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Abstract. The main goal of this paper is to characterize both the quo-
tients of quasi-continuous and the quotients of Darboux quasi-continuous
functions. We prove also theorems concerning common divisor for the
families of the quotients of quasi-continuous (Darboux quasi-continuous)
functions with respect to quasi-continuity (Darboux property and quasi-
continuity, respectively).

1. Introduction

The letters R, Q, Z, and N denote the real line, the set of rationals, the set
of integers, and the set of positive integers, respectively. The word function
denotes a mapping from R to R unless otherwise explicitly stated. For
each set A we use the symbols intA, clA, bdA, χA, and cardA to denote
the interior, the closure, the boundary, the characteristic function, and the
cardinality of A, respectively. We say that a set A ⊂ R is semi-open [8], if
A ⊂ cl intA.

Let f : R → R. The symbol C(f) denotes the set of points of continuity
of f . For each y ∈ R let [f < y] =

{
x ∈ R : f(x) < y

}
. Similarly we define
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the symbols [f > y], [f = y], etc. If A ⊂ R is nonempty, then let osc(f,A)
be the oscillation of f on A, i.e., osc(f,A) = sup

{
|f(x)− f(t)| : x, t ∈ A

}
.

The following denote classes of functions:
D: consists of all Darboux functions, i.e., f ∈ D iff it has the intermediate

value property;
Q: consists of all quasi-continuous functions in the sense of

Kempisty [7]; recall that f ∈ Q iff for each x ∈ R there is a sequence
(xn) ⊂ C(f) such that xn → x and f(xn) → f(x) (see, e.g., [5] or [6,
Lemma 2]);

DQ: denotes the family of Darboux quasi-continuous functions;
Śs: consists of all strong Świa̧tkowski functions [9], i.e., f ∈ Śs iff for all

a < b and y between f(a) and f(b), there is an x ∈ (a, b) ∩ C(f)
with f(x) = y; one can easily see that Śs ⊂ DQ;

Cq: consists of all cliquish functions [15]; recall that f ∈ Cq iff clC(f) = R
(see, e.g., [14]).

There are several papers concerning theorems on a common summand
[4], [3], or factor [12]. In this paper we deal with theorems on a common
divisor. In particular we characterize the cardinal

q(A) df= min
({

cardF : F ⊂ A/A & ¬
(
∃g∀f∈F f/g ∈ A

)}
∪
{

(cardA/A)+})
for the families Q and DQ, where

A/A
df=
{
f/g : f, g ∈ A & g(x) 6= 0 for each x ∈ R}.

In the above definition it is quite natural to restrict ourselves to subfamilies
of A/A only. Indeed, if there is a function g such that both f/g and 1/g are
in A, then f ∈ A/A. Therefore, before we can examine the value of q(A),
we should know what the family A/A is.

2. Quasi-continuous functions

Denote by B the family of all cliquish functions f such that the set [f 6= 0]
is semi-open. We start with a simple proposition.

Proposition 2.1. Q/Q ⊂ B.

Proof. Let f = g/h, where g, h ∈ Q. Then the cliquishness of f is obvious.
By [14], the set [g 6= 0] is semi-open. Clearly [f 6= 0] = [g 6= 0].

Our next goal is to show that Q/Q = B.
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Lemma 2.2. Let I = [a, b] and m < M . Suppose that f1, . . . , fl ∈ Cq, and
max

{
osc(fi, I) : i ∈ {1, . . . , l}

}
< 1. There is a Baire one function g such

that g = 0 on bd I, and for each i, (fi + g)[I] ⊃ [m,M ] and (fi + g)�I is
strong Świa̧tkowski.

Proof. Put

m̃ = m−max
{

sup |fi|[I] : i ∈ {1, . . . , l}
}
− 1,

M̃ = M + max
{

sup |fi|[I] : i ∈ {1, . . . , l}
}

+ 1.

Let ϕ be a continuous function such that ϕ[I] ⊃
[
m̃, M̃

]
and ϕ = 0 on bd I.

For each i define f̃i = (fi + ϕ)χI + fi(a)χ(−∞,a) + fi(b)χ(b,∞). By [10,
Theorem 4], there is a Baire one function g̃ such that f̃i + g̃ ∈ Śs for each i,
and sup |g̃|[R] < 1; by its proof, we can conclude that g̃ = 0 on bd I.

Put g = ϕ+ g̃. Then for each i, (fi + g)�I is strong Świa̧tkowski and

(fi + g)[I] ⊃
(
inf(fi + g)[I], sup(fi + g)[I]

)
⊃
[
sup fi[I] + m̃+ 1, inf fi[I] + M̃ − 1

]
⊃ [m,M ].

Clearly g is Baire one and g = 0 on bd I.

Lemma 2.3. Let f1, . . . , fl ∈ Cq, and assume that each fi is either positive
or negative on (a, b). There is a Baire one function g : (a, b)→ R\{0} such
that for each i, (fi/g)[(a, c)] = (fi/g)[(c, b)] = R \ {0} for each c ∈ (a, b),
and fi/g is quasi-continuous.

Proof. For each i define

f̃i(x) =

{
ln |fi|(x) if x ∈ (a, b),
0 otherwise.

Clearly each f̃i is cliquish. So by [10, Theorem 4], there is a Baire one
function ḡ such that f̃i−ḡ ∈ Śs for each i. Let {az : z ∈ Z} ⊂ ⋂l

i=1C
(
f̃i−ḡ

)
be an increasing sequence with limit points a and b. Fix z ∈ Z. Choose
bz ∈ (az, az+1) such that max

{
osc
(
f̃i − ḡ, [az, bz]

)
: i ∈ {1, . . . , l}

}
< 1.

Use Lemma 2.2 to construct a Baire one function gz such that gz = 0
on {az, bz}, and for each i,

(
f̃i − ḡ − gz

)�[az, bz] is strong Świa̧tkowski and(
f̃i − ḡ − gz

)[
[az, bz]

]
⊃ [−|z|, |z|]. Define

g̃(x) =

{
ḡ(x) + gz(x) if x ∈ [az, bz], z ∈ Z,
ḡ(x) otherwise,

and let g(x) = (−1)z exp
(
g̃(x)

)
if x ∈ [az, az+1), z ∈ Z. We will prove that

g has all required properties. Clearly g is Baire one.
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Fix i ∈ {1, . . . , l}. Notice that for each z, fi/g = (−1)z exp ◦
(
f̃i −

g̃
)

sgn ◦fi on [az, az+1) and
(
f̃i− g̃

)�[az, az+1) is quasi-continuous. It follows
that fi/g is quasi-continuous on (a, b) =

⋃
z∈Z[az, az+1).

Finally let c ∈ (a, b) and y 6= 0. Choose a z ∈ Z with
∣∣ln |y|∣∣ ≤ |z|

such that [az, bz] ⊂ (a, c) and (−1)z = sgn y · sgn ◦fi on (a, b). Since
(
f̃i −

g̃
)[

[az, bz]
]
⊃ [−|z|, |z|], there is an x ∈ [az, bz] such that ln |y| = ln |fi|(x)−

g̃(x). Thus

y = |y| sgn y =
(
|fi|/ exp ◦g̃

)
(x)(−1)z sgn fi(x) = (fi/g)(x).

Similarly we can show that y = (fi/g)(x′) for some x′ ∈ (c, b).

Remark. We say that a set A ⊂ R is simply open [1] if bdA is nowhere
dense. It is easy to show that each semi-open set is simply open. So by [2],
if f ∈ B, then the set int [f = 0] ∪ int [f > 0] ∪ int [f < 0] is dense in R.

Theorem 2.4. Let f1, . . . fk ∈ B. There is a Baire one function g : R →
R \ {0} such that fi/g ∈ Q for each i.

Proof. Let
{

(an, bn) : n < r
}

, where r ≤ ω, be a sequence of all components
of the set

U =
k⋂
i=1

(
int[fi = 0] ∪ int[fi > 0] ∪ int[fi < 0]

)
. (1)

By the remark preceding this theorem, U is dense in R. Clearly sgn ◦fi is
constant on (an, bn) for each i and n. By Lemma 2.3, for each n there is
a Baire one function gn : (an, bn) → R \ {0} such that for each i, fi/gn is
quasi-continuous on (an, bn) and if fi is nonzero on (an, bn), then

(fi/gn)[(an, c)]

= (fi/gn)[(c, bn)] = R \ {0} for each c ∈ (an, bn). (2)

Define

g(x) =

{
gn(x) if x ∈ (an, bn), n < r,
1 otherwise.

Fix i ∈ {1, . . . , k}. Clearly fi/g is quasi-continuous on U . So, let x ∈
R \ U . We consider two cases.

If x /∈ cl int[fi 6= 0], then since [fi 6= 0] is semi-open, x /∈ cl[fi 6= 0]. Hence
x ∈ int[fi = 0] = int[(fi/g) = 0], and fi/g is continuous at x.

In the opposite case, there is a sequence (Im) ⊂
{

(an, bn) ∩ [fi 6= 0] :

n < r
}

such that %(x, Im) → 0, where %(x, Im) df= inf
{
|x − t| : t ∈ Im

}
.

(We use the fact that U is dense in R, and the definition of B.) Notice
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that fi/g is quasi-continuous on each Im. So by (2), there is a sequence
(xm) ⊂ C(fi/g) such that xm → x and (fi/g)(xm)→ (fi/g)(x). So, fi/g is
quasi-continuous at x.

Corollary 2.5. Q/Q = B.

Proof. Let f ∈ B. By Theorem 2.4, there is a function g such that f/g ∈ Q
and 1/g ∈ Q. Hence f = (f/g)

/
(1/g) ∈ Q/Q.

The opposite inclusion follows by Proposition 2.1.

Proposition 2.6. For each function g : R→ R \ {0} there is a q ∈ Q such
that (exp ◦χ{q})/g /∈ Q.

Proof. If C(g) = ∅, then C
(
(exp ◦χ{0})/g

)
⊂ {0}, so (exp ◦χ{0})/g /∈ Q.

Otherwise by [11, Proposition 3.3], χ{q} − ln |g| /∈ Q for some q ∈ Q.
Hence

exp ◦(χ{q} − ln |g|) = (exp ◦χ{q})/|g| /∈ Q,
and consequently, (exp ◦χ{q})/g /∈ Q.

Theorem 2.7. q(Q) = ω.

Proof. The inequality q(Q) ≥ ω follows by Theorem 2.4 and Corollary 2.5.
The opposite inequality follows by Proposition 2.6.

3. Darboux quasi-continuous functions

Now we turn to the quotients of Darboux quasi-continuous functions.
Denote by B? the family of all cliquish functions f such that

a) both [f > 0] and [f < 0] are semi-open;
b) if a < b and f(a)f(b) < 0, then [f = 0] ∩ (a, b) 6= ∅;
c) both [f > 0] and [f < 0] are bilaterally dense in itself.

Proposition 3.1. DQ/DQ ⊂ B?.

Proof. Let f ∈ DQ/DQ. Evidently f ∈ D/D ∩ Q/Q. So by Proposition 2.1
and [13], f is cliquish and conditions b) and c) hold. Choose g ∈ Q and h ∈
D such that f = g/h. We may assume that h > 0. Then [f > 0] = [g > 0]
and [f < 0] = [g < 0]. Now condition a) follows by [14].
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Lemma 3.2. Let f1, . . . , fl ∈ Cq, and assume that each fi is either positive
or negative on (a, b). There is a Baire one function g : (a, b)→ (0,∞) such
that for each i, (|fi|/g)[(a, c)] = (|fi|/g)[(c, b)] = (0,∞) for each c ∈ (a, b),
and fi/g is both Darboux and quasi-continuous.

Proof. First we proceed as in the proof of Lemma 2.3 to construct the
function g̃ : R → R. Define g = exp ◦g̃�(a, b). One can easily see that then
the requirements of the lemma are fulfilled.

Theorem 3.3. Let f1, . . . , fk ∈ B?. There is a Baire one function g : R→
(0,∞) such that fi/g ∈ DQ for each i.

Proof. Define U by (1), and let {(an, bn) : n < r} be a sequence of all its
components. By Lemma 3.2, for each n there is a function gn : (an, bn) →
(0,∞) such that for each i, fi/gn is both Darboux and quasi-continuous
on (an, bn) and if fi is nonzero on (an, bn), then

(|fi|/gn)[(an, c)]

= (|fi|/gn)[(c, bn)]=(0,∞) for each c ∈ (an, bn). (3)

Define

g(x) =

{
gn(x) if x ∈ (an, bn), n < r,
1 otherwise.

Fix i ∈ {1, . . . , k}. The proof of quasi-continuity of fi/g is a repeti-
tion of the argument used in Theorem 2.4. The only difference is that if
x ∈ cl int[fi 6= 0] and fi(x) 6= 0, then we require that sgn ◦fi = sgn fi(x)
on
⋃
m∈N Im. (We use conditions (3) and a)).

Finally we will show that fi/g ∈ D. Fix a < b and let I = [a, b]. Clearly
fi/g is Darboux on each connected component of U , so we may assume that
I \ U 6= ∅. Define A = I ∩ [fi > 0] and B = I ∩ [fi < 0]. First we will show
that

if A 6= ∅, then (fi/g)[I] ⊃ (0,∞).
Indeed, if A 6= ∅, then by c), (a, b) ∩ [fi > 0] 6= ∅. Now since [fi > 0]

is semi-open and U is dense in R, there is an n < r such that J df= (a, b) ∩
int[fi > 0]∩(an, bn) 6= ∅. Observe that I∩{an, bn} 6= ∅ (recall that I\U 6= ∅)
and fi/g = fi/gn on J . Finally by (3), (fi/g)[I] ⊃ (fi/g)[J ] = (0,∞).

Similarly we can show that if B 6= ∅, then (fi/g)[I] ⊃ (−∞, 0). Now we
consider four cases.

If A = ∅ = B, then (fi/g)[I] = {0}.
If A 6= ∅ = B, then (0,∞) ⊂ (fi/g)[I] ⊂ [0,∞), so (fi/g)[I] is an interval.

Analogously we proceed if A = ∅ 6= B.
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If A 6= ∅ 6= B, then (fi/g)[I] ⊃ (−∞, 0) ∪ (0,∞). But by b), 0 ∈ fi[I].
Consequently, (fi/g)[I] = R.

The next corollary follows by Proposition 3.1 and Theorem 3.3. Its proof
is analogous to that of Corollary 2.5.

Corollary 3.4. DQ/DQ = B?.

Theorem 3.5. q(DQ) = ω.

Proof. The inequality q(DQ) ≥ ω follows by Theorem 3.3 and Corol-
lary 3.4. The opposite inequality follows by Proposition 2.6.

The next proposition shows that DQ/DQ is a proper subset of D/D∩Q/Q.

Proposition 3.6. DQ/DQ 6= D/D ∩Q/Q.

Proof. Let C be the Cantor ternary set and let C0 denote the set of points
of bilateral accumulation of C. Define

f(x) =


1 if x ∈ C0,
0 if x ∈ C \ C0,
−1 if x ∈ R \ C.

Then f ∈ D/D ∩ Q/Q (see [13] and Corollary 2.5). On the other hand,
[f > 0] = C0. So by Proposition 3.1, f /∈ DQ/DQ.
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[14] Neubrunnová, A., On certain generalizations of the notion of continuity, Matemat.
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