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Abstract. The present paper is devoted to the study of the existence
solution problem for a hemivariational inequality on vector-valued func-
tion space in the case when the nonlinear nonconvex part satisfies the
unilateral growth condition. The critical point theory combined with
the Galerkin approximation method have been used to establish the
result.

1. Introduction

The theory of hemivariational inequalities begun in the early eighties
with the works of P. D. Panagiotopoulos [22], [23], and a main reason for
its birth was the need for description of important problems in physics and
engineering, where nonmonotone, multivalued boundary or interface con-
ditions occur, or where some nonmonotone, multivalued relations between
stress and strain, or reaction and displacement have to be taken into ac-
count. The theory of hemivariational inequalities (as the generalization
of variational inequalities (cf. [5]) has been proved to be very useful in

1991 Mathematics Subject Classification. 49J40, 35J85.
Key words and phrases. Hemivariational inequality, critical point theory, unilateral

growth condition.

ISSN 1425-6908 c© Heldermann Verlag.



24 D. MOTREANU and Z. NANIEWICZ

understanding of many problems in mechanics and engineering involving
nonconvex, nonsmooth energy functionals.

The aim of this paper is to give some existence results for hemivariational
inequalities in the case of the unilateral growth conditions [19] imposed on
the “nonlinearities”. The approach presented here is based on the critical
point theory [1], [27] suitably adopted to the nonsmooth case [2], [16]. See
also [11], [7], [10], [15], [14], [13], [12], [28] for the study of topological
methods concerning nonsmooth functionals.

For the general mathematical study of hemivariational inequalities and
their applications the reader is referred to [24], [21], [16], [25], [17] and,
additionally, to [8], [9] for their numerical treatment. Some results related
to variational-hemivariational inequalities can be found in [4], [26], [18].

We pass now to the formulation of our main problem and, subsequently,
of the imposed assumptions.

Let Ω be a bounded domain in Rm with sufficiently smooth boundary and
V be a Banach space compactly imbedded into Lp(Ω;RN ), p > 2. Moreover,
assume that g ∈ V ∗ and a : V ×V → R is a continuous, symmetric, bilinear
form which is coercive in the sense that there is a constant α > 0 satisfying

a(v, v) ≥ α‖v‖2V , ∀v ∈ V. (1)

Suppose that j : Ω × RN → R is a Carathéodory function verifying the
assumptions:

(H1) j(x, y) is Lipschitz continuous on the bounded subsets of RN
uniformly with respect to x ∈ Ω, i.e., ∀R > 0 ∃KR > 0 such that

|j(x, y1)− j(x, y2)| ≤ KR|y1 − y2|, ∀x ∈ Ω, ∀|y1|, |y2| ≤ R;

(H2) there exist constants µ > 2, C1 > 0, C2 > 0, σ ∈ [1, 2) such that

j(x, y)− 1
µ
j0(x, y; y) ≥ −C1 − C2|y|σ, ∀x ∈ Ω, ∀y ∈ RN ;

(H3)
∫

Ω j(x, 0) dx ≤ 0 and

lim inf
y→0

j(x, y)
|y|2

≥ 0 uniformly with respect to x ∈ Ω;

(H4) for some 2 < q < p the unilateral growth condition holds
(Naniewicz [19]):

j0(x, ξ; η − ξ) ≤ α̃(r)(1 + |ξ|q) ∀ξ, η ∈ RN , |η| ≤ r, r ≥ 0, a.e. in Ω,

where α̃ : R+ → R+ is a nondecreasing function from R+ into R+;
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(H5) there exists v0 ∈ V ∩ L∞(Ω;RN ) such that

lim inf
s→∞

s−σ
∫

Ω
j(x, sv0) dx <

µ

σ − µ
C2‖v0‖σLσ ,

with the positive constants C2, µ, σ entering (H2).

Here, for a.e. x ∈ Ω, j0(x, · ; ·) stands for the Clarke’s generalized directional
derivative given by [3]:

j0(x, ξ; η) = lim sup
h→0
λ→0+

j(x, ξ + h+ λη)− j(x, ξ + h)
λ

,

and where

∂yj(x, ξ) = {η ∈ RN : j0(x, ξ;µ) ≥ η · µ ∀µ ∈ RN}, a.e. in Ω,

is the Clarke’s generalized gradient of j(x, ·) in ξ ∈ RN .

Remark 1. If j(x, y) satisfies the unilateral growth condition (H4) then
the inequality below holds (see Naniewicz [20], Lemma 2.1):

(H ′4) j(x, y) ≥ −a1 − a2|y|q, ∀x ∈ Ω, ∀y ∈ RN ,
with constants a1 > 0 and a2 > 0.

Remark 2. Notice that our statement of hypothesis (H3) is a weaker form
of a celebrated condition of the form: β : Ω× R→ R and

(?) β(x, z) = o(|z|) at z = 0 uniformely in x ∈ Ω,

where j : Ω× R→ R is related to β by

j(x, z) =
∫ z

0
β(x, t) dt,

used frequently in the variational theory of various nonlinear boundary value
problems, for instance in the study of semilinear elliptic differential equa-
tions (cf. [1], [27], [2]). It must be also emphasised that in our paper we
deal with vector-valued function space (N ≥ 1) while the hypothesis (?) is
referred to the scalar case (N = 1).

We consider the problem of finding u ∈ V such as to satisfy a hemivari-
ational inequality of the form

(P ) a(u, v − u) +
∫

Ω
j0(x, u; v − u) dx ≥ 〈g, v − u〉V , ∀ v ∈ V,

where the integral above is assumed to take +∞ as its value whenever
j0(x, u; v − u) 6∈ L1(Ω).
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The main result of this paper concerning problem (P ) is formulated in
Theorem 6. To prove the main result, the critical point theory combined
with the Galerkin approximation method will be applied. In this respect
the basic fact is the variational interpretation of problem (P ) in terms of a
critical point existence problem for an associated nonsmooth functional.

The novelty of our approach consists mainly in using the nonsmooth
version of Mountain Pass Theorem in Chang [2] on an appropriate family
of finite dimensional subspaces and then proving a priori estimates for the
finite dimensional approximate solutions on the basis of their minimax char-
acterizations. Finally, a passing to limit process is developed. In compari-
son with our paper [11], where the subquadratic and superquadratic cases
in the growth condition of the nonlinear term j(x, y) has been discussed
separately and treated by means of different methods, we present here an
approach that works for all cases and improves substantially the previous
results. In the present paper the unilateral growth condition of Naniewicz
[19] is employed in all situations, independently of the growth rate for the
nonlinear term j(x, y), and shows its whole applicability. On the hand the
nonsmooth critical point arguments and the Galerkin approximation tech-
nique are used in a nontrivial way relying essentially on the Mountain-Pass
topological type of solutions which we construct on the finite dimensional
spaces of the Galerkin basis.

The rest of the paper is organized as follows. Section 2 is devoted to
some technical results of nonsmooth critical point theory that are needed
in the sequel. Section 3 contains the exposition of the finite dimensional
approximation in solving problem (P ). Section 4 presents the main result
of the paper and its complete proof pointing out the closed connection with
the theory of hemivariational inequalities.

2. Some preliminaries

Lemma 1. Assume that condition (H1) holds. Then the functional J :
L∞(Ω;RN )→ R defined by

J(v) =
∫

Ω
j(x, v(x)) dx, ∀v ∈ L∞(Ω;RN ),

is Lipschitz continuous on the bounded subsets of L∞(Ω;RN ). Moreover, J
has the property

∂J(v) ⊂
∫

Ω
∂yj(x, v(x)) dx, ∀v ∈ L∞(Ω;RN ), (2)
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in the sense that for each z ∈ ∂J(v) there is a corresponding element z̃ ∈
L1(Ω;RN ), which will be identified with z, such that

〈z, w〉 =
∫

Ω
z̃(x) · w(x) dx ≡

∫
Ω
z(x) · w(x) dx, (3)

for all w ∈ L∞(Ω;RN ), and

z̃(x) ≡ z(x) ∈ ∂yj(x, v(x)) for a.e. x ∈ Ω. (4)

Proof. Let R > 0. If v1, v2 ∈ L∞(Ω;RN ) satisfy ‖v1‖L∞ , ‖v2‖L∞ ≤ R,
according to assumption (H1) we can write

|J(v1)− J(v2)| ≤
∫

Ω
|j(x, v1(x))− j(x, v2(x))| dx

≤KR

∫
Ω
|v1(x)− v2(x)| dx ≤ KR|Ω|‖v1 − v2‖L∞ .

Hence J is Lipschitz continuous on the closed ball ‖v‖L∞ ≤ R. The rep-
resentation formula (2) for the generalized gradient ∂J of J in the sense
of relations (3) and (4) is proved in Clarke ([3] p. 76) under a hypothesis
which is more general than (H1).

Throughout the rest of the paper we denote by Λ the family of all finite
dimensional subspaces F of V ∩ L∞(Ω;RN ) such that F ∈ Λ iff

v0 ∈ F, (5)

where v0 is described in (H5).
For every subspace F ∈ Λ we introduce the functional IF : F → R as

follows

IF (v) =
1
2
a(v, v)− 〈g, v〉V + J(v), ∀v ∈ F. (6)

From (6) it is clear that, assuming (H1), Lemma 1 ensures that the func-
tional I is locally Lipschitz and its generalized gradient is expressed by

∂IF (v) = i∗FAiF − i∗F g + i
∗
F∂J(v)iF , ∀v ∈ F, (7)

where iF : F → V and iF : F → L∞(Ω;RN ) are the inclusion maps, while
A : V → V ∗ stands for the continuous linear operator which corresponds to
the bilinear form a : V × V → R, that is

〈Au, v〉V = a(u, v), ∀u, v ∈ V.

Lemma 2. Assume that conditions (H1) and (H2) hold. Then for each
F ∈ Λ the functional IF : F → R satisfies the Palais-Smale condition in the
sense of Chang [2].
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Proof. Let {un} ⊂ F and {wn} ⊂ F ∗ be sequences such that

|IF (un)| ≤M, ∀n ≥ 1, (8)

for a constant M > 0, and

wn ∈ ∂IF (un), wn → 0 in F ∗ as n→∞. (9)

From (7) we see that wn in (9) can be written as follows

wn = i∗FAiF − i∗F g + i
∗
F zniF , with zn ∈ ∂J(un). (10)

Using (8), (9) and (10), in conjunction with (2), (3), we get that for n
sufficiently large one has

M + ‖un‖V ≥ IF (un)− 1
µ
〈wn, un〉F

=
(

1
2
− 1
µ

)
a(un, un) +

(
1
µ
− 1
)
〈g, un〉V +

∫
Ω

[
j(x, un)− 1

µ
zn · un

]
dx.

Then on the basis of relation (1) and hypothesis (H2) one obtains that

M + ‖un‖V ≥ α
(

1
2
− 1
µ

)
‖un‖2V +

(
1
µ
− 1
)
‖g‖V ∗‖un‖V − C1|Ω| − C2‖un‖σLσ

≥ α
(

1
2
− 1
µ

)
‖un‖2V +

(
1
µ
− 1
)
‖g‖V ∗‖un‖V − C1|Ω| − C2‖un‖σV ,

for a new constant C2 determined by the imbedding F ⊂ V ⊂ Lσ(Ω;RN ),
where |Ω| stands for the Lebesgue measure of Ω.

Since µ > 2 and σ < 2, the estimate above yields the boundedness of
{un} in V , so in F . Taking into account that F is finite dimensional, {un}
contains a convergent subsequence in F . This completes the proof.

Lemma 3. Assume that conditions (H1), (H2) and (H5) hold. Then, for
each finite dimensional linear subspace F of X satisfying (5), one has

lim inf
t→∞

IF (tv0) = −∞. (11)

Proof. For all τ 6= 0, x ∈ Ω and y ∈ RN it is seen that the formula below
for the generalized gradient with respect to τ is valid

∂τ (τ−µj(x, τy)) = τ−µ−1[−µj(x, τy) + ∂yj(x, τy)(τy)]. (12)

Since the function τ 7→ τ−µj(x, τy) is differentiable a.e. on R, equality (12)
and a classical property of Clarke’s generalized directional derivative imply



A TOPOLOGICAL APPROACH 29

that

t−µj(x, ty)− j(x, y) =
∫ t

1

d

dτ
(τ−µj(x, τy))dτ

≤
∫ t

1
τ−µ−1[−µj(x, τy) + j0

y(x, τy; τy)]dτ, ∀t > 1, a.e. x ∈ Ω, y ∈ RN .

Making now use of assumption (H2) we infer that

t−µj(x, ty)− j(x, y) ≤ µ
∫ t

1
τ−µ−1[C1 + C2τ

σ|y|σ]dτ

= µ

[
C1

(
− 1
µ
t−µ +

1
µ

)
+ C2|y|σ

(
1

σ − µ
tσ−µ − 1

σ − µ

)]
≤ C1 + µ(µ− σ)−1C2|y|σ, ∀t > 1, a.e. x ∈ Ω, y ∈ RN . (13)

Set y = sv0(x), with x ∈ Ω and s > 0, in (13). We find the following
estimate

j(x, tsv0(x)) ≤ tµ[j(x, sv0(x)) + C1 + µ(µ− σ)−1C2s
σ|v0(x)|σ],

∀t > 1, s > 0, a.e. x ∈ Ω. (14)

Combining (6) and (14) we infer that

IF (tsv0) ≤ 1
2
t2s2a(v0, v0)− ts〈g, v0〉V

+ tµsσ[s−σ
∫

Ω
j(x, sv0(x)) dx+ s−σC1|Ω|

+ C2µ(µ− σ)−1‖v0‖σLσ ], ∀t > 1, s > 0. (15)

Assumption (H5) allows to fix some number s > 0 such that

s−σ
∫

Ω
j(x, sv0(x)) dx+s−σC1|Ω|+C2µ(µ−σ)−1‖v0‖σLσ<0. (16)

With s > 0 fixed as in (16) we pass to the limit in (15) for t → ∞. This
leads to the conclusion that

lim
t→∞

IF (tsv0) = −∞.

Therefore assertion (11) is obtained and the proof of Lemma 3 is complete.
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3. Finite dimensional approximation

We state the main results concerning the finite dimensional approxima-
tion of (P ).

Theorem 4. Assume that conditions (H1) − (H5) hold. Then there exists
a constant B > 0 such that, whenever ‖g‖V ∗ ≤ B and F ∈ Λ, the problem:

(PF,g) Find u ∈ F and ξ ∈ L1(Ω;RN ) such that

a(u, v− u)+
∫

Ω
ξ(x)·

(
v(x)−u(x)

)
dx=〈g, v−u〉V , ∀v ∈ F, (17)

ξ(x) ∈ ∂yj(x, u(x)) for a.e. x ∈ Ω, (18)

admits a solution (uF,g, ξF,g) ∈ F × L1(Ω;RN ). Moreover, there exists a
constant b > 0 depending only on B such that

‖uF,g‖V ≤ b. (19)

In addition, we have the uniform energy estimate

1
2
a(uF,g, uF,g)− 〈g, uF,g〉V +

∫
Ω
j
(
x, uF,g(x)

)
dx ≥ β (20)

for all F , g as required above, with a positive constant β depending only on
B.

Proof. For each F ∈ Λ consider the locally Lipschitz functional IF : F →
R defined as in (6). We apply to each functional IF Chang’s variant of
Mountain Pass Theorem for locally Lipschitz functionals (see Chang [2]).
Towards this we note that by (H3) we have

IF (0) ≤ 0. (21)

We show that there exist constants B > 0, β > 0 and ρ > 0 such that

IF (v) ≥ β, ∀v ∈ F with ‖v‖V = ρ, (22)

whenever g ∈ V ∗ entering IF satisfies ‖g‖V ∗ ≤ B and for all subspaces
F ∈ Λ.

Indeed, from (H3) we know that for each ε > 0 one finds δ > 0 such that

j(x, y) ≥ −ε|y|2, ∀x ∈ Ω and |y| ≤ δ.

Taking into account (H ′4) in Section 1 we derive that

j(x, y) ≥ −ε|y|2 − (a1δ
−q + a2)|y|q, ∀x ∈ Ω, ∀y ∈ RN . (23)



A TOPOLOGICAL APPROACH 31

Then, with new constants c0, b1, b2 > 0, one obtains from (1), (6), (23), the
continuous imbedding V ⊂ Lq(Ω;RN ) ⊂ L2(Ω;RN ) and Young’s inequality,
the estimate

IF (v) ≥ 1
2
α‖v‖2V − ‖g‖V ∗‖v‖V − ε‖v‖2L2 − (a1δ

−q + a2)‖v‖qLq

≥
[

1
2
α− c0ε−

(
b1
δq

+ b2 +
1
q

)
‖v‖q−2

V

]
‖v‖2V −

q − 1
q
‖g‖q/(q−1)

V ∗ ,

∀v ∈ F, ∀F ∈ Λ. (24)

Let us take ρ > 0 and ε > 0 sufficiently small to have

E :=
1
2
α− c0ε−

(
b1
δq

+ b2 +
1
q

)
ρq−2 > 0. (25)

Then, in view of (25), inequality (24) becomes

IF (v) ≥ Eρ2 − q − 1
q
‖g‖q/(q−1)

V ∗ , (26)

for any v ∈ F with ‖v‖V = ρ, and ∀F ∈ Λ. Relation (26) ensures that it
suffices to choose B > 0 such that

β := Eρ2 − q − 1
q

Bq/(q−1) > 0 (27)

to guarantee that property (22) is valid.
In virtue of Lemma 3 we can choose some t0 > 0 sufficiently large so that

e := t0v0 has the properties

‖e‖V > ρ (28)

and

I(e) ≤ 0. (29)

Furthermore, we know that

e ∈ F, ∀F ∈ Λ. (30)

Lemma 2 and the assertions (21), (22) (with (27)), (28) and (29) permit to
apply to IF the Mountain Pass Theorem for locally Lipschitz functionals
(see Chang [2]), for each F ∈ Λ and g ∈ V ∗ provided ‖g‖V ∗ ≤ B. This
provides a critical point uF,g ∈ F of IF , that is

0 ∈ ∂IF (uF,g). (31)

In addition, IF (uF,g) has the following minimax characterization

IF (uF,g) = inf
γ∈ΓF

max
t∈[0,1]

IF (γ(t)), (32)

where

ΓF = {γ ∈ C([0, 1], F ) : γ(0) = 0, γ(1) = e}. (33)
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Writing explicitly (31) by means of (7), and taking into account (2), (3),
(4), we see that for uF ∈ F there is ξF ∈ L1(Ω;RN ) solving problem (PF,g)
with u = uF,g and ξ = ξF,g.

Let us establish the boundedness stated in (19). To this end we note that
formula (31) can be expressed in the following way

a(uF,g, v)− 〈g, v〉V +
∫

Ω
ξF,g(x) · v(x) dx = 0, ∀v ∈ F. (34)

On the other hand we notice that e ∈ F for all subspaces F ∈ Λ (cf. (30)).
Consequently, the segment [0, e], viewed as a path in V , is contained in
all subspaces F ∈ Λ, thus it belongs to every family ΓF given by (33).
Therefore we can take

b := max
‖g‖V ∗≤B

max
t∈[0,1]

IF (te)

= max
‖g‖V ∗≤B

max
t∈[0,1]

[
1
2
t2a(e, e)− t〈g, e〉V + J(te)

]
(35)

which is independent of F and g and depends on B only.
Using (32)–(35) we conclude that for each F ∈ Λ,

b ≥ max
t∈[0,1]

IF (te) ≥ IF (uF,g),

provided ‖g‖V ∗ ≤ B. By means of the inequality above combined with (6),
(7) and (34), we arrive at

b ≥ IF (uF,g)−
1
µ

[
a(uF,g, uF,g)− 〈g, uF,g〉V +

∫
Ω
ξF,g(x) · uF,g(x) dx

]
=
(

1
2
− 1
µ

)
a(uF,g, uF,g) +

(
1
µ
− 1
)
〈g, uF,g〉V

+
∫

Ω

(
j(x, uF,g(x))− 1

µ
ξF,g(x) · uF,g(x)

)
dx, (36)

for an arbitrary subspace F ∈ Λ and each g ∈ V ∗ with ‖g‖V ∗ ≤ B.
If now we make use of relations (1), (4) (with z = ξF,g) and assumption

(H2), inequality (36) yields

b ≥
(

1
2
− 1
µ

)
α‖uF,g‖2V +

(
1
µ
− 1
)
‖g‖V ∗‖uF,g‖V

− c1 − c2‖uF,g‖σV , (37)

with F and g as in (36) and constants c1 > 0, c2 > 0. Estimate (37) shows
that the claim in (19) is checked.

The energy estimate in (20) is a consequence of the minimax character-
ization (32), (33) in conjunction with the boundedness from below on the
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sphere ‖v‖V = ρ, as shown in (26), by the constant β > 0 indicated in (27).
This completes the proof of Theorem 4.

Theorem 5. Assume all the hypotheses in Theorem 4. If (uF,g, ξF,g) ∈
F × L1(Ω;RN ) is a solution of (PF,g), F ∈ Λ, then the set {ξF,g}F∈Λ is
weakly precompact in L1(Ω;RN ).

Proof. According to the Dunford-Pettis theorem (see, e.g., [6]) it suffices
to show that for each ε > 0 a δ > 0 can be determined such that for any
ω ⊂ Ω with |ω| < δ, ∫

ω
|ξF,g| dx < ε, ∀F ∈ Λ. (38)

Fix r > 0 and let η ∈ RN be such that |η| ≤ r. Then one has ξF,g·(η−uF,g) ≤
j0(x, uF,g; η − uF,g), from which, by virtue of (H4), it results that

ξF,g · η ≤ ξF,g · uF,g + α̃(r)(1 + |uF,g|q) (39)

a.e. in Ω. Let us set η ≡ (r/
√
N)(sgnχR1 , . . . , sgnχRN ), where χRi , i =

1, 2, . . . , N , are the components of ξF,g and where sgn y = 1 if y > 0,
sgn y = 0 if y = 0, and sgn y = −1 if y < 0. It is not difficult to verify that
|η| ≤ r for almost all x ∈ Ω and that ξF,g · η ≥ (r/

√
N)|ξF,g|. Therefore by

virtue of (39) one is led to the estimate
r√
N
|ξF,g| ≤ ξF,g · uF,g + α̃(r)(1 + |uF,g|q).

Integrating this inequality over ω ⊂ Ω yields∫
ω
|ξF,g| dx ≤

√
N

r

∫
ω
ξF,g · uF,g dx

+
√
N

r
α̃(r)|ω|+

√
N

r
α̃(r)|ω|(p−q)/p||uF,g||qLp(Ω). (40)

Thus, from (19) one obtains∫
ω
|ξF,g| dx≤

√
N

r

∫
ω
ξF,g · uF,g dx+

√
N

r
α̃(r)|ω|+

√
N

r
α̃(r)|ω|(p−q)/pγq||uF,g||qV

≤
√
N

r

∫
ω
ξF,g · uF,g dx+

√
N

r
α̃(r)|ω|+

√
N

r
α̃(r)|ω|(p−q)/pγqbq (41)

(where ||·||Lp(Ω;RN ) ≤ γ||·||V ). The next claim is that∫
ω
ξF,g · uF,g dx ≤ C (42)
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for some positive constant C not depending on ω ⊂ Ω and F ∈ Λ. Indeed,
from (H4) one can easily deduce that

ξF,g · uF,g + α̃(0)
(
|uF,g|q + 1

)
≥ 0 a.e. in Ω.

Thus it follows∫
ω

(
ξF,g ·uF,g + α̃(0)

(
|uF,g|q + 1

))
dx ≤

∫
Ω

(
ξF,g ·uF,g + α̃(0)

(
|uF,g|q + 1

))
dx,

and consequently∫
ω
ξF,g · uF,g dx ≤

∫
Ω
ξF,g · uF,g dx+ k1

(
||uF,g||qV + |Ω|

)
,

where k1 > 0 is a constant. But A maps bounded sets into bounded sets.
Therefore, by means of (17) and (19),∫

Ω
ξF,g · uF,g dx = −〈AuF,g − g, uF,g〉V

≤ ||AuF,g − g||V ? ||uF,g||V ≤ C0, C0 = const,

and consequently, (42) easily follows. Further, from (41) and (42), for r > 0,∫
ω
|ξF,g|dx≤

√
N

r
C+
√
N

r
α̃(r)|ω|+

√
N

r
α̃(r)|ω|(p−q)/pγqbq. (43)

This estimate is crucial for (38) to be obtained. Namely, let ε > 0. Fix
r > 0 with

√
N

r
C <

ε

2
(44)

and determine δ > 0 small enough to fulfill
√
N

r
α̃(r)|ω|+

√
N

r
α̃(r)|ω|(p−q)/pγqbq ≤ ε

2
,

provided that |ω| < δ. Thus from (43) it follows that for any ω ⊂ Ω,∫
ω
|ξF,g| dx ≤ ε, ∀F ∈ Λ, (45)

whenever |ω| < δ. Finally, {ξF,g}F∈Λ is equi-integrable and its precompact-
ness in L1(Ω;RN ) has been proved (see [6]).
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4. Hemivariational inequality

Now we are ready to formulate the main result of the paper.

Theorem 6. Assume that conditions (H1)–(H5) hold. Then there exists a
constant B > 0 such that if ‖g‖V ∗ ≤ B, the problem:

(P ) Find u ∈ V and ξ ∈ L1(Ω;RN ) such that

a(u, v − u) +
∫

Ω
ξ(x) ·

(
v(x)− u(x)

)
dx = 〈g, v − u〉V ,

∀v ∈ V ∩ L∞(Ω;RN ), (46)

ξ(x) ∈ ∂yj(x, u(x)) for a.e. x ∈ Ω, (47)

ξ · u ∈ L1(Ω) (48)

admits at least a solution. Moreover, u ∈ V satisfies the hemivariational
inequality:

a(u, v − u) +
∫

Ω
j0(x, u(x), v(x)− u(x)

)
dx ≥ 〈g, v − u〉V ,

∀v ∈ V, (49)

where the integral above takes +∞ as its value whenever j0(x, u, v − u) 6∈
L1(Ω;RN ).

Proof. The proof is divided into a sequence of steps.
Step 1. First we show that there exist u ∈ V and ξ ∈ L1(Ω;RN ) such that

a(u, v)+
∫

Ω
ξ(x) · v(x)dx = 〈g, v〉V , ∀v ∈ V ∩ L∞(Ω;RN ). (50)

For any F ∈ Λ define

UF =
{

(uF,g, ξF,g) : (uF,g, ξF,g) satisfies (PF,g)
}

and let
WF =

⋃
F ′∈Λ
F ′⊃F

UF ′ .

By Theorem 4, WF is not empty. We use the symbol weakcl (WF ) to denote
the closure of WF in the weak topology of V × L1(Ω;RN ). From Theo-
rem 4 and Theorem 5 it follows that weakcl (WF ) is weakly compact in
V × L1(Ω;RN ). Moreover, this family has the finite intersection property
because for any F1, . . . , Fk ∈ Λ it follows WF1 ∩ . . . ∩ WFk ⊃ WF , with
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F = F1 + . . . + Fk. Accordingly, by a classical argument we conclude that
the intersection ⋂

F∈Λ

weakcl (WF )

is not empty. Let (u, ξ) belong to this intersection, i.e.

(u, ξ) ∈
⋂
F∈Λ

weakcl (WF ).

To show that (50) holds let us fix v ∈ V ∩ L∞(Ω;RN ) arbitrarily and
choose F ∈ Λ with v ∈ F . There exists a sequence (uFn,g, ξFn,g) ∈ WF (for
simplicity of the notations denoted by (un, ξn)) such that

un → u weakly in V,

ξn → ξ weakly in L1(Ω;RN )

and, by (17),

a(un, w) +
∫

Ω
ξn(x) · w(x) dx = 〈g, w〉V , ∀w ∈ Fn.

Since for any n, v ∈ Fn,

a(un, v) +
∫

Ω
ξn(x) · v(x) dx = 〈g, v〉V ,

so by letting n→∞ we get (50), as required.
Step 2. Now we prove that ξ ∈ ∂yj(x, u) a.e in Ω, i.e. the condition (47) is
fulfilled. Since V is compactly imbedded into Lp(Ω;RN ) one may suppose
that

un → u strongly in Lp(Ω;RN ).

This implies that for a subsequence of {un} (again denoted by the same
symbol) one gets un → u a.e. in Ω (by passing to a subsequence, if nec-
essary). Egoroff’s theorem asserts that for any ε > 0 a subset ω ⊂ Ω with
|ω| < ε can be determined such that un → u uniformly in Ω \ ω with
u ∈ L∞(Ω \ω;RN ). Let v ∈ L∞(Ω \ω;RN ) be an arbitrary function. From
the inequality ∫

Ω\ω
ξn · v dx ≤

∫
Ω\ω

j0(x, un; v) dx

and the upper semicontinuity of

L∞(Ω \ ω;RN ) 3 un 7−→
∫

Ω\ω
j0(x, un; v) dx

it follows∫
Ω\ω

ξ · v dx ≤
∫

Ω\ω
j0(x, u; v) dx, ∀ v ∈ L∞(Ω \ ω;RN ).
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But the last inequality amounts to saying that ξ ∈ ∂yj(x, u) a.e. in Ω \ ω.
Since |ω| < ε and ε was chosen arbitrarily,

ξ ∈ ∂yj(x, u) a.e. in Ω,

as claimed.
Step 3. Now we show that ξ ·u ∈ L1(Ω), i.e. (48) holds. For this purpose we
shall need the following truncation result for vector-valued Sobolev spaces.

Theorem 7 ([20]). For each v ∈ H1(Ω;RN ) there exists a sequence of func-
tions {εn} ⊂ L∞(Ω) with 0 ≤ εn ≤ 1 such that

{(1− εn)v} ⊂ H1(Ω;RN ) ∩ L∞(Ω;RN )

(1− εn)v → v strongly in H1(Ω;RN ).
(51)

In a similar way to the aforementioned theorem, for u ∈ V one can find
a sequence {εk} ⊂ L∞(Ω) with 0 ≤ εk ≤ 1 such that ũk := (1− εk)u ∈ V ∩
L∞(Ω;RN ) and ũk → u in V as k →∞. Without loss of generality it can be
assumed that ũk → u a.e. in Ω. Since it is already known that ξ ∈ ∂yj(x, u),
one can apply (H4) to obtain ξ ·(−u) ≤ j0(x, u;−u) ≤ α̃(0)(1+ |uq|). Hence

ξ · ũk = (1− εk)ξ · u ≥ −α̃(0)(1 + |uq|). (52)

This implies that the sequence {ξ·ũk} is bounded from below and ξ·ũk → ξ·u
a.e. in Ω. On the other hand, due to (50) and (19) one gets

C ≥ 〈g, ũk〉V − a(u, ũk) =
∫

Ω
ξ · ũk dx

for a positive constant C. Now, letting k →∞, by Fatou’s lemma we arrive
at ξ · u ∈ L1(Ω), as required.
Step 4. Now the inequality

lim inf
n→∞

∫
Ω
ξn · un dx ≥

∫
Ω
ξ · u dx (53)

will be established. It can be supposed that un → u a.e. in Ω, since un → u
in Lp(Ω;RN ). Fix v ∈ L∞(Ω;RN ) arbitrarily. In view of ξn ∈ ∂yj(x, un),

ξn ·(v−un)≤j0(x, un; v−un)≤ α̃(||v||L∞(Ω;RN ))(1+|un|q). (54)

From Egoroff’s theorem it follows that for any ε > 0 a subset ω ⊂ Ω with
|ω| < ε can be determined such that un → u uniformly in Ω \ ω. One
can also suppose that |ω| is small enough to fulfill

∫
ω α̃(||v||L∞(Ω;RN ))(1 +

|un|q) dx ≤ ε, n ≥ 1, and
∫
ω α̃(||v||L∞(Ω;RN ))(1 + |u|q) dx ≤ ε. Hence∫

Ω
j0(x, un; v − un) dx ≤

∫
Ω\ω

j0(x, un; v − un) dx+ ε
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which by Fatou’s lemma and the upper semicontinuity of j0(· ; ·) yields

lim inf
n→∞

∫
Ω
−j0(x, un; v − un) dx ≥

∫
Ω\ω
−j0(x, u; v − u) dx− ε

≥
∫

Ω
−j0(x, u; v − u) dx− 2ε,

where it was admitted that
∫

Ω j
0(x, u; v − u) dx = +∞ if j0(·, u; v − u) 6∈

L1(Ω), and
∫
ω j

0(x, u; v − u) dx > −ε if j0(·, u; v − u) ∈ L1(Ω). By the
arbitrariness of ε > 0 and (54) one obtains

lim inf
n→∞

∫
Ω
ξn · un dx ≥

∫
Ω
ξ · v dx−

∫
Ω
j0(x, u; v − u) dx,

∀ v ∈ V ∩ L∞(Ω;RN ). (55)

By substituting v = ũk := (1− εk)u (with ũk as described in the truncation
argument of Theorem 7) into the right hand side of (55) one gets

lim inf
n→∞

∫
Ω
ξn · un dx ≥ lim inf

k→∞

∫
Ω
ξ · ũk dx

− lim sup
k→∞

∫
Ω
j0(x, u; ũk − u) dx. (56)

Taking into account that ũk → u a.e. in Ω,

j0(x, u; ũk − u) = εkj
0(x, u;−u) ≤ εkα̃(0)(1 + |u|q) ≤ α̃(0)(1 + |u|q)

and |ξ · u| ≥ ξ · ũk = (1− εk)ξ ·u ≥ −α̃(0)(1 + |u|q), Fatou’s lemma and the
dominated convergence can be used to deduce

lim sup
k→∞

∫
Ω
j0(x, u; ũk − u) dx ≤ 0,

and

lim
k→∞

∫
Ω
ξ · ũk dx ≥

∫
Ω
ξ · u dx.

Finally, combining the last two inequalities with (56) yields (53), as required.
Step 5. The next claim is that

a(u, u) +
∫

Ω
ξ(x) · u(x) dx = 〈g, u〉V . (57)

Indeed, (50) implies

a(u, ũk) +
∫

Ω
ξ(x) · ũk(x) dx = 〈g, ũk〉V , (58)

with {ũk} as in Step 3. Since ξ · u ∈ L1(Ω) and

−α̃(0)(1 + |u|q) ≤ ξ · ũk = (1− εk)ξ · u ≤ |ξ · u|,
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by the dominated convergence,∫
Ω
ξ · ũk dx→

∫
Ω
ξ · u dx,

which means that (57) has to hold by passing to the limit as k → ∞ in
(58). Combining (50) and (57) yields (46). Accordingly, (u, ξ) is a solution
of (P ).
Step 6. In the final step of the proof it will be shown that (46) – (48) imply
(49). For this purpose choose v ∈ V ∩L∞(Ω;RN ) arbitrarily. From (47) one
has ξ · (v−u) ≤ j0(x, u; v−u) ≤ α̃(||v||L∞(Ω;RN ))(1 + |u|q) with ξ · (v−u) ∈
L1(Ω) and α̃(||v||L∞(Ω;RN ))(1 + |u|q) ∈ L1(Ω). Hence j0(x, u; v− u) is finite
integrable and therefore (49) easily follows.

Now let us consider the case j0(x, u; v − u) ∈ L1(Ω) with v 6∈ V ∩
L∞(Ω;RN ). According to an analogous result to Theorem 7 there exists
a sequence ṽk = (1 − εk)v such that {ṽk} ⊂ V ∩ L∞(Ω;RN ) and ṽk → v
strongly in V . Since

a(u, ṽk − u) +
∫

Ω
ξ(x) ·

(
ṽk(x)− u(x)

)
dx = 〈g, ṽk − u〉V ,

so in order to establish (49) it remains to show that

lim sup
k→∞

∫
Ω
j0(x, u; ṽk − u) dx ≤

∫
Ω
j0(x, u; v − u) dx.

For this purpose let us observe that ṽk−u = (1− εk)(v−u) + εk(−u) which
combined with the convexity of j0(x, u; ·) yields the estimate

j0(x, u; ṽk − u) ≤ (1− εk)j0(x, u; v − u) + εkj
0(x, u;−u)

≤ |j0(x, u; v − u)|+ α̃(0)(1 + |u|q).
Thus Fatou’s lemma implies the assertion. The proof of Theorem 6 is com-
plete. 2
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