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QUOTIENTS OF QUASI-CONTINUOUS
FUNCTIONS

J. JALOCHA

Received March 23, 2000 and, in revised form, June 15, 2000

Abstract. The main goal of this paper is to characterize both the quo-
tients of quasi-continuous and the quotients of Darboux quasi-continuous
functions. We prove also theorems concerning common divisor for the
families of the quotients of quasi-continuous (Darboux quasi-continuous)
functions with respect to quasi-continuity (Darboux property and quasi-
continuity, respectively).

1. Introduction

The letters R, QQ, Z, and N denote the real line, the set of rationals, the set
of integers, and the set of positive integers, respectively. The word function
denotes a mapping from R to R unless otherwise explicitly stated. For
each set A we use the symbols int A, cl A, bd A, X4, and card A to denote
the interior, the closure, the boundary, the characteristic function, and the
cardinality of A, respectively. We say that a set A C R is semi-open [8], if
A Cclint A.

Let f: R — R. The symbol C(f) denotes the set of points of continuity
of f. For each y e Rlet [f < y] = {JJ eR: f(z) < y} Similarly we define
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the symbols [f > y], [f = y], etc. If A C R is nonempty, then let osc(f, A)
be the oscillation of f on A, i.e., osc(f, A) = sup{|f(z) — f(t)| : x,t € A}.
The following denote classes of functions:

D: consists of all Darboux functions, i.e., f € D iff it has the intermediate
value property;

Q: consists of all quasi-continuous functions in the sense of
Kempisty [7]; recall that f € Q iff for each x € R there is a sequence
(xn) C C(f) such that z,, — x and f(z,) — f(z) (see, e.g., [5] or [6,
Lemma 2]);

DO: denotes the family of Darboux quasi-continuous functions;

Ss: consists of all strong Swigtkowski functions [9], i.e., f € S, iff for all
a < b and y between f(a) and f(b), there is an x € (a,b) N C(f)
with f(z) = y; one can easily see that S, C DQ;

Cq: consists of all cliquish functions [15]; recall that f € C, iff c1C(f) =R
(see, e.g., [14]).

There are several papers concerning theorems on a common summand
[4], [3], or factor [12]. In this paper we deal with theorems on a common
divisor. In particular we characterize the cardinal

q(A) df min({card]: :F C A/_A & =(3Vrer flge A) U {(cardA/A)Jr})
for the families @ and DQ, where
A/_Ad:f {f/g:f.ge A& g(x) # 0 for each x € R}.

In the above definition it is quite natural to restrict ourselves to subfamilies
of A/ ' only. Indeed, if there is a function g such that both f/g and 1/g are
in A, then f € -A/ 'A- Therefore, before we can examine the value of q(A),
we should know what the family A/ A is.

2. Quasi-continuous functions

Denote by B the family of all cliquish functions f such that the set [f # 0]
is semi-open. We start with a simple proposition.

Proposition 2.1. Q/Q C B.

Proof. Let f = g/h, where g,h € Q. Then the cliquishness of f is obvious.
By [14], the set [g # 0] is semi-open. Clearly [f # 0] = [g # 0]. O

Our next goal is to show that Q/Q =B.
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Lemma 2.2. Let I = [a,b] and m < M. Suppose that fi,..., fi € Cq, and
max{osc(fi,l) cie{l,.. .,l}} < 1. There is a Baire one function g such
that g = 0 on bd I, and for each i, (f; + g)[I] D [m, M] and (f; + g)II is
strong Swigtkowski.

Proof. Put
m=m —max{sup|fi|[l] :i € {1,...,01}} — 1,
M:M—i—max{sup|fi|[l] cie{l,...,l}}+ 1.

Let ¢ be a continuous function such that ¢[I] D [ﬁL, M] and ¢ =0 on bd I.
For each i define fi = (fi + ¢)X1 + fi(@)X(—coa) + [i(D)X(h,00)- By [10,
Theorem 4], there is a Baire one function g such that f; +g € S, for each 1,
and sup |g|[R] < 1; by its proof, we can conclude that g =0 on bd I.

Put g = ¢ + g. Then for each i, (f; + g)|I is strong Swiatkowski and

(fi + )] > (inf(fi + g)[], sup(fi + g)[1])
D [sup fi[I] + m + 1,inf f;[I] + M — 1] > [m, M].
Clearly g is Baire one and g = 0 on bd /. O

Lemma 2.3. Let f1,..., fi € Cy, and assume that each f; is either positive
or negative on (a,b). There is a Baire one function g: (a,b) — R\ {0} such

that for cach i, (fi/9)[(a.0)] = (fi/g)l(c.b)] = R\ {0} for cach ¢ € (a,b),
and f;/g is quasi-continuous.

Proof. For each 7 define

sy )Inlfil(z) ifx € (a,b),
file) = {0 otherwise.

Clearly each ﬁ is cliquish. So by [10, Theorem 4], there is a Baire one
function g such that f;—g € S, for each i. Let {a,:z€Z} C ﬂﬁzl C(ﬁ»—g)
be an increasing sequence with limit points a and b. Fix z € Z. Choose
b, € (ay,a,+1) such that max{osc(fi -3, [az,bz]) 1 i€ {1,...,l}} < 1.
Use Lemma 2.2 to construct a Baire one function g, such that g, = 0
on {a,b,}, and for each ¢, (ﬁ —g— gz) [laz, b,] is strong Swiatkowski and

(fi =3 - g2) [laz, b=]] > [~ 2], |2[]. Define

_ g(x) + g.(x) ifx € ayb.], z € Z,
9(x) = .
g(x) otherwise,

and let g(z) = (—1)?exp(g(z)) if = € a2, az41), 2 € Z. We will prove that
g has all required properties. Clearly g is Baire one.
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Fix i € {1,...,l}. Notice that for each z, fi/g = (—1)Zexpo(ﬁ- -
§) sgnof; on |a,,a,+1) and (ﬁ —g) [az, a,+1) is quasi-continuous. It follows
that f;/g is quasi-continuous on (a,b) = |U,¢,[az, az41).

Finally let ¢ € (a,b) and y # 0. Choose a z € Z with |In|y|| < |z|
such that [a,,b,] C (a,c) and (—1)* = sgny -sgnof; on (a,b). Since (ﬁ -
) [[a=,b:]] D [~|z],]z]], there is an = € [a.,b.] such that In|y| = In|fi|(z) —
g(x). Thus

y = ly|sgny = (|fil/ expog)(z)(—1)"sgn fi(z) = (fi/g)(x).
Similarly we can show that y = (f;/g)(z") for some 2’ € (¢, b). O

Remark. We say that a set A C R is simply open [1] if bd A is nowhere
dense. It is easy to show that each semi-open set is simply open. So by [2],
if f € B, then the set int [f = 0] Uint [f > 0] Uint [f < 0] is dense in R.

Theorem 2.4. Let fi,...fr € B. There is a Baire one function g: R —
R\ {0} such that fi/g € Q for each i.

Proof. Let {(an, bp):n < r}, where r < w, be a sequence of all components
of the set

k
U = () (int[f; = 0] Uint[f; > 0] U int[f; < 0]). (1)
=1

By the remark preceding this theorem, U is dense in R. Clearly sgnof; is
constant on (an,by) for each i and n. By Lemma 2.3, for each n there is
a Baire one function gy, : (an,b,) — R\ {0} such that for each i, f;/gy, is
quasi-continuous on (an, b,) and if f; is nonzero on (ay, by,), then

(fi/gn)l(an, c)]
= (fi/gn)(c;bn)] = R\ {0} for each ¢ € (an, bn). (2)
Define

gn(x) if x € (an,bn), n <,
o) = (z) (‘ )
1 otherwise.

Fix ¢ € {1,...,k}. Clearly f;/g is quasi-continuous on U. So, let = €
R\ U. We consider two cases.

If = ¢ clint[f; # 0], then since [f; # 0] is semi-open, = ¢ cl[f; # 0]. Hence
x € int[f; = 0] = int[(fi/g) = 0], and f;/g is continuous at z.

In the opposite case, there is a sequence (I,) C {(an,bn) N [fi # 0] :

n < r} such that o(z,I,) — 0, where o(z, I, u inf{|z —t| : t € I, }.

(We use the fact that U is dense in R, and the definition of B.) Notice
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that f;/g is quasi-continuous on each I,,,. So by (2), there is a sequence
(zm) C C(fi/g) such that z,, — 2 and (fi/g)(zm) — (fi/g)(z). So, fi/g is

quasi-continuous at x. [
Corollary 2.5. Q/Q = B.

Proof. Let f € B. By Theorem 2.4, there is a function g such that f/g € Q

and 1/g € Q. Hence f = (f/g)/(1/g) € Q/Q.
The opposite inclusion follows by Proposition 2.1. O

Proposition 2.6. For each function g: R — R\ {0} there is a ¢ € Q such
that (expoX¢q1)/g & Q-

Proof. If C(g) = 0, then C((expoX{g})/g) C {0}, so (expoXy)/g ¢ Q.
Otherwise by [11, Proposition 3.3], X;;y — In[g| ¢ Q for some ¢ € Q.
Hence
expo(X{gy —Inlgl) = (expoXiqy)/lgl ¢ Q,
and consequently, (expoX(q)/g ¢ Q. O

Theorem 2.7. q(Q) = w.

Proof. The inequality q(Q) > w follows by Theorem 2.4 and Corollary 2.5.
The opposite inequality follows by Proposition 2.6. O

3. Darboux quasi-continuous functions

Now we turn to the quotients of Darboux quasi-continuous functions.
Denote by B* the family of all cliquish functions f such that

a) both [f > 0] and [f < 0] are semi-open;

b) if a < b and f(a)f(b) <0, then [f = 0] N (a,b) # 0;

c¢) both [f > 0] and [f < 0] are bilaterally dense in itself.

Proposition 3.1. DQ/DQ C B*.

Proof. Let f € DQ/DQ. Evidently f € P/pn Q/Q. So by Proposition 2.1
and [13], f is cliquish and conditions b) and c) hold. Choose g € Q and h €
D such that f = g/h. We may assume that h > 0. Then [f > 0] = [¢g > 0]
and [f < 0] = [¢ < 0]. Now condition a) follows by [14]. O
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Lemma 3.2. Let fi,..., fi € Cy, and assume that each f; is either positive
or negative on (a,b). There is a Baire one function g: (a,b) — (0,00) such
that for each i, (|fil/9)[(a,c)] = (|fil/9)[(¢c,b)] = (0,00) for each ¢ € (a,b),

and f;/qg is both Darboux and quasi-continuous.

Proof. First we proceed as in the proof of Lemma 2.3 to construct the
function g: R — R. Define g = expog|(a,b). One can easily see that then
the requirements of the lemma are fulfilled. O

Theorem 3.3. Let f1,..., fr € B*. There is a Baire one function g: R —
(0,00) such that f;/g € DQ for each i.

Proof. Define U by (1), and let {(an,b,): n < r} be a sequence of all its
components. By Lemma 3.2, for each n there is a function g, : (a,,b,) —
(0,00) such that for each i, f;/g, is both Darboux and quasi-continuous
on (an,b,) and if f; is nonzero on (a,, by,), then

(1fil/gn)[(an, )]
= (|fil/gn)[(c,br)]=(0,00) for each ¢ € (an,by). (3)
Define

n(x) ifz € (an,bp), n <,
sy = (@) i€ anb)
1 otherwise.

Fix i € {1,...,k}. The proof of quasi-continuity of f;/g is a repeti-
tion of the argument used in Theorem 2.4. The only difference is that if
x € clint[f; # 0] and f;(x) # 0, then we require that sgnof; = sgn f;(x)
on J,,en Im- (We use conditions (3) and a)).

Finally we will show that f;/g € D. Fix a < b and let I = [a,b]. Clearly
fi/g is Darboux on each connected component of U, so we may assume that
I\U # 0. Define A=1nN|[f; >0] and B=1N[f; <0]. First we will show
that

if A 7& @7 then (fz/g)[l] 2 (O’ OO)
Indeed, if A # 0, then by ¢), (a,b) N [f; > 0] # 0. Now since [f; > 0]

is semi-open and U is dense in R, there is an n < r such that J 2 (a,b) N
int[f; > 0]N(an,by) # 0. Observe that IN{ay, by} # 0 (recall that I\U # ()
and fi/g = fi/gn on J. Finally by (3), (fi/9)[] > (fi/9)[J] = (0,00).

Similarly we can show that if B # (), then (f;/g)[I] D (—o00,0). Now we
consider four cases.

If A=0 = B, then (f;/g)[I] = {0}.

If A+# 0 = B, then (0,00) C (fi/g)[I] C [0,00), so (fi/g)[I] is an interval.
Analogously we proceed if A = () # B.
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If A+# 0 # B, then (fi/g)[I] D (—00,0) U (0,00). But by b), 0 € fi[I].
Consequently, (fi/g)[I] =R. O

The next corollary follows by Proposition 3.1 and Theorem 3.3. Its proof
is analogous to that of Corollary 2.5.

Corollary 3.4. DQ/DQ = B*.
Theorem 3.5. q(DQ) = w.

Proof. The inequality q(DQ) > w follows by Theorem 3.3 and Corol-
lary 3.4. The opposite inequality follows by Proposition 2.6. 0

The next proposition shows that DQ/DQ is a proper subset of P/pn Q/Q.

Proposition 3.6. DQ/DQ +Dipn Q/Q.

Proof. Let C be the Cantor ternary set and let Cy denote the set of points
of bilateral accumulation of C'. Define

1 lf T e 007
fl)=2%0 ifzeC\Cy,
-1 ifzeR\C.
Then f € D/pn Q/Q (see [13] and Corollary 2.5). On the other hand,
[f > 0] = Cy. So by Proposition 3.1, f ¢ DQ/DQ 0
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