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Abstract. We investigate the topological entropy of a green interval
map. Defining the complexity we estimate from above the topological
entropy of a green interval map with a given complexity. The main
result of the paper — stated in Theorem 0.2 — should be regarded as
a completion of results of [4].

0. Introduction and main result

The purpose of this paper is to evaluate the topological entropy of green
interval maps. The topological entropy provides a numerical measure for
the complexity of such one-dimensional dynamical systems and our aim is to
describe this complexity by means of combinatorics. A particular case of a
system given by a P-monotone map fp for a green cycle P was investigated
in [4]. Since a green interval map is not a uniform limit of such special green
(Markov) maps, our Theorem 0.2 completes the result of [4].
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Figure 1: The green map f; =3

Green map ([2]). A continuous piecewise monotone map f : [0,1] —
[0,1] is said to be green if f(0) > 0, f(1) = 0 and it has an odd number
2] + 1 of turning points a; < az < -+ < agi4+1 in (0,1) and a unique fixed
point b > ag 41 such that (see Figure 1)

f(0) < flag) <+ < flam) <b < flagtr) <--- < fla)=1. (1)

Complexity. Let f be a green map satisfying (1). If f%(ags1) < a1,
the complexity C(f) of f is equal to 2l + 2, otherwise C(f) is defined as a
minimal number 2k € {2,4,...,2l} such that f?(ag;11) > agi41_ox for each
i—kk+1,....1

Remark 0.1. The definition of complexity presented here slightly differs
from the one given in [4].

By a(k) we denote the positive root of the polynomial equation
(a+D*1+ V1+ k) +a?(a—1)FE* k- V1+k2) =0. (2)
The following theorem generalizes a result from [4].

Theorem 0.2. Let f be a green map such that C(f) < 2k. Then ent(f) <
log a(k).
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Remark 0.3. (i) As it was shown in [4], the bound log (k) is the least
possible even for special green Markov maps with the complexity less than
or equal to 2k, i.e. for any o < «a(k) there is a green Markov map of
complexity less than or equal to 2k with the entropy from (a, a(k)). It is
stated there that each a(k) is irrational greater than 1,
k k
lim M:0 and  lim M:oo
(ii) Using a method analogous to the one from [3] we can prove the
inequality

ent() 2 5 1og(C(f) —2).

1. Lemmas and proofs

We will use the symbolic dynamics [7]. As usually, for m € N let us con-
sider N,,, = {1,...,m} as a finite space with the discrete topology, denote
by €2, the infinite product space H;’ZO X;, where X; = N, for all i. The
shift map o : Q,, — €,, is defined by

(O‘(u)))i = Wit+1, © € NU {0}
A subset Q of Q,, is o-invariant if ¢(Q2) C €, the pair (2, 0) is transitive
if there is a point w € Q such that {o?(w) : i € N} = Q. We write Q(k) =
{(wo, ..., wg—1) : w € Q}. The following proposition presents well-known
results about topological entropy (for its definition see [6], [7]).

Lemma 1.1. [7] Let Q,T" C Q,, be closed and o-invariant, (I', o) transitive,
QCT and Q#T. Then ent(c|Q) < ent(c|T').

For I = [0,1] let C(I) be a space of all continuous maps which map I
into itself. By Q we denote the set

{Q=Aa}i—0: 0= <q < <gn1<@=1 neN}L
A map g € C(I) is piecewise monotone if there is a ) € Q such that the
map g is monotone (not necessarily strictly) on each interval [gx_1, gx] given
by Q. Such a @) with the minimal cardinality is denoted by Tj. In the sequel
the following notation will be useful. For g € C(I) and Q = {qx}}_, € 9,
Q(g) ={r el: Vie NU{0} ¢'(z) ¢ Q} and

Q(Q(9)) ={w € Uz 3 €Q(9) Vi € NU{0} ¢'(2) € (quy—1, ;) }-
The following lemma shows the basic facts about relation of an entropy

of a map g € C(I) and the symbolic dynamics given by g and @ € Q. The
references needed for the proofs are given.
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Figure 2: The map F5 Figure 3: The map G219

Lemma 1.2.
(i) [1], [5] For any g € C(I) and a g-invariant Q € Q,

1
ent(g) > lilgn Z log card Q(Q(g)) (k).
(ii) [8], [1] Let g € C(I) be piecewise monotone. Then

ent(g) = lim % log card (T (¢)) (k).

In order to prove our Theorem we use a special map constructed in [4]
(see Figure 2).

Lemma 1.3. Let k € N be fized. The value o« = a(k) given by (2) is the
least one for which there exists a transitive a-Lipschitz map Fy : [0,1] —
[0, 1] with the following properties (d = o/(a + 1)). For the sequence {cy }22,
such that 0 =cp <cp <cp <cg <---<d, lime, =d,

(i) Fx has a constant slope « on each interval [can—2,con—1] and a slope

(—a) on each [con—1,conl, [d, 1],

(i) Fr(can—2) = can—2 forn >1, FZ(con-1) = Copn_py—1 forn >k +1,
(111) Fk(c2n—1) =1 forne€ {1, R ,k}},

(iv) ent(Fy) = log .

Let us denote F, ' ({d}) = {d1 < dy < --- < d, < ---}; for each n € N,
d, € (cn—1,¢n). The continuous map Gi,, : [0,1] — [0,1] is defined by
Gim(r) = Fip(x), © € [0,dy,] U [d,1] and G pm(x) = d, © € [dp,d] (see
Figure 3).
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Let f be the green map satisfying (1), for the sake of simplicity denote
G = G142 and F = Fy. We have Ty = {0,1} U {az}i=}, T = {0,1} U
{Ck %12—11-

Put also @ = {0,1} U {ck}ililg. The following lemma describes the prop-
erties of the subsets (of Qg9;14)

Qf) = AT (1)), AUG) = UTe(G)), AF) = AUQ(F)).

Note that all those subsets are closed and o-invariant. By w’ + € we denote
the set {(w] + w1, w) +wa,...): we N}

Lemma 1.4.
(i) Q(f) € QG).
(i) (1,1,...) + QG) C QF), (UF),o0) is transitive and (1,1,...) +

Proof. By our assumption on the complexity of f and the definition of G
it holds G((ck—1,¢x)) D (¢j—1,¢;), whenever f((ax—1,ax)) N (aj—1,a;) # 0
and k,7 € {1,...,2l + 1}. This gives (i). Similarly it can be verified that
(1,1,...) + Q(G) C Q(F); the transitivity of (2(F'),o) follows from that of
F'. The relation (1,1,...) + Q(G) # Q(F) is clear. O

Now we are ready to give the proof of our main theorem.

Proof of Theorem 0.2. As above, G = G 242 and F' = Fj,. Put P =
Q U F(Q). Clearly, by Lemma 1.2(i) the entropy ent(F') is greater than or
equal to limg(1/k) log card Q(P(F))(k). Since P D @ we have also

1 1
lilgn % log card Q(P(F))(k) > lilgn % log card Q(Q(F)) (k).
Now, it follows from Lemmas 1.4(ii), 1.1, 1.2(ii) and 1.4(i) that
1
lilgn Z log card Q(Q(F))(k) > ent(G) > ent(f).

Summarizing, ent(F') = log a(k) > ent(f). This proves the theorem. O
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