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Abstract. We consider the fourth order periodic problem with a func-
tional parameter. Some sufficient conditions under which solutions of
this problem continuously depend on parameters are given. Proofs of
theorems are based on variational methods.

Introduction

This paper is devoted to the continuous dependence on functional param-
eters of solutions of the fourth order periodic problem. Sufficient conditions
for the existence of solutions of this problem and their continuous depen-
dence on parameters are presented.

The question of the existence and uniqueness of solutions for the periodic
problem was considered in many monographs and papers [3], [6], [2].

The problem of the continuous dependence on parameters for scalar equa-
tions of second order, was investigated in papers [4], [5]. In the case of the
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functional parameter from L∞, sufficient conditions for the existence of solu-
tions of the second order differential equations with Dirichlet-type boundary
conditions and their continuous dependence on parameters, are given in pa-
per [7]. The continuous dependence on functional parameters of solutions
of the fourth order periodic problem has not been investigated so far.

In our paper we consider a problem of the form

d

dt

(
d

dt
fü
(
t, u,

:
u, ü, ω

)
− f :u

(
t, u,

:
u, ü, ω

))
+ fu

(
t, u,

:
u, ü, ω

)
= 0

u(0)− u(T ) =
:
u(0)− :

u(T ) = 0 (0.1)

v(0)− v(T ) =
:
v(0)− :

v(T ) = 0

where v (·) = fü
(
·, u (·) , :u (·) , ü (·) , ω (·)

)
, ω is a functional parameter from

L∞ and we look for u ∈ H2
T . Under some suitable assumptions, we prove

that the set Ṽk of weak solutions of (0.1) is not empty, for any ωk ∈ L∞

and Ṽωk tends to Ṽω0 in the sense of Painlevé–Kuratowski, as ωk tends to
ω0 in the strong topology of L∞. In many situations it is more natural to
consider the normal form of (0.1):

u(4) =
d

dt
F :u
(
t, u,

:
u, ω

)
− Fu

(
t, u,

:
u, ω

)
(0.2)

u(0)− u(T ) =
:
u(0)− :

u(T ) = ü(0)− ü(T ) = u(3)(0)− u(3)(T ) = 0.

We give sufficient conditions under which (0.2) depends continuously on
the parameter ω. We are interested in cases when ∇F is bounded and F is
convex.

1. Formulation of the fourth order problem

By H2
T we shall denote the space of functions u : [0, T ] → Rn such that

u,
:
u are absolutely continuous and ü ∈ L2 ([0, T ],Rn), and u(0) − u(T ) =

:
u(0)− :

u(T ) = 0 where T > 0.
In the space H2

T the norm is given by formula

||u|| =
(∫ T

0
|u(t)|2dt+

∫ T

0
| :u(t)|2dt+

∫ T

0
|ü(t)|2dt

)1/2

.

It is easy to check that H2
T ⊂ H1

T where H1
T is the space of functions

u : [0, T ]→ Rn such that u is absolutely continuous and
:
u ∈ L2 ([0, T ],Rn),

and u(0)− u(T ) = 0 where T > 0. Moreover
:
u ∈ H1

T and
∫ T

0
:
u(t)dt = 0, so
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we can apply the Wirtinger inequality for
:
u

T∫
0

| :u(t)|2dt ≤ T 2

4π2

T∫
0

|ü(t)|2dt. (1.1)

It is easy to calculate that

Lemma 1.1. In the space H2
T the following norms are equivalent:

1. ||u||1 =

(
T∫
0
|u(t)|2dt+

T∫
0
| :u(t)|2dt+

T∫
0
|ü(t)|2dt

)1/2

,

2. ||u||2 =

(
T∫
0
|u(t)|2dt+

T∫
0
|ü(t)|2dt

)1/2

,

3. ||u||3 =

(
T∫
0
|u(t)|2dt

)1/2

+

(
T∫
0
|ü(t)|2dt

)1/2

,

4. ||u||4 = |u0|+

(
T∫
0
|ü(t)|2dt

)1/2

, u0 = u(0),

5. ||u||5 = |u|+

(
T∫
0
|ü(t)|2dt

)1/2

, u =
1
T

T∫
0
u(s)ds .

Lemma 1.2. If the sequence uk converges weakly to u0 in H2
T , then ük

converges weakly to ü0 in L2 ([0, T ],Rn) and
:
uk →

:
u0, uk → u0 uniformly

on [0, T ].

Proof. Let {uk} ⊂ H2
T tends weakly to u0 in H2

T . Of course
{ :
uk
}
⊂ H1

T ,
so ü tends weakly to ü0 in L2 ([0, T ],Rn) and

:
uk tends uniformly to

:
u0 on

the interval [0, T ]. Moreover {uk} ⊂ H1
T , so uk tends uniformly to u0 on the

interval [0, T ].

Let M be a convex and bounded subset of Rr. Let us put

W = {ω ∈ L∞ ([0, T ],Rn) : ω(t) ∈M} .

The set W will be referred to as a set of parameters.
Let f = f(t, p0, p1, p2, w) be any real function defined on the set [0, T ]×

(Rn)3 ×M , satisfying the following assumptions:
(1-a) the functions f, fp0 , fp1 , fp2 , fw are measurable with respect to t ∈

[0, T ] for any (p0, p1, p2, w) ∈ (Rn)3 ×M and continuous with respect
to (p0, p1, p2, w) ∈ (Rn)3 ×M for a.e. t ∈ [0, T ],
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(1-b) f(t, p0, p1, ·, w) is convex for a.e. t ∈ [0, T ] and any (p0, p1, w) ∈ (Rn)2×
M ,

(1-c) there exist some functions a(·) ∈ C(R+,R+), b(·) ∈ L1 ([0, T ],R) and
c(·) ∈ L2 ([0, T ],R) such that
|f(t, p0, p1, p2, w)| ≤ a(|(p0, p1)|)

(
b(t) + |p2|2

)
,

|fpi(t, p0, p1, p2, w)| ≤ a(|(p0, p1)|)
(
b(t) + |p2|2

)
, i = 0, 1,

|fp2(t, p0, p1, p2, w)| ≤ a(|(p0, p1)|) (c(t) + |p2|),
|fw(t, p0, p1, p2, w)| ≤ a(|(p0, p1)|)

(
b(t) + |p2|2

)
,

for all (p0, p1, p2, w) ∈ (Rn)3 ×M , and for a.e. t ∈ [0, T ].

(The abbreviation “a.e.” means “almost every” in the sense of Lebesgue
measure.)

Now let us consider a functional

ϕω(u) =

T∫
0

f
(
t, u(t),

:
u(t), ü(t), ω(t)

)
dt. (1.2)

Using the same method as for Theorem 1.4 in [3], we can prove

Theorem 1.3. If a function f satisfies assumptions (1-a)–(1-c), then the
functional given by (1.2) is continuously differentiable on H2

T for all ω ∈W
and

〈
ϕ′ω(u), h

〉
=

T∫
0

i=2∑
i=0

(
fpi
(
t, u(t),

:
u(t), ü(t), ω(t)

)
, h(i) (t)

)
dt

for all u, h ∈ H2
T .

Let us consider a boundary value problem with a parameter ω ∈ W of
the form:

d

dt

(
d

dt
fü
(
t, u,

:
u, ü, ω

)
− f :u

(
t, u,

:
u, ü, ω

))
+ fu

(
t, u,

:
u, ü, ω

)
= 0

u(0)− u(T ) =
:
u(0)− :

u(T ) = 0 (1.3)

v(0)− v(T ) =
:
v(0)− :

v(T ) = 0 t ∈ [0, T ] a.e.

where v (·) = fü
(
·, u (·) , :u (·) , ü (·) , ω (·)

)
and u ∈ H2

T .
For this problem, the corresponding functional is given by (1.2). It is

easy to see that, under assumptions (1-a)–(1-c), the system defined by (1.3)
is a system of Euler equations for functional (1.2).
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Definition 1.1. We say that the functional ϕω(·) defined by (1.2) is uni-
formly coercive with respect to ω when

∀K > 0 ∃R ∀ |x| > R ∀ω ∈W ϕω(x) > K.

2. Principal lemma

Let ϕk(·) = ϕωk(·) k = 0, 1, 2, . . . be a sequence of functionals defined by
(1.2) with ω = ωk, i.e.

ϕk(u) =

T∫
0

f
(
t, u(t),

:
u(t), ü(t), ωk(t)

)
dt

where {ωk} is a sequence of admissible parameters. Denote by Vk the set of
all minimizers of the functional ϕk, i.e.

Vk =
{
u ∈ H2

T : ϕk(u) = min
{
ϕk(x) : x ∈ H2

T

}}
. (2.1)

Definition 2.1. We say that a sequence of sets Vk defined by (2.1) tends to
V0 in the weak topology of H2

T if any sequence {xk}, xk ∈ Vk , k = 1, 2, . . .
possesses cluster points (in the sense of the weak topology of H2

T ) in the set
V0 only.

The set of all cluster points of sequence {xk} is often referred to as the
upper limit (in the sense of Painlevé–Kuratowski) of sets Vk and denoted
by lim supVk.

In the case when sets Vk are singletons, i.e. Vk = {xk} k = 0, 1, 2, . . . ,
then the convergence of the sets is identical with the convergence of points
in the weak topology of H2

T (see Lemma 1.2).
Now we prove a lemma

Lemma 2.1. If the sequence {ωk} ⊂ W k = 1, 2, . . . tends to ω0 ∈ W in
the strong topology of L∞ then the sequence ϕ

k
(·) tends to ϕ0(·) uniformly

on the ball B (0, R) ⊂ H2
T for any fixed R > 0.

Proof. By the mean-value theorem and assumption (1-c) we obtain

|ϕk(u)− ϕ0(u)| ≤
T∫

0

∣∣fw (t, u (t) ,
:
u (t) , ü (t) , ω̃k (t)

)∣∣ |ωk (t)− ω0 (t)| dt

≤
T∫

0

a
(∣∣(u (t) ,

:
u (t)

)∣∣) (b (t) + |ü (t)|2
)
|ωk (t)− ω0 (t)| dt
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where ω̃k (t) = ω0 (t) + Θ (t) (ωk (t)− ω0 (t)) and 0 ≤ Θ (t) ≤ 1. Since
||u|| ≤ R, there exists a constant C > 0 such that a

(∣∣(u (t) ,
:
u (t)

)∣∣) ≤ C

and
∫ T

0 |ü (t)|2 dt ≤ ||u||2 ≤ R2 for any u ∈ B (0, R).
Let us put ε > 0. Since ωk → ω0 in L∞, there exists some K, such that

for any k > K and t ∈ [0, T ] we have

|ωk (t)− ω0 (t)| < ε.

Therefore we obtain

|ϕk(u)− ϕ0(u)| ≤ Cε
T∫

0

b (t) dt+ Cε

T∫
0

|ü (t)|2 dt ≤ C1ε+ CεR2 = C2ε

for positive constants C1, C2. This ends the proof.

We shall prove

Lemma 2.2. If
1. the function f satisfies assumptions (1-a)–(1-c),
2. ϕk(·) are weakly lower semicontinuous and uniformly coercive with re-

spect to ωk,
then

a) for any admissable parameter ωk the set Vk of minimizers of functional
ϕ
k
(·) is not empty,

b) there exists a ball B (0, R) ⊂ H2
T such that Vk ⊂ B (0, R) for k =

0, 1, 2, . . . .

Proof. Since by assumption 2, there exists at least one minimizer uk of
ϕ
k
(·), thus Vk, k = 0, 1, 2, . . . is a nonempty set. Hence ϕk(uk) ≤ ϕk(0) for

ωk ∈W .
Let us put P = supωk∈W ϕk(0) <∞. So there exists R > 0 such that for

all ωk ∈W we have

uk ∈ Vk ⊂ Ak =
{
u ∈ H2

T : ϕk(u) ≤ P
}
⊂ B (0, R) . (2.2)

Indeed suppose that the second inclusion in (2.2) does not hold. Then for
all R > 0, for instance R = k, k = 1, 2, . . . , there exists a parameter ωk ∈W
such that Ak  B (0, R). Thus there exists a sequence {uk}, where uk ∈ Ak,
such that ||uk|| > R = k, k = 1, 2, . . . . Because ϕk(·) is uniformly coercive,
so for ||uk|| → ∞, k →∞ we have ϕk(uk)→∞. Hence uk /∈ Ak, for k > P
and we have got a contradiction. It means that Ak ⊂ B (0, R) for some
R > 0 and k = 0, 1, 2, . . . .
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3. Continuous dependence on parameters theorem for the fourth
order equation

Let {ωk} ⊂W be an arbitrary sequence, and by Ṽk ⊂ H2
T denote the set

of solutions of the periodic problem

d

dt

(
d

dt
fü
(
t, u(t),

:
u(t), ü(t), ωk(t)

)
− f :u

(
t, u(t),

:
u(t), ü(t), ωk(t)

))
+fu

(
t, u(t),

:
u(t), ü(t), ωk(t)

)
= 0

u(0)− u(T ) =
:
u(0)− :

u(T ) = 0 (3.1)

v(0)− v(T ) =
:
v(0)− :

v(T ) = 0

for a.e. t ∈ [0, T ] and k = 0, 1, 2, . . . ,

and denote by

Vk =
{
u ∈ H2

T : ϕωk(u) = min
{
ϕωk(x) : x ∈ H2

T

}}
the set of minimizers of functional ϕωk(·) for k = 0, 1, 2, . . . .

Theorem 3.1. If
1. f satisfies assumptions (1-a)–(1-c),
2. for any admissable parameter ωk, the set Vk of minimizers of functional
ϕωk (·), is not empty,

3. there exist a ball B (0, R) ⊂ H2
T such that Vk ⊂ B (0, R) for k =

0, 1, 2, . . . ,
4. ϕωk (·) is convex for any ωk ∈W , for k = 0, 1, 2, . . . ,
5. the sequence {ωk} ⊂W tends to ω0 ∈W in the strong topology of L∞,

then lim sup Ṽk is a nonempty set and lim sup Ṽk ⊂ Ṽ0.

Proof. Let {uk} ⊂ H2
T be a sequence such that uk ∈ Vk for k = 1, 2, . . . .

Because Vk ⊂ B (0, R), k = 1, 2, . . . with some R > 0, we may assume that
uk tends weakly to u0 in H2

T . Denote

mk = ϕk (uk) = inf
{
ϕk(x) : x ∈ H2

T

}
= inf {ϕk(x) : x ∈ B (0, R)} .

Since by assumption 5 and Lemma 2.1, ϕ
k
(·) tends to ϕ0(·) uniformly on

the ball B (0, R), we have

mk → m0. (3.2)

Suppose that u0 does not belong to V0. The set is not empty, therefore
there exists x ∈ V0 such that u0 6= x. We have

mk −m0 = ϕk(uk)− ϕ0(x) = [ϕk(uk)− ϕ0(uk)] (3.3)

+ [ϕ0(uk)− ϕ0(u0)] + [ϕ0(u0)− ϕ0(x)] .
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It is easy to check that ϕ0(u0)−ϕ0(x) > 0. So passing with k to ∞ in (3.3)
we get a contradiction with (3.2). Hence lim supVk ⊂ V0.

Moreover the functionals ϕωk(·) are convex and differentiable in the sense
of Gateaux, therefore Ṽk = Vk , k = 0, 1, 2, . . . . This ends the proof.

Corollary 3.2. If the assumptions of Theorem 3.1 are satisfied and the
functionals ϕωk(·) are strictly convex then problem (3.1) possesses a unique
solution, i.e. the set Ṽk = {uk}, is singleton for k = 0, 1, 2, . . . and uk tends
to u0 in the weak topology of H2

T .

Theorem 3.3. If
1. f satisfies assumptions (1-a)–(1-c),
2. there exist some constants a2, a0 > 0, a1 ≥ 0 and a2 > a1T

2/4π2,
bi ≥ 0 (i = 0, 1, 2) and a function c0 ∈ L1 ([0, T ],R) such that

f(t, p0, p1, p2, w) ≥
2∑
i=0

(−1)i
(
ai |pi|2 − bi |pi|

)
− c0,

3. ϕωk (·) is convex for any ωk ∈W ,
4. the sequence {ωk} ⊂W tends to ω0 ∈W in the strong topology of L∞,

then lim sup Ṽk is a nonempty set and lim sup Ṽk ⊂ Ṽ0.

Proof. To prove this theorem we must show that ϕωk (·) is uniformly coer-
cive with respect to ωk ∈W , k = 0, 1, 2, . . . and weakly lower semicontinu-
ous. By assumption 2 we have

f
(
t, u(t),

:
u(t), ü(t), ωk(t)

)
≥a2 |ü(t)|2−b2 |ü(t)|−a1

∣∣ :u(t)
∣∣2 (3.4)

−b1
∣∣ :u(t)

∣∣+a0 |u(t)|2−b0 |u(t)|−c0

for any ωk ∈W . Using the Wirtinger inequality (1.1), we get

ϕωk(u) ≥ amin||u||2 −
2∑
i=0

bi
√
T ||u|| − c,

where ||u|| =
(∫ T

0 |u(t)|2dt+
∫ T

0 |ü(t)|2dt
)1/2

, amin = min{a2 − a1T
2/4π2,

a0}, c =
∫ T

0 c0(t)dt. Because a2 − a1T
2/4π2 > 0 and a0 > 0, the functional

ϕωk (·) is uniformly coercive with respect to ωk.
Our next step is to prove that the functional ϕωk (·) is weakly lower

semicontinuous for any u0 ∈ H2
T . Denote

Z =
{

(t, p0, p1, p2) ∈ [0, T ]× (Rn)3 , |p1| ≤ ρ0

}
where ρ0 = maxt∈[0,T ]

∣∣ :u0 (t)
∣∣.
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By assumption 2 we have

f (t, x, p, w) ≥ −ψ(t)

for some positive and integrable function ψ and for any (t, p0, p1, p2) ∈ Z. So
the fact that ϕωk (·) is weakly lower semicontinuous in u0 ∈ H2

T is obtained
from Theorem 10.8.i in [1].

By Lemma 2.2 the set Vk of minimizers of functional ϕωk(·) for k =
0, 1, 2, . . . is not empty and there exist a ball B (0, R) ⊂ H2

T such that
Vk ⊂ B (0, R) for k = 0, 1, 2, . . . . Now we can apply Theorem 3.1 and we
obtain the assertion.

4. The normal form of the fourth order equation

Let W = {w ∈ L∞ ([0, T ],Rr) : w(t) ∈M} where M is any convex and
bounded subset of Rr and let F : [0, T ] × Rn × Rn ×M → R satisfy the
following assumptions:
(2-a) F (t, p0, p1, w) is measurable with respect to t ∈ [0, T ] for any

(p0, p1, w) ∈ Rn × Rn ×M and continuously differentiable in (p0, p1)
for a.e. t ∈ [0, T ] ,

(2-b) there exist functions a(·) ∈ C(R+,R+) and b(·) ∈ L1 ([0, T ],R) such
that
|F (t, p0, p1, w)| ≤ a(|(p0, p1)|)b(t),
|Fpi(t, p0, p1, w)| ≤ a(|(p0, p1)|)b(t), i = 0, 1,
for all (p0, p1, w) ∈ Rn × Rn ×M , and a.e. t ∈ [0, T ].

Let us consider the functional Φω given by

Φω(u) =

T∫
0

(
1
2
|ü(t)|2 + F

(
t, u(t),

:
u(t), ω(t)

))
dt. (4.1)

The functional (4.1) is continuously differentiable on H2
T and

〈Φ′ω(u), h〉 =

T∫
0

(
Fu
(
t, u(t),

:
u(t), ω(t)

)
, h(t)

)
dt

+

T∫
0

(
F :u
(
t, u(t),

:
u(t), ω(t)

)
,
:
h(t)

)
dt+

T∫
0

(
ü(t), ḧ(t)

)
dt.

We will use some generalization of the Du-Bois-Reymond lemma (see [2]).
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Lemma 4.1. If v ∈ L2 ([0, T ],Rn), w ∈ L1 ([0, T ],Rn) and
T∫

0

(
v(t), ḧ(t)

)
dt =

T∫
0

(w(t), h(t)) dt

for any h ∈ H2
T , then there exist constants c0, c1 ∈ R such that

v(t) =

t∫
0

t1∫
0

w(s)dsdt1 + c1t+ c0

for a.e. t ∈ [0, T ] and v(0) = v(T ),
:
v(0) =

:
v(T ).

Theorem 4.2. Let F satisfy assumptions (2-a) and (2-b). If u ∈ H2
T is a

solution of the corresponding Euler equation for functional (4.1), then ü has
weak derivatives u(3) and u(4), and

u(4)(t)=
d

dt
F :u
(
t, u(t),

:
u(t), ω(t)

)
−Fu

(
t, u(t),

:
u(t), ω(t)

)
(4.2)

u(0)− u(T ) =
:
u(0)− :

u(T ) = ü(0)− ü(T ) = u(3)(0)− u(3)(T ) = 0

for a.e. t ∈ [0, T ].

Proof. By assumptions we have

〈Φ′ω(u), h〉 = 0

for all h ∈ H2
T . So

T∫
0

(
ü(t), ḧ(t)

)
dt = −

T∫
0

(
F :u
(
t, u(t),

:
u(t), ω(t)

)
,
:
h(t)

)
dt (4.3)

−
T∫

0

(
Fu
(
t, u(t),

:
u(t), ω(t)

)
, h(t)

)
dt.

Integrating by parts the second integral in (4.3) and using the boundary
conditions we obtain :

T∫
0

(
ü(t), ḧ(t)

)
dt

=

T∫
0

((
d

dt
F :u
(
t, u(t),

:
u(t), ω(t)

)
− Fu

(
t, u(t),

:
u(t), ω(t)

))
, h(t)

)
dt.

Applying the fundamental Lemma 4.1, we get assertion of the theorem.
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Lemma 4.3. The functional Φω(·) given by (4.1) is weakly lower semicon-
tinuous in H2

T .

Proof. The following functional:

H2
T 3 u 7−→

T∫
0

1
2
|ü(t)|2dt

is convex and continuous so is weakly l.s.c., and the functional

H2
T 3 u 7−→

T∫
0

F
(
t, u(t),

:
u(t), ω(t)

)
dt

is weakly continuous (see Lemma 1.2). Therefore the functional Φω(·) as
the sum of weakly lower semicontinuous functionals is weakly lower semi-
continuous in H2

T .

For later considerations, in the space H2
T we will consider the norm given

by

||u|| = |u|+

 T∫
0

|ü(t)|2dt

1/2

, u =
1
T

T∫
0

u(s)ds.

Let us denote by Ṽk ⊂ H2
T the set of solutions of the periodic problem of

the form:

u(4)(t) =
d

dt
F :u
(
t, u(t),

:
u(t), ωk(t)

)
− Fu

(
t, u(t),

:
u(t), ωk(t)

)
for a.e. t ∈ [0, T ],

u(0)− u(T ) =
:
u(0)− :

u(T ) = ü(0)− ü(T ) = u(3)(0)− u(3)(T ) = 0
where ωk ∈W, k = 0, 1, 2, . . . ,

and by
Vk =

{
u ∈ H2

T : Φωk(u) = min
{

Φωk(v) : v ∈ H2
T

}}
— the set of minimizers of functional Φωk(·) for k = 0, 1, 2, . . . .

Under some conditions about F we can prove the following theorems:

Theorem 4.4. If
1. F satisfies assumptions (2-a)–(2-b),
2. there exist g ∈ L1 ([0, T ],R+) such that

|Fpi(t, x, y, ωk)| ≤ g(t) ∀x, y ∈ Rn and ωk ∈W,
for i = 0, 1 and k = 0, 1, 2, . . . ,
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3.
∫ T

0 F (t, x, 0, ωk(t)) dt → ∞ uniformly with respect to ωk, when
|x| → ∞ for k = 0, 1, 2, . . . ,

4. Φωk (·) is convex for any ωk ∈W with k = 0, 1, 2, . . . ,
5. the sequence {ωk} ⊂W tends to ω0 ∈W in the strong topology of L∞,

then lim sup Ṽk is a nonempty set and lim sup Ṽk ⊂ Ṽ0.

Proof. We have to prove that Φωk (·) is uniformly coercive with respect to
ωk, for k = 0, 1, 2, . . . . Let ωk ∈ W , k = 0, 1, 2, . . . . For u ∈ H2

T we have
u = u+ ũ where u =

∫ T
0 u(s)ds and

:
u =

:
ũ. So

Φωk (u) =

T∫
0

(
1
2
|ü(t)|2 + F (t, u, 0, ωk(t))

)
dt

+

T∫
0

(
F
(
t, u(t),

:
u(t), ωk(t)

)
− F

(
t, u,

:
u(t), ωk(t)

))
dt

+

T∫
0

(
F
(
t, ū,

:
u(t), ωk(t)

)
− F (t, u, 0, ωk(t))

)
dt.

Hence we have that

Φωk (u) =

T∫
0

(
1
2
|ü(t)|2 + F (t, u, 0, ωk(t))

)
dt

+

T∫
0

1∫
0

(
Fu
(
t, u+ sũ(t),

:
u(t), ωk(t)

)
, ũ(t)

)
dsdt

+

T∫
0

1∫
0

(
F :u

(
t, ū, s

:
ũ, ωk(t)

)
,
:
ũ(t)

)
dsdt.

By the Sobolev inequality and the Wirtinger inequality we obtain

Φωk (u) ≥ 1
2

T∫
0

|ü(t)|2dt−
T∫

0

g(t)dt||ũ||∞ −
T∫

0

g(t)dt||
:
ũ||∞

+

T∫
0

F (t, u, 0, ωk(t)) dt
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≥ 1
2

T∫
0

|ü(t)|2dt− C1

 T∫
0

|ü(t)|2dt

1/2

− C2

 T∫
0

|ü(t)|2dt

1/2

+

T∫
0

F (t, u, 0, ωk(t)) dt

=
1
2
||ü||2L2 − C||ü||L2 +

T∫
0

F (t, u, 0, ωk(t)) dt

where C, C1, C2 are constants and k = 0, 1, 2, . . . . So if ||u|| → ∞, then
Φωk(u) → ∞ uniformly with respect to ωk, for k = 0, 1, 2, . . . . By Lemma
4.3 and Lemma 2.2 the set Vk of minimizers of functional Φωk(·) for k =
0, 1, 2, . . . is not empty and there exists a ball B (0, R) ⊂ H2

T such that Vk ⊂
B (0, R) for k = 0, 1, 2, . . . . Applying Theorem 3.1 we get the thesis.

Theorem 4.5. If
1. F satisfies assumptions (2-a)–(2-b),
2. F (t, ·, ·, ωk(t)) is convex for t ∈ [0, T ] a.e., for all ωk ∈ W with k =

0, 1, 2, . . . ,
3. F (t, x, y, ωk) ≥ α|x| − β + ψ(|y|) for all x, y ∈ Rn and ωk ∈ W ,
k = 0, 1, 2, . . . where α > 0 and β ≥ 0 are some constants and φ ∈
L1 ([0, T ],Rn),

4. the sequence {ωk} ⊂W tends to ω0 ∈W in the strong topology of L∞,

then lim sup Ṽk is a nonempty set and lim sup Ṽk ⊂ Ṽ0.

Proof. By assumptions we conclude that the real function

gk : Rn 3 x→
T∫

0

F (t, x, 0, ωk(t)) dt, k = 0, 1, 2, . . . ,

has a minimum at some point xωk for which

T∫
0

Fp0 (t, xωk , 0, ωk(t)) dt = 0, k = 0, 1, 2, . . . (4.4)

and
T∫

0

F (t, x, 0, ωk(t)) dt→∞ when |x|→∞, k = 0, 1, 2, . . . . (4.5)
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Let us fix for a moment k and let {un} ⊂ H1
T be a minimizing sequence for

Φωk(·). By the assumption of convexity we obtain

Φωk(un) ≥ 1
2

T∫
0

|ün(t)|2dt+

T∫
0

F (t, xωk , 0, ωk(t)) dt

+

T∫
0

(Fp0 (t, xωk , 0, ωk(t)) , un(t)− xωk) dt

+

T∫
0

(
Fp1 (t, xωk , 0, ωk(t)) ,

:
un(t)

)
dt

and by (4.4) we have

Φωk(un) ≥ 1
2

T∫
0

|ün(t)|2dt+

T∫
0

F (t, xωk , 0, ωk(t)) dt

−
T∫

0

|Fp0 (t, xωk , 0, ωk(t))| dt||ũn||∞

−
T∫

0

|Fp1 (t, xωk , 0, ωk(t))| dt||
:
ũ||∞.

Using assumption (2-b) and the Sobolev inequality we obtain

Φωk(un) ≥ 1
2

T∫
0

|ün(t)|2dt+

T∫
0

F (t, xωk , 0, ωk(t)) dt

−

∣∣∣∣∣∣
T∫

0

Fp0 (t, xωk , 0, ωk(t)) dt

∣∣∣∣∣∣ ||ũn||∞
−

T∫
0

a (|(xωk , 0)|) b (t) dt||
:
ũ||∞

≥ 1
2
||ün||2L2 − C1 − C2||ün||L2

where C1, C2 > 0, un = un + ũn,
:
un =

:
ũ.

Hence there exists a constant D1 > 0, such that

||ün||L2 ≤ D1
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and inequality (1.1) and the Sobolev inequality imply that

||
:
ũ||∞ ≤ C3 and ||ũn||∞ ≤ C4

where C3, C4 > 0 are constants.
From the convexity of F we obtain:

F

(
t,

1
2
un, 0, ωk(t)

)
= F

(
t,

1
2

(un(t)− ũn(t)) ,
1
2

(
:
un(t)−

:
ũn(t)

)
, ωk(t)

)
≤ 1

2
F
(
t, un(t),

:
un(t), ωk(t)

)
+

1
2
F
(
t,−ũn(t),−

:
ũn(t), ωk(t)

)
for a.e. t ∈ [0, T ]. Hence

Φωk(un) ≥ 1
2

T∫
0

|ün(t)|2dt+ 2

T∫
0

F

(
t,

1
2
un, 0, ωk(t)

)
dt

−
T∫

0

F
(
t,−ũn(t),−

:
ũn(t), ωk(t)

)
dt

≥ 2

T∫
0

F

(
t,

1
2
un, 0, ωk(t)

)
dt− C5

for some C5 > 0. Thus there exists a constant D2 > 0, such that |un| ≤ D2.
Therefore Φωk(·) for k = 0, 1, 2, . . . has a bounded minimizing sequence

and the set Vk is not empty for k = 0, 1, 2, . . . .
Now we have to prove that there exists a ball B (0, R) ⊂ H2

T such that
Vk ⊂ B (0, R) for k = 0, 1, 2, . . . .

First, let us notice that

gk (x) =

T∫
0

F (t, x, 0, ωk(t)) dt ≥
T∫

0

(α|x| − β + ψ(|0|)) ≥ α0|x| − β0

where α0 > 0.
Let us denoteA = a (0)

∫ T
0 b (t) dt andB (0, ρ) = {x ∈ Rn : α0|x|−β0≤A}.

By the assumption (2-b) we have

gk(xωk) ≤ gk(0) ≤ A k = 0, 1, 2, . . . .

Let us notice that all minimizers xωk are in B(0, ρ), k = 0, 1, 2, . . . . Indeed

xωk ∈ {x ∈ Rn : gk (x) ≤ A} ⊂ {x ∈ Rn : α0|x| − β0 ≤ A} = B (0, ρ) .

Now let uk = ũk + ūk be a minimizer of Φωk(·) for k = 0, 1, 2, . . . . In the
analogous way as previously we can show that ||uk|| ≤ R . By Theorem 3.1
we get the thesis.
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Example 4.1. Let f : [0, T ]×R2×R2×R2×M → R be a function defined
by the formula

f (t, p0, p1, p2, w) = |p2|2 + p2
2 − w |p1|2 + e−wp

2
1

+ sin p1
0 |p1|2 + |p0|2 + twp2

0 (4.6)

where pi =
(
p1
i , p

2
i

)
, i = 0, 1, 2, and M = [−1, 1]. Let us notice that

f (t, p0, p1, p2, w) ≥ |p2|2 − |p2| − 2 |p1|2 + |p0|2 − T |p0| .

Consider the functional

ϕω(u) =

T∫
0

f
(
t, u(t),

:
u(t), ü(t), ω(t)

)
dt

where f is given by (4.6). One can show that ϕω is strictly convex for
any w ∈ W = {ω ∈ L∞ ([0, T ],Rr) : ω(t) ∈M}. Let {ωk} ⊂ W be any
sequence strongly converging to ω0 ∈W . Consider a periodic problem with
parameters ωk, k = 0, 1, 2, . . .

d

dt

(
d

dt
2ü1 + 2ωk

:
u

1 − 2
:
u

1 sinu1
)

+ 2u1 +
∣∣ :u∣∣2 cosu1 = 0 (4.7)

d

dt

(
d

dt

(
2ü2+1

)
+2ωk

:
u

2−2
:
u

1 sinu1−ωke−ωk
:
u

2
)

+2u2+tωk = 0

u(0)−u(T )=
:
u(0)− :

u(T )= ü(0)−ü(T )=u(3)(0)−u(3)(T )=0.

From Theorem 3.3 and Corollary 3.2 it follows that for each ωk, k =
0, 1, 2, . . . , problem (4.7) possesses a uniquely defined solution uk ∈ H2

T

and that the sequence {uk} tends to u0 in the weak topology of H2
T .

Example 4.2. Let W = {ω ∈ L∞ ([0, T ],R) : 0 ≤ ω(t) ≤ 1} and let {ωk} ⊂
W , k = 1, 2, . . . be any sequence strongly converging to ω0. For k =
0, 1, 2, . . . consider the scalar problem

u(4) =
d

dt

(
ωk sin

(
u− :

u
)
− ωk cos

:
u+ e (t)

)
− ωk sgnu+ ωk sin

(
u− :

u
)
, (4.8)

u(0)−u(T )=
:
u(0)− :

u(T )= ü(0)−ü(T )=u(3)(0)−u(3)(T )=0

where function e ∈ L1 ([0, T ] ,R+). In this case, F is of the form

F (t, p0, p1, w) = w
(
p2

0 + p2
1
)1/2 + w cos (p0 − p1)− w sin p1 + e (t) p1
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and hence
T∫

0

F (t, x, 0, w) dt = (|x|+ cosx)

T∫
0

w (t) dt→∞

if |x| → ∞. It is easy to show that

|Fpi(t, x, y, ωk)| ≤ g(t) ∀x, y ∈ Rn and ωk ∈W, i = 0, 1, k = 0, 1, 2, . . .

where g (t) = max (2, 2 + e (t)) for t ∈ [0, T ]. Moreover the functional

Φω(u) =

T∫
0

(
1
2
|ü(t)|2 + F

(
t, u(t),

:
u(t), ω(t)

))
dt

is strictly convex, so from Theorem 4.4 and Corollary 3.2 it follows that for
each ωk, k = 0, 1, 2, . . . , problem (4.7) possesses a uniquely defined solution
uk ∈ H2

T , and that the sequence {uk} tends to u0 in the weak topology of
H2
T .
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