ON THE TOPOLOGICAL ENTROPY OF GREEN INTERVAL MAPS

J. BOBOK

Received February 24, 2000 and, in revised form, November 27, 2000

Abstract. We investigate the topological entropy of a green interval map. Defining the complexity we estimate from above the topological entropy of a green interval map with a given complexity. The main result of the paper — stated in Theorem 0.2 — should be regarded as a completion of results of [4].

0. Introduction and main result

The purpose of this paper is to evaluate the topological entropy of green interval maps. The topological entropy provides a numerical measure for the complexity of such one-dimensional dynamical systems and our aim is to describe this complexity by means of combinatorics. A particular case of a system given by a P-monotone map f_P for a green cycle P was investigated in [4]. Since a green interval map is not a uniform limit of such special green (Markov) maps, our Theorem 0.2 completes the result of [4].

¹⁹⁹¹ Mathematics Subject Classification. 26A18, 37B40.

Key words and phrases. Interval map, topological entropy, symbolic dynamics.

Research supported by GA of Czech Republic, the contract n. 201/00/0859 and by grant CEZ J04/98/210000010.

ISSN 1425-6908 © Heldermann Verlag.

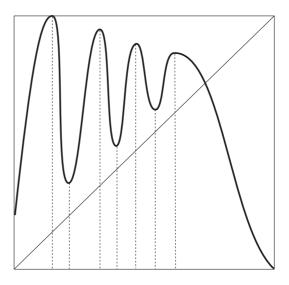


Figure 1: The green map f; l = 3

Green map ([2]). A continuous piecewise monotone map $f : [0,1] \rightarrow [0,1]$ is said to be green if f(0) > 0, f(1) = 0 and it has an odd number 2l + 1 of turning points $a_1 < a_2 < \cdots < a_{2l+1}$ in (0,1) and a unique fixed point $b > a_{2l+1}$ such that (see Figure 1)

$$f(0) < f(a_2) < \dots < f(a_{2l}) < b < f(a_{2l+1}) < \dots < f(a_1) = 1.$$
 (1)

Complexity. Let f be a green map satisfying (1). If $f^2(a_{2l+1}) < a_1$, the complexity C(f) of f is equal to 2l + 2, otherwise C(f) is defined as a minimal number $2k \in \{2, 4, \ldots, 2l\}$ such that $f^2(a_{2i+1}) \ge a_{2i+1-2k}$ for each $i = k, k + 1, \ldots, l$.

Remark 0.1. The definition of complexity presented here slightly differs from the one given in [4].

By $\alpha(k)$ we denote the positive root of the polynomial equation

$$(\alpha+1)^k (1+\sqrt{1+k^2})^k + \alpha^2 (\alpha-1)^k k^k (k-\sqrt{1+k^2}) = 0.$$
 (2)

The following theorem generalizes a result from [4].

Theorem 0.2. Let f be a green map such that $C(f) \leq 2k$. Then $ent(f) < \log \alpha(k)$.

Remark 0.3. (i) As it was shown in [4], the bound $\log \alpha(k)$ is the least possible even for special green Markov maps with the complexity less than or equal to 2k, i.e. for any $\alpha < \alpha(k)$ there is a green Markov map of complexity less than or equal to 2k with the entropy from $(\alpha, \alpha(k))$. It is stated there that each $\alpha(k)$ is irrational greater than 1,

$$\lim_{k \to \infty} \frac{\alpha(k)}{k} = 0 \quad \text{and} \quad \lim_{k \to \infty} \frac{\alpha(k)}{\sqrt{k}} = \infty.$$

(ii) Using a method analogous to the one from [3] we can prove the inequality

$$\operatorname{ent}(f) \ge \frac{1}{2} \log(C(f) - 2).$$

1. Lemmas and proofs

We will use the symbolic dynamics [7]. As usually, for $m \in \mathbb{N}$ let us consider $N_m = \{1, \ldots, m\}$ as a finite space with the discrete topology, denote by Ω_m the infinite product space $\prod_{i=0}^{\infty} X_i$, where $X_i = N_m$ for all *i*. The shift map $\sigma : \Omega_m \to \Omega_m$ is defined by

$$(\sigma(\omega))_i = \omega_{i+1}, \ i \in \mathbb{N} \cup \{0\}.$$

A subset Ω of Ω_m is σ -invariant if $\sigma(\Omega) \subset \Omega$, the pair (Ω, σ) is transitive if there is a point $\omega \in \Omega$ such that $\overline{\{\sigma^i(\omega) : i \in \mathbb{N}\}} = \Omega$. We write $\Omega(k) = \{(\omega_0, \ldots, \omega_{k-1}) : \omega \in \Omega\}$. The following proposition presents well-known results about topological entropy (for its definition see [6], [7]).

Lemma 1.1. [7] Let $\Omega, \Gamma \subset \Omega_m$ be closed and σ -invariant, (Γ, σ) transitive, $\Omega \subset \Gamma$ and $\Omega \neq \Gamma$. Then $\operatorname{ent}(\sigma | \Omega) < \operatorname{ent}(\sigma | \Gamma)$.

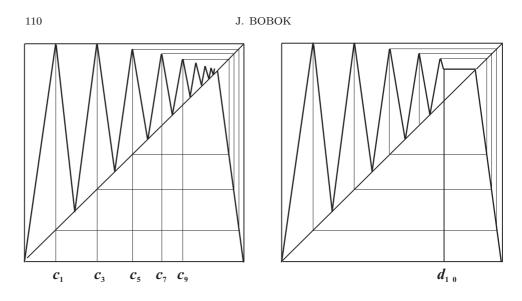
For I = [0, 1] let C(I) be a space of all continuous maps which map I into itself. By Q we denote the set

$$\{Q = \{q_k\}_{k=0}^n : 0 = q_0 < q_1 < \dots < q_{n-1} < q_n = 1, n \in \mathbb{N}\}.$$

A map $g \in C(I)$ is piecewise monotone if there is a $Q \in \mathcal{Q}$ such that the map g is monotone (not necessarily strictly) on each interval $[q_{k-1}, q_k]$ given by Q. Such a Q with the minimal cardinality is denoted by T_g . In the sequel the following notation will be useful. For $g \in C(I)$ and $Q = \{q_k\}_{k=0}^n \in \mathcal{Q},$ $Q(g) = \{x \in I : \forall i \in \mathbb{N} \cup \{0\} \ g^i(x) \notin Q\}$ and

$$\Omega(Q(g)) = \{ \omega \in \Omega_n : \exists x \in Q(g) \ \forall i \in \mathbb{N} \cup \{0\} \ g^i(x) \in (q_{\omega_i - 1}, q_{\omega_i}) \}.$$

The following lemma shows the basic facts about relation of an entropy of a map $g \in C(I)$ and the symbolic dynamics given by g and $Q \in \mathcal{Q}$. The references needed for the proofs are given.





Lemma 1.2.

(i) [1], [5] For any $g \in C(I)$ and a g-invariant $Q \in Q$,

$$\operatorname{ent}(g) \geq \lim_{k} \frac{1}{k} \operatorname{log} \operatorname{card} \Omega(Q(g))(k).$$
(ii) [8], [1] Let $g \in C(I)$ be piecewise monotone. Then

$$\operatorname{ent}(g) = \lim_{k} \frac{1}{k} \operatorname{log} \operatorname{card} \Omega(T_g(g))(k).$$

In order to prove our Theorem we use a special map constructed in [4] (see Figure 2).

Lemma 1.3. Let $k \in \mathbb{N}$ be fixed. The value $\alpha = \alpha(k)$ given by (2) is the least one for which there exists a transitive α -Lipschitz map $F_k : [0,1] \rightarrow [0,1]$ with the following properties $(d = \alpha/(\alpha + 1))$. For the sequence $\{c_n\}_{n=0}^{\infty}$ such that $0 = c_0 < c_1 < c_2 < c_3 < \cdots < d$, $\lim c_n = d$,

- (i) F_k has a constant slope α on each interval $[c_{2n-2}, c_{2n-1}]$ and a slope $(-\alpha)$ on each $[c_{2n-1}, c_{2n}], [d, 1],$
- (ii) $F_k(c_{2n-2}) = c_{2n-2}$ for $n \ge 1$, $F_k^2(c_{2n-1}) = c_{2(n-k)-1}$ for $n \ge k+1$,
- (iii) $F_k(c_{2n-1}) = 1$ for $n \in \{1, \dots, k\}$,
- (iv) $\operatorname{ent}(F_k) = \log \alpha$.

Let us denote $F_k^{-1}(\{d\}) = \{d_1 < d_2 < \cdots < d_n < \cdots\}$; for each $n \in \mathbb{N}$, $d_n \in (c_{n-1}, c_n)$. The continuous map $G_{k,m} : [0,1] \to [0,1]$ is defined by $G_{k,m}(x) = F_k(x), x \in [0, d_m] \cup [d,1]$ and $G_{k,m}(x) = d, x \in [d_m, d]$ (see Figure 3).

Let f be the green map satisfying (1), for the sake of simplicity denote $G = G_{k,2l+2}$ and $F = F_k$. We have $T_f = \{0,1\} \cup \{a_k\}_{k=1}^{2l+1}, T_G = \{0,1\} \cup \{c_k\}_{k=1}^{2l+1}$.

Put also $Q = \{0, 1\} \cup \{c_k\}_{k=1}^{2l+3}$. The following lemma describes the properties of the subsets (of Ω_{2l+4})

$$\Omega(f) = \overline{\Omega}(T_f(f)), \ \Omega(G) = \overline{\Omega}(T_G(G)), \ \Omega(F) = \overline{\Omega}(Q(F)).$$

Note that all those subsets are closed and σ -invariant. By $\omega' + \Omega$ we denote the set $\{(\omega'_1 + \omega_1, \omega'_2 + \omega_2, \dots) : \omega \in \Omega\}$.

Lemma 1.4.

- (i) $\Omega(f) \subset \Omega(G)$.
- (ii) $(1,1,\ldots) + \Omega(G) \subset \Omega(F)$, $(\Omega(F),\sigma)$ is transitive and $(1,1,\ldots) + \Omega(G) \neq \Omega(F)$.

Proof. By our assumption on the complexity of f and the definition of G it holds $G((c_{k-1}, c_k)) \supset (c_{j-1}, c_j)$, whenever $f((a_{k-1}, a_k)) \cap (a_{j-1}, a_j) \neq \emptyset$ and $k, j \in \{1, \ldots, 2l+1\}$. This gives (i). Similarly it can be verified that $(1, 1, \ldots) + \Omega(G) \subset \Omega(F)$; the transitivity of $(\Omega(F), \sigma)$ follows from that of F. The relation $(1, 1, \ldots) + \Omega(G) \neq \Omega(F)$ is clear.

Now we are ready to give the proof of our main theorem.

Proof of Theorem 0.2. As above, $G = G_{k,2l+2}$ and $F = F_k$. Put $P = Q \cup F(Q)$. Clearly, by Lemma 1.2(i) the entropy ent(F) is greater than or equal to $\lim_{k} (1/k) \log \operatorname{card} \Omega(P(F))(k)$. Since $P \supset Q$ we have also

$$\lim_{k} \frac{1}{k} \log \operatorname{card} \Omega(P(F))(k) \ge \lim_{k} \frac{1}{k} \log \operatorname{card} \Omega(Q(F))(k).$$

Now, it follows from Lemmas 1.4(ii), 1.1, 1.2(ii) and 1.4(i) that

$$\lim_{k} \frac{1}{k} \log \operatorname{card} \Omega(Q(F))(k) > \operatorname{ent}(G) \ge \operatorname{ent}(f).$$

Summarizing, $\operatorname{ent}(F) = \log \alpha(k) > \operatorname{ent}(f)$. This proves the theorem.

J. BOBOK

References

- Alsedá, L., Llibre, J., Misiurewicz, M., Combinatorial Dynamics and Entropy in Dimension One, Adv. Ser. Nonlinear Dynam. 5 (1993), World Sci., Singapore.
- [2] Blokh, A. M., Rotation numbers for unimodal maps MSRI (1994), Preprint #58-94.
- Blokh, A. M., Misiurewicz, M., Entropy of twist interval maps, Israel J. Math. 102 (1997), 61–99.
- Bobok, J., On entropy of patterns given by interval maps, Fund. Math. 162(1), 1999, 1-36.
- [5] Bobok, J., Kuchta, M., Invariant measures for maps of the interval that do not have points of some period, Ergodic Theory Dynam. Systems 14 (1994), 9–21.
- Bowen, R., Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc. 153 (1971), 401–414.
- [7] Denker, M., Grillenberger, Ch., Sigmund, K., Ergodic Theory on Compact Spaces, Lecture Notes in Math. 527 (1976), Springer-Verlag, Berlin.
- [8] Misiurewicz, M., Szlenk, W., Entropy of piecewise monotone mappings, Studia Math. 67 (1980), 45–63.

Jozef Bobok KM FSv ČVUT Thákurova 7 166 29 Praha 6 Czech Republic E-Mail: Erastus@mbox.cesnet.cz