.7. $q(Q) = \omega$.

Proof. The inequality $q(Q) \ge \omega$ follows by Theorem 2.4 and Corollary 2.5. The opposite inequality follows by Proposition 2.6. \square

3. Darboux quasi-continuous functions

Now we turn to the quotients of Darboux quasi-continuous functions. Denote by \mathcal{B}^{\star} the family of all cliquish functions f such that

a) both [f > 0] and [f < 0] are semi-open;

b) if a < b and f(a)f(b) < 0, then $[f = 0] \cap (a, b) \neq \emptyset$;

c) both [f > 0] and [f < 0] are bilaterally dense in itself.

Proposition 3.1. $\mathcal{DQ}_{\mathcal{DQ}} \subset \mathcal{B}^{\star}$.

Proof. Let $f \in \mathcal{DQ}_{\mathcal{DQ}}$. Evidently $f \in \mathcal{D}_{\mathcal{D}} \cap \mathcal{Q}_{\mathcal{Q}}$. So by Proposition 2.1 and [13], f is cliquish and conditions b) and c) hold. Choose $q \in \mathcal{Q}$ and $h \in \mathcal{Q}$ \mathcal{D} such that f = g/h. We may assume that h > 0. Then [f > 0] = [g > 0]and [f < 0] = [g < 0]. Now condition a) follows by [14].

J. JAŁOCHA

Lemma 3.2. Let $f_1, \ldots, f_l \in C_q$, and assume that each f_i is either positive or negative on (a, b). There is a Baire one function $g: (a, b) \to (0, \infty)$ such that for each i, $(|f_i|/g)[(a, c)] = (|f_i|/g)[(c, b)] = (0, \infty)$ for each $c \in (a, b)$, and f_i/g is both Darboux and quasi-continuous.

Proof. First we proceed as in the proof of Lemma 2.3 to construct the function $\tilde{g} \colon \mathbb{R} \to \mathbb{R}$. Define $g = \exp \circ \tilde{g} \upharpoonright (a, b)$. One can easily see that then the requirements of the lemma are fulfilled.

Theorem 3.3. Let $f_1, \ldots, f_k \in \mathcal{B}^*$. There is a Baire one function $g: \mathbb{R} \to (0, \infty)$ such that $f_i/g \in D\mathcal{Q}$ for each *i*.

Proof. Define U by (1), and let $\{(a_n, b_n): n < r\}$ be a sequence of all its components. By Lemma 3.2, for each n there is a function $g_n: (a_n, b_n) \to (0, \infty)$ such that for each $i, f_i/g_n$ is both Darboux and quasi-continuous on (a_n, b_n) and if f_i is nonzero on (a_n, b_n) , then

$$(|f_i|/g_n)[(a_n, c)] = (|f_i|/g_n)[(c, b_n)] = (0, \infty) \quad \text{for each } c \in (a_n, b_n).$$
(3)

Define

$$g(x) = \begin{cases} g_n(x) & \text{if } x \in (a_n, b_n), \ n < r, \\ 1 & \text{otherwise.} \end{cases}$$

Fix $i \in \{1, \ldots, k\}$. The proof of quasi-continuity of f_i/g is a repetition of the argument used in Theorem 2.4. The only difference is that if $x \in \operatorname{clint}[f_i \neq 0]$ and $f_i(x) \neq 0$, then we require that $\operatorname{sgn} \circ f_i = \operatorname{sgn} f_i(x)$ on $\bigcup_{m \in \mathbb{N}} I_m$. (We use conditions (3) and a)).

Finally we will show that $f_i/g \in \mathcal{D}$. Fix a < b and let I = [a, b]. Clearly f_i/g is Darboux on each connected component of U, so we may assume that $I \setminus U \neq \emptyset$. Define $A = I \cap [f_i > 0]$ and $B = I \cap [f_i < 0]$. First we will show that

if
$$A \neq \emptyset$$
, then $(f_i/g)[I] \supset (0, \infty)$.

Indeed, if $A \neq \emptyset$, then by c), $(a,b) \cap [f_i > 0] \neq \emptyset$. Now since $[f_i > 0]$ is semi-open and U is dense in \mathbb{R} , there is an n < r such that $J \stackrel{\text{df}}{=} (a,b) \cap$ $\operatorname{int}[f_i > 0] \cap (a_n, b_n) \neq \emptyset$. Observe that $I \cap \{a_n, b_n\} \neq \emptyset$ (recall that $I \setminus U \neq \emptyset$) and $f_i/g = f_i/g_n$ on J. Finally by (3), $(f_i/g)[I] \supset (f_i/g)[J] = (0, \infty)$.

Similarly we can show that if $B \neq \emptyset$, then $(f_i/g)[I] \supset (-\infty, 0)$. Now we consider four cases.

If $A = \emptyset = B$, then $(f_i/g)[I] = \{0\}$.

If $A \neq \emptyset = B$, then $(0, \infty) \subset (f_i/g)[I] \subset [0, \infty)$, so $(f_i/g)[I]$ is an interval. Analogously we proceed if $A = \emptyset \neq B$. If $A \neq \emptyset \neq B$, then $(f_i/g)[I] \supset (-\infty, 0) \cup (0, \infty)$. But by b), $0 \in f_i[I]$. Consequently, $(f_i/g)[I] = \mathbb{R}$.

The next corollary follows by Proposition 3.1 and Theorem 3.3. Its proof is analogous to that of Corollary 2.5.

Corollary 3.4. $\mathcal{DQ}_{\mathcal{DQ}} = \mathcal{B}^{\star}$.

Theorem 3.5. $q(\mathcal{DQ}) = \omega$.

Proof. The inequality $q(\mathcal{DQ}) \geq \omega$ follows by Theorem 3.3 and Corollary 3.4. The opposite inequality follows by Proposition 2.6.

The next proposition shows that $\mathcal{DQ}_{\mathcal{DQ}}$ is a proper subset of $\mathcal{D}_{\mathcal{D}} \cap \mathcal{Q}_{\mathcal{Q}}$.

Proposition 3.6. $\mathcal{DQ}_{\mathcal{DQ}} \neq \mathcal{D}_{\mathcal{D}} \cap \mathcal{Q}_{\mathcal{Q}}$.

Proof. Let C be the Cantor ternary set and let C_0 denote the set of points of bilateral accumulation of C. Define

$$f(x) = \begin{cases} 1 & \text{if } x \in C_0, \\ 0 & \text{if } x \in C \setminus C_0, \\ -1 & \text{if } x \in \mathbb{R} \setminus C. \end{cases}$$

Then $f \in \mathcal{D}_{\mathcal{D}} \cap \mathcal{Q}_{\mathcal{Q}}$ (see [13] and Corollary 2.5). On the other hand, $[f > 0] = C_0$. So by Proposition 3.1, $f \notin \mathcal{DQ}_{\mathcal{DQ}}$.

References

- Biswas, N., On some mappings in topological spaces, Bull. Calcutta Math. Soc. 61 (1969), 127–135.
- Borsík, J., Products of simply continuous and quasi-continuous functions, Math. Slovaca 45(4) (1995), 445–452.
- [3] Ciesielski, K. and Miller, A. W., Cardinal invariants concerning functions whose sum is almost continuous, Real Anal. Exchange **20**(2) (1994–95), 657–672.
- [4] Fast, H., Une remarque sur la propriété de Weierstrass, Colloq. Math. 7 (1959), 75–77.
- [5] Grande, Z., Sur la quasi-continuité et la quasi-continuité approximative, Fund. Math. 129 (1988), 167–172.
- [6] Grande, Z. and Natkaniec, T., Lattices generated by *T*-quasi-continuous functions, Bull. Polish Acad. Sci. Math. 34 (1986), 525–530.
- [7] Kempisty, S., Sur les fonctions quasicontinues, Fund. Math. 19 (1932), 184–197.

- [8] Levine, N., Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70 (1963), 36–41.
- [9] Maliszewski, A., On the limits of strong Świątkowski functions, Zeszyty Nauk. Politech. Łódz. Mat. 27(719) (1995), 87–93.
- [10] Maliszewski, A., On theorems of Pu & Pu and Grande, Math. Bohem. 121(1) (1996), 232–236.
- [11] Maliszewski, A., Darboux property and quasi-continuity. A uniform approach, WSP, Słupsk, 1996.
- [12] Natkaniec, T., Products of Darboux functions, Real Anal. Exchange 18(1) (1992–93), 232–236.
- [13] Natkaniec, T. and Orwat, W., Variations on products and quotients of Darboux functions, Real Anal. Exchange 15(1) (1989–90), 193–202.
- [14] Neubrunnová, A., On certain generalizations of the notion of continuity, Matemat. Časopis SAV 23(4) (1973), 374–380.
- [15] Thielman, H. P., Types of functions, Amer. Math. Monthly **60**(3) (1953), 156–161.

Jolanta Jałocha Department of Mathematics pl. Weyssenhoffa 11 85–072 Bydgoszcz Poland