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Abstract. In [9], the present authors and Richard O’Malley showed
that in order for a function be universally polygonally approximable it
is necessary that for each ε > 0, the set of points of non-quasicontinuity
be σ − (1− ε) symmetrically porous. The question as to whether that
condition is sufficient or not was left open. Here we prove that if a
set, E =

S∞
n=1 En, such that each Ei is closed and 1-symmetrically

porous, then there is a universally polygonally approximable function,
f , whose set of points of non-quasicontinuity is precisely E. Although
it is tempting to call this a partial converse to our earlier theorem it
might be more since it is not known if these two notions of symmetric
porosity differ in the class of Fσ sets.

1. Introduction and definitions

The purpose of this paper is a straightforward attempt to provide a char-
acterization of an exceptional set of points for a certain class of polygonally
approximable functions.
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We begin by giving a few necessary definitions and some background
information. In [1], Agronsky, Ceder, and Pearson showed that any Baire
class one function f : [0, 1]→ R can be represented as the pointwise limit of
a sequence of polygonal functions whose vertices lie on the graph of f . This
result is interesting in several ways, not the least of which is that it shows
that, at least in a theoretical sense, linear interpolation of the values of the
function can be used to generate a sequence of polygonal functions which
converges pointwise to a given, but otherwise arbitrary Baire one function.

In [9], the present authors and Richard O’Malley investigated the subclass
of Baire class one functions which have the additional property that for every
dense subset D of [0, 1], the first coordinates of the vertices of the polygonal
functions can be chosen from D. As it turns out, this is a real restriction on
the Baire one functions and that perhaps, is no surprise, for it is within this
class that the aforementioned interpolation can be algorithmically used to
generate the sequence of polygonal approximates. It is important to note
that in both papers [1] and [9], the sequence of polygonal functions was
required to converge pointwise everywhere to the given f .

The relevant definitions follow. First we define the subclass, UPA, of
Baire one functions we are concerned with in the sequel, next we define the
porosity notions relevant to the discussion and finally we state our main
result.

a) We say that a function h : [0, 1] → R is a polygonal function for f
if there is a partition τ = {0 = a0 < a1 < a2 < · · · < am = 1} such
that h agrees with f at each partition point and is linear on the in-
tervening closed intervals. We call a0, a1, . . . , am the nodes of h and
(a0, h(a0)), (a1, h(a1)), . . . , (am, h(am)) the vertices of h. The maxi-
mum distance between nodes is called the mesh of h and is denoted
mesh(h).

b) If S ⊂ [0, 1], we say that a sequence {hn} of polygonal functions for
f polygonally approximates f on S if limn→∞ hn(x) = f(x) for every
x ∈ S and limn→∞mesh(hn) = 0. In this case we say that f is
polygonally approximable on S, and if S = [0, 1] we say that f is
polygonally approximable. Further, if all the nodes of the polygonal
functions, other than 0 and 1, belong to the set of points of continuity,
C(f), we say that {hn} C(f)-polygonally approximates f .

c) f is universally polygonally approximable (UPA) if for every dense sub-
set D in [0, 1] there is a sequence {hn} of polygonal functions for f ,
having nodes in D∪{0, 1} which polygonally approximates f on [0, 1].

The notion of quasicontinuity plays an important role in the understand-
ing of the class UPA and determines the exceptional set which is the focus
of the present paper.
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d) A function f : [0, 1]→ R is quasicontinuous at x if every neighborhood
of (x, f(x)) contains a point of continuity of f . We let Q(f) denote
the set of points of quasicontinuity of f and NQ(f) = (0, 1) \Q(f).

The exceptional behavior we use here is that of set porosity. If A is a
subset of the real line R and x ∈ R, then

e) the porosity of A at x is defined to be

p(A, x) = lim sup
r→0+

λ(A, x, r)
r

,

where λ(A, x, r) is the length of the longest open interval contained in
either (x, x+ r) ∩Ac or (x−r, x)∩Ac and Ac denotes the complement
of A.

f) A set, A, is said to be porous at x if p(A, x) > 0 and is called a porous
set if it is porous at each of its points.

g) The symmetric porosity of A at x is defined as

sp(A, x) = lim sup
r→0+

γ(A, x, r)
r

,

where γ(A, x, r) is the supremum of all positive numbers h such that
there is a positive number t with t + h ≤ r such that both of the
intervals (x− t− h, x− t) and (x+ t, x+ t+ h) lie in Ac.

h) A set A is symmetrically porous if sp(A, x) > 0 for each x ∈ A. For 0 <
p ≤ 1 a set A is called p-porous (p-symmetrically porous) if p(A, x) ≥ p
(sp(A, x) ≥ p) for every x ∈ A.

Symmetrically porous sets are known to be plentiful; indeed, in the space
of all compact subsets of [0, 1] endowed with the Hausdorff metric, the
typical set (in the sense of Baire category) is known to be 1-symmetrically
porous (see [16] or [18]). Just as the notion of porosity has proven useful in
describing sets of exceptional behavior in real analysis, so too is symmetric
porosity beginning to be used to describe exceptionality (e.g., [21], [7], [6]).

Porous sets and symmetrically porous sets have been contrasted in [8],
[17], [11], [12], [13] and [20] and, in general, symmetric porosity proves to be
a much more restrictive and rigid notion. In [9, Theorem 4] these notions
come together in the following way.

Theorem A. Suppose f : [0, 1]→ R is UPA. Then for each ε > 0, NQ(f)
is σ− (1− ε)-symmetrically porous, and in fact, can be written as NQ(f) =⋃∞
n=1 Fn where each Fn is compact and (1− ε)-symmetrically porous.

The purpose of the present paper is to explore the converse of Theorem
A and here we prove:
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Theorem B. Suppose E =
⋃∞
n=1 Fn ⊂ (0, 1) where for each n ∈ N, Fn

is compact and 1-symmetrically porous. Then there is a UPA function f :
[0, 1]→ [0, 1] for which E = NQ(f).

The combination of these two results is interesting for several reasons.
First, it is not at all clear from the outset that symmetric porosity has any
connection whatsoever with polygonal approximation or the class UPA; yet
these theorems show its role to be central. Second, it is known [8], that
there is a Borel set (indeed a Gδ) which is σ− (1− ε)-symmetrically porous
for every ε > 0, but which is not σ− 1-symmetrically porous. But, it is not
known if such an Fσ set exists. So, a solution to this last problem could
be exactly what is needed to characterize the points of nonquasicontinuity
of UPA functions. In any case, it would be worth some effort to solve this
problem.

We continue in the next section with some structural results regarding
symmetric perfect sets, and then use those results in the final section where
we prove our main result.

2. A covering theorem

Suppose E is perfect and 1-symmetrically porous. A component cover
of E is a finite set of disjoint closed intervals whose endpoints are in E
and whose union contains E; unless otherwise specified, the component
intervals of such a cover will be indexed in the same order as their relative
position on R. For ε > 0, an ε-component cover of E is a component cover,
C = {I0, I1, . . . IN}, such that

ε · d(In, In+1) > max(|In|, |In+1|) for n = 1, 2, . . . , N − 1

where d(I, J) denotes the distance between the intervals I and J . The norm
of C is δ(C) = max0≤n≤N |In|. Note that if ε < ε0 then an ε-component
cover is also an ε0-component cover.

In this section we prove a covering property of 1-symmetrically porous
sets which is used in the next section to construct a function and polyg-
onal approximations to that function. First, suppose that E ⊂ (0, 1) is
1-symmetrically porous and compact, and let C be a component cover of
E. If P is any portion of E, then

C|P = {[min(I ∩ P ),max(I ∩ P )] : I ∈ C and I ∩ P 6= ∅}.
It is easy to see that in such a situation, C|P is a component cover of P . We
are interested in a sequence of covers, Cn, of E such that Cn+1 refines Cn
for each n = 1, 2, . . . in the sense that each component of Cn+1 is contained
in a component of Cn.
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If ` > 0 and I is an interval, ` ∗ I will denote that interval of length ` · |I|
which is concentric with I. If C is a finite set of disjoint closed intervals and
` > 0, we define ` ∗ C =

⋃
I∈C ` ∗ I. The aforementioned covering property

can now be described.

Lemma 1. Suppose δ > 0 and 0 < ε < 1/10 are given and E is a compact
(1 − ε)-symmetrically porous set. Then there is a 3 · ε-component cover C
of E with δ(C) < δ.

Proof. Let x ∈ E. As E is (1− ε)-symmetrically porous there are t, h > 0
such that t < δ/2, 1−1.25ε < h/(t+ h) and (x−t−h, x−t)∪(x+t, x+t+h) ⊂
Ec. Let

Ix = [min(E ∩ [x− t, x+ t]),max(E ∩ [x− t, x+ t])].

It follows that
|Ix|
h

<
2t
h
<

2ε
1− ε

<
20ε
9

< 3ε

and, of course that |Ix| < δ. As ε < 1/10, it follows that if x, y ∈ E, either

Ix ∩ Iy = ∅, or Ix ⊂ Iy or Iy ⊂ Ix. (1)

The set of these portions, {Ix : x ∈ E} is an open cover for E (in the relative
topology) and hence, there is a finite subcover, {Ixn : n = 1, 2, . . . , N}
which, due to (1) we may assume to be mutually exclusive. Reordering this
subcover according to the natural order of R finishes the proof.

Theorem 1. Suppose E ⊂ (0, 1) is perfect and 1-symmetrically porous, and
suppose {εn} → 0 is given. Then there exists a sequence of εn-component
covers {Cn} of E such that for each n ∈ N

1. Cn+1 refines Cn,

2. δ(Cn) <
1

2n+1 ,

3. 2 ∗ C1 ⊂ (0, 1), (n+ 1) ∗ Cn+1 ⊂ (1 + 10−n) ∗ Cn.

Proof. The proof consists of applying Lemma 1 inductively. We assume
that εn < 1/10 in all cases.

1. According to Lemma 1, since E is (1 − ε1/3)-symmetrically porous,
there is an ε1-component cover C1 of E with δ(C1) < 1/4.

2. Now assume an εn-component cover Cn of E is given with δ(Cn) <
1/(2n+1) and let I be a fixed element (interval) from Cn. As I ∩
E is 1-symmetrically porous we can apply Lemma 1 to obtain an
εn+1 — component cover C(I) of I ∩ E such that

δ(C(I)) <
|I|

(n+ 1) · 10n
. (2)



180 M. J. EVANS and P. D. HUMKE

This condition entails two separate aspects of the relationship between
I and C(I) which are technically important to our subsequent appli-
cation of Theorem 1. These are

(n+ 1) ∗ C(I) ⊂ (1 +
1

10n
) ∗ I (3)

δ(C(I)) <
1

2n+2 . (4)

To complete the inductive step we let

Cn+1 =
⋃
I∈Cn

C(I).

If I1 and I2 are distinct intervals in Cn, then it follows from Lemma 1
that the distance between them is longer than either of their lengths. As
E∩C(I1) consists of portions of E∩I1 and C(I1) ⊂ (1+1/10n)∗I1, it follows
that each interval in C(I1) is contained in I1. From this it is easy to see
that Cn+1 refines Cn. The remaining conditions of the theorem, Conditions
#2 and #3, follow immediately from this, inclusion (3), and inequality (4).
This, then, completes the proof of Theorem 1.

3. The perfect 1-symmetrically porous case

In this section we inductively use Theorem 1 to prove the following, rather
delicate Theorem 2. Theorem 2 is the main engine for the final construction
detailed in the final section where it is used to construct a series of functions.
It is easy to see that this series converges uniformly, but not so easy to
see that the limit function is UPA. It is exactly at this juncture that the
seemingly extraneous Condition 5 of Theorem 2 plays a critical role.

Theorem 2. Suppose E ⊂ (A,B) ⊂ [A,B] ⊂ (0, 1) is 1-symmetrically
porous and perfect. Suppose too that S = {an, bn} ⊂ (A,B) is a given
sequence with [an, bn] ∩ E = ∅ for each n ∈ N. Then, there is a sequence of
polygonal functions, hn : [0, 1]→ [0, 1] such that

1. {hn} converges pointwise to a function f : [0, 1]→ [0, 1],
2. f(x) = 1/2 if x ∈ E,
3. f is non-quasicontinuous at each x ∈ E,
4. f is continuous at each x ∈ [0, 1]\E,
5. nodes of hn are in [0, 1]\(E ∪

⋃n
i=1(ai, bi)) and f |[ai,bi] ≡ 0 (or ≡ 1) =

hn|[ai,bi] whenever i ≤ n,
6. f(0) = f(1) = 0.
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Proof. Set εn = 10−n. Using Theorem 1 we first construct a sequence
of εn-component covers of E, Cn, such that (n + 1) ∗ Cn ⊂ (A,B) and
(n+ 1) ∗Cn ∩ [an, bn] = ∅ for each n ∈ N. We define a pointwise convergent
sequence of polygonal functions, {hn}, using these covers and then define
f as the pointwise limit of the {hn}. The nodes of hn will either map to
0 or 1 with those mapping to 0 denoted by Nn(0) and those mapping to 1
denoted by Nn(1).

h1: First, put 0, 1, (B + 1)/2 ∈ N1(0); that is, the points 0, 1, and
(B + 1)/2 will be nodes of h1 and will all map to 0. Suppose C1 =
{I0, I1, . . . IN}.

Since C1 is a 1/10-component cover of E, d(Ii, Ii+1) > 10 ·max(|Ii|,
|Ii+1|) for each i = 0, 1, . . . , N − 1. At each left endpoint of 2 ∗ Ii,
define h1 to be 0 if i is even, and 1 if i is odd; at right endpoints of
2 ∗ Ii, h1 is just the reverse, 1 if i is even and 0 if i is odd.

Note that h1 is constant (either 0 or 1) at neighboring nodes bor-
dering a large central portion of the interval between two consecutive
Ii’s and is not constant between neighboring nodes surrounding an
interval I ∈ C1.

If I ∈ C1, then I is called a (0, 1)-interval if h1 is increasing between
its neighboring nodes, otherwise I is termed a (1, 0)-interval. Also,
every pair of neighboring nodes on which h1 is not constant contains
a covering interval, Ii ∈ C1, with the possible single exception of the
interval extending between 2 ∗ IN and (B + 1)/2. If N is even, then
h1 maps the right endpoint of 2 ∗ IN to 1 and yet h1((B + 1)/2) = 0.

At this juncture, the nodes of h1 partition [0, 1] into three possible
types of intervals:
1. intervals on which h1 is constant (either 0 or 1),
2. (0, 1)-intervals or (1, 0)-intervals which intersect E,
3. possibly a (1, 0) interval which does not intersect E.

This interval, extant if N is even, extends between the right end-
point of 2 ∗ IN and (B + 1)/2.

The cover C1 was chosen so that it not only misses [a1, b1], but so
that 2∗C1 misses [a1, b1]. Hence, [a1, b1] intersects no partition interval
of type 2 above. We complete the definition of h1 by considering
[a1, b1].

The simplest case is when N is odd and [a1, b1] lies between con-
secutive nodes in N1(0) (or consecutive nodes in N1(1)). In this case,
the definition of h1 is completed by defining h1 to be linear between
nodes.

If N is even more must be done. If N is even and [a1, b1] lies between
consecutive nodes in N1(0) (or consecutive nodes in N1(1)), we define
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h1 to to be linear between nodes and designate the interval between
2 ∗ IN and (B + 1)/2 as a (1, 0)− spline interval of Stage 1.

The remaining case is when N is even and [a1, b1] lies in the interval
between 2 ∗ IN and (B + 1)/2. In this case, we place both a1 and
b1 in N1(1) and designate the interval [b1, (B + 1)/2] as a (1, 0) −
spline interval of Stage 1. Again, h1 is extended linearly between
nodes.

Inductively, suppose that the polygonal function hn has been defined
such that the nodes of hn partition [0, 1] into intervals of the following
types:
1. intervals on which hn is constant.
2. (0, 1)-intervals or (1, 0)-intervals which intersect E.

An interval of this type is of the form (n + 1) ∗ J where J is one
of the covering intervals from Cn. Moreover, E is contained in the
union of the intervals of this category.

3. (0, 1)-spline intervals or (1, 0)-spline intervals.
If I is a spline interval, then the interval to the right of I is an
interval of constancy and the interval to the left of I intersects E.

hn+1: The nodes of hn partition [0, 1] into three possible types of intervals.
We begin by defining hn+1 separately on partition intervals of these
categories, and then show how to alter this definition to account for
[an+1, bn+1].

1. If hn is constant on an interval, then we define hn+1 to be that
same constant.

2. Suppose I = [a, b] is a (0, 1)-interval which intersects E. In this
case we proceed in a manner completely analogous to that of h1,
but entirely within I. We begin by establishing the value of hn+1
at the endpoints, a and b.

As I is a (0, 1)-interval, a ∈ Nn(0) and we put a ∈ Nn+1(0). We
also know that b ∈ Nn(1) and b will be a node of the n+ 1st stage,
but perhaps not a 1-node. As hn is constant in a neighborhood of
1, there is a partition interval, [b, c], immediately to the right of
[a, b]. If that partition interval is of the first type, then hn|[b,c] ≡ 1
and we put hn+1(b) = 1. If, however, hn is not of the first type
on [b, c], then [b, c] is a spline interval of Stage n. In this case,
hn|[c,d] ≡ 0 where [c, d] is the partition interval immediately right
of [b, c] and we define hn+1(b) = 0.

Consider the cover Cn+1 restricted to I,

Cn+1|I = {J0, J1, . . . , Jmn+1}.

As I is a (0, 1)-interval, we declare each left endpoint of (n+1)∗Ji
to be in Nn+1(0) if i is even and to be in Nn+1(1) if i is odd; at
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the right endpoints this declaration is reversed. (If I is a (1, 0)-
interval, these declarations are interchanged.)

The function hn+1|[a,b] is now simply defined to be 0 at points of
Nn+1(0)∩ [a, b], 1 at points of Nn+1(1)∩ [a, b], and linear between
consecutive points of Nn+1(0) ∪Nn+1(1).

The nodes of hn+1|[a,b] delineate intervals on which hn+1 is
constant (either 0 or 1), intervals on which hn+1 is linear and
increases from 0 to 1 (these are (0, 1)-intervals of Stage n+ 1) and
intervals on which hn+1 is linear and decreases from 1 to 0 (these
are (1, 0)-intervals of Stage n+ 1). If d denotes the last node less
than b, then the interval [d, b] falls into one of these categories and
in no case does [d, b] intersect E.

3. Suppose I = [a, b] is a spline interval of hn. In this case, the par-
tition interval to the right of I is an interval of constancy of hn
(either 0 or 1) and we define hn+1|[a,b] to be that constant. Note
that this definition dovetails with the definition of hn+1 described
in 2 above in the sense that the unrestricted function hn+1 is con-
tinuous on all of [0, 1].

At this point the piecewise linear function, hn+1 has been defined
on all of [0, 1] and because the definition in part 3 above dovetails with
that given in parts 1 and 2, hn+1 is continuous. Moreover, the nodes
of hn+1 partition [0, 1] into three possible types of intervals:
1. intervals on which hn+1 is constant (either 0 or 1),
2. (0, 1)-intervals or (1, 0)-intervals which intersect E,
3. possible (0, 1) or (1, 0)-intervals which miss E.
Moreover, each (1, 0)-interval which misses E is preceded by a (0, 1)-

interval which intersects E and is followed by an interval on which hn+1
is identically 1. Also, each (0, 1)-interval which misses E is preceded
by a (1, 0)-interval which intersects E and is followed by an interval
on which hn+1 is identically 0.

To complete Stage n + 1 we alter this definition to account for
[an+1, bn+1]. The cover Cn+1 was chosen so that (n+ 1) ∗Cn+1 misses
[an+1, bn+1] and hence, [an+1, bn+1] intersects no partition interval of
type 2 above.

Case 1. [an+1, bn+1] intersects an interval [c, d] of type 3.
Since [c, d] is of type 3, hn+1 is constant on a partition interval
[d, e] immediately to the right of [c, d]. Moreover, since [an+1, bn+1]
intersects no interval of type 2, c < an+1 ≤ d and bn+1 < e. We
redefine hn+1 on (c, d) as follows:

hn+1(x) =

hn+1(d) if an+1 ≤ x < d
hn+1(d)− hn+1(c)

an+1 − c
(x− c) + hn+1(c) if c < x < an+1.
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The interval [c, an+1] is now deemed a spline interval of Stage n+1,
and an+1 and bn+1 are designated nodes of hn+1. If d < bn+1,
then d is decommissioned as a node of hn+1. In any case, hn+1
is constant on [an+1, bn+1], both an+1 and bn+1 are nodes of hn+1
and (an+1, bn+1) contains no nodes of hn+1.

Case 2. [an+1, bn+1] does not intersect an interval of type 3.
In this case, [an+1, bn+1] lies entirely within an interval of con-
stancy of hn+1 and we alter the definition of hn+1 only by desig-
nating an+1 and bn+1 to be nodes of hn+1.

This completes the definition of hn+1 and by induction, the sequence,
{hn}. We proceed to show it has the properties we claimed it did.

First, we show that the sequence, {hn}, converges pointwise to a function,
f ∈ UPA. To this end, fix x0 ∈ [0, 1]. We consider two cases.
Case 1. Suppose x0 ∈ E. Then for each n ∈ N, there is a unique in-

terval I = [a, b] ∈ Cn which contains x0. Then n ∗ I ≡ [α, β] =
[(a+ b)/2−(n/2)(b−a), (a+ b)/2+(n/2)(b−a)] and the construc-
tion entails that hn|[α,β] is linear with hn(α) = 0 and hn(β) = 1
or hn(α) = 1 and hn(β) = 0. In either case, hn(I) = [1/2 −
1/(2n), 1/2 + 1/(2n)]. It follows that {hn(x0)} → 1/2.

Case 2. Suppose x0 6∈ E. Then, there is an N ∈ N such that CN fails to
cover x0. As such, x0 is either in an interval of constancy of hN or
in a spline interval of hN . In the first instance, hN (x0) = hi(x0)
for all i ≥ N and hence, {hN (x0)} converges and converges to
either 0 or 1. In the second instance, the spline interval of hN
which contains x0 becomes an interval of constancy of hN+1 so
that hi(x0) = hN+1(x0) whenever i ≥ N + 1 and again, {hN (x0)}
converges and again, converges to either 0 or 1.

We let f(x) = limn→∞ hn(x). If x 6∈ E, then there is an interval, I,
contiguous to E which contains x. The argument given above in Case 2
shows that either f(I) = 0 or f(I) = 1 and in either case, f is continuous
at x. If x ∈ E, then f(x) = 1/2 so that the ball about (x, f(x)) of radius
1/4 contains no point of the graph of f |Ec . From this it is easy to see that
E = NQ(f) and Ec = C(f).

Conclusion 5 follows from the fact that hn is constant (either 0 or 1)
on [an, bn] and that for k > n, hk is constant on any interval where hn is
constant and contains no nodes interior to any interval of constancy.

This completes the proof of Theorem 2; in the next section we use
this theorem in an inductive way to construct a function whose points of
non-quasicontinuity is a given countable union of compact 1-symmetrically
porous sets. The construction is complicated by the fact that UPA is not
closed under uniform limits.
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4. The σ case

We begin with four lemmas. The first two of these are transparent but
are recorded for completeness. The third lemma is technical in nature and
sets out conditions under which a certain uniform sum of UPA functions
is UPA. The final lemma is a standard disengagement result for unions of
compact 1-symmetrically porous sets.

For each polygonal function h, setN(h) = {x ∈ [0, 1] : h has a node at x}.

Lemma 2. If E = {x0} ⊂ (0, 1) and S = {an, bn} is a given sequence such
that x0 6∈ [an, bn] for every n ∈ N, then there is a sequence of polygonal
functions, hn : [0, 1]→ [0, 1] such that

1. {hn} converges pointwise to a function f : [0, 1]→ [0, 1],
2. f(x0) = 1/2,
3. f is non-quasicontinuous at x0,
4. f is continuous at each x ∈ [0, 1]\E,
5. nodes of hn are in [0, 1]\

⋃n
i=1[ai, bi] and f |[ai,bi] ≡ 0 (or ≡ 1) =

hn|[ai,bi] whenever i ≤ n,
6. f(0) = f(1) = 0.

Proof. Let 4δn = min(|x0 − ai|, |x0 − bi|), i ≤ n, and define

hn(x) =


0 x 6∈ (x0 − δn, x0 + 3δn)
1 x = x0 + δn

linearly on [x0 − δn, x0 + δn] and [x0 + δn, x0 + 3δn].

Lemma 3. Suppose that for each fixed n ∈ N we have:
1. {hn,m} converges pointwise to fn,
2. hn,m is polygonal with vertices on fn|C(fn),
3. if 1 ≤ n ≤ m and hn,m has a node at x∗, then hk,m(x∗) = fk(x∗)

whenever 1 ≤ k ≤ m,
4. |hn,m| ≤ 1/2n for all m ∈ N.

Then
∑
fn ∈ UPA.

Proof. Fix n and define

gn(x) = h1,n(x) + h2,n(x) + · · ·+ hn,n(x) and f(x) = Σfn(x).

A. {gn} → f pointwise.
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Fix x0 ∈ [0, 1] and let ε > 0 be given. Then there is an N ∈ N such that
21−N < ε/2 and an M ≥ N such that for n = 1, 2, . . . , N and m ≥M ,

|hn,m(x)− fn(x)| < ε

2N
.

Now, for m ≥M

|gm(x)− f(x)| ≤
N∑
i=1

|hi,m(x)− fi(x)|+
∞∑

i=N+1

(|hi,m(x)|+ |fi(x)|)

≤ N ε

2N
+ 2

1
2N

< ε.

B. If x∗ ∈ N(gn), then |gn(x∗)− f(x∗)| ≤ 1/2n.

Let x∗ ∈ N(gn) ≡
⋃n
m=1N(hm,n). Then there is an 1 ≤ m ≤ n with

x∗ ∈ N(hm,n) and it follows from hypothesis 3 that hk,n(x∗) = fk(x∗) for
all 1 ≤ k ≤ n. It now follows that

|gn(x∗)− f(x∗)| = |
n∑
k=1

hk,n(x∗)−
∞∑
k=1

fk(x∗)|

= |
n∑
k=1

fk(x∗)−
∞∑
k=1

fk(x∗)|

≤
∞∑

k=n+1

|fk(x∗)| ≤
1
2n
.

Define g∗n(x) =

{
f(x) if x ∈ N(gn)
linear between consecutive nodes.

C. {g∗n} → f pointwise on [0, 1].

From the definition of g∗ and B it follows that |g∗n(x)− gn(x)| = |f(x)−
gn(x)| ≤ 1/2n whenever x ∈ N(gn) and consequently that |g∗n(x)− gn(x)| ≤
1/2n uniformly on [0, 1]. From this and the fact that {gn} → f pointwise,
it follows that {g∗n} → f pointwise. But, by [9, Proposition 1], f is UPA if
and only if it is C(f)-polygonally approximable so this completes the proof
of the lemma.

Lemma 4. Suppose E = E1 ∪E2 ∪ . . . where each En is either perfect and
1-symmetrically porous or a singleton. Then E = E∗1 ∪E∗2 ∪ . . . where each
E∗n is perfect and 1-symmetrically porous or a singleton, and for each n ∈ N,
E∗n+1 lies in a single component of [0, 1]\

⋃n
i=1E

∗
i .
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Proof. Let E0 = ∅. For each n ∈ N, En\En−1 is 1-symmetrically porous
and is an Fσ set. As such, En\En−1 can be written as the countable, disjoint
union of compact, 1-symmetrically porous sets. Hence, there are disjoint,
compact, 1-symmetrically porous sets, Fn, such that

⋃∞
n=1En =

⋃∞
n=1 Fn.

Define E∗1 = F1 and let k ∈ N. As Fk+1 ∩
⋃k
i=1 Fi = ∅, and Fk+1 is

compact, only finitely many components of [0, 1]\
⋃k
i=1 Fi intersect Fk+1

and we enumerate those portions of Fk+1 as E∗nk+1, E
∗
nk+2, . . . , E

∗
nk+1

. The
conclusion now follows.

Theorem 3. Suppose E =
⋃∞
n=1 Fn ⊂ (0, 1) where for each n ∈ N, Fn

is compact and 1-symmetrically porous. Then there is a UPA function f :
[0, 1]→ [0, 1] for which E = NQ(f).

Proof. Apply Lemma 4 to write E = E∗1∪E∗2∪ . . . where each E∗n is perfect
and 1-symmetrically porous or a singleton, and for each n ∈ N, E∗n+1 lies in
a single component of [0, 1]\

⋃n
i=1E

∗
i . In the remainder of the proof, we use

the basic constructions of Lemma 2 and Theorem 2 in an inductive manner
to obtain sequences of polygonal functions, {hn,m}, satisfying the conditions
of Lemma 3. If A ⊂ [0, 1], we denote the closed convex hull of A by hull(A).

For each n ≥ 2, hull(E∗n) ⊂ [0, 1]\
⋃n−1
i=1 E

∗
i , and so there are an−1 < bn−1

such that E∗n ⊂ (an−1, bn−1) ⊂ [an−1, bn−1] ⊂ [0, 1]\
⋃n−1
i=1 E

∗
i and neither

an−1 nor bn−1 ∈ E. We proceed inductively.

Step 1. We use the basic constructions to define a sequence h1,m with
E = E∗1 and S = {an, bn : n = 1, 2, . . . }. Then, {h1,m} converges
pointwise on [0, 1] to a function f1 with f1(x) = 1/2 whenever x ∈
E∗1 and f1 is constant (either 0 or 1) on each interval contiguous
to E∗1 . Moreover, if i = 1, 2, . . . ,m, then h1,m|[ai,bi] is constant
(again, either 0 or 1) and that constant coincides with f1([ai, bi]).
This completes the construction of the sequence, {h1,m}, and its
pointwise limit, f1.

Step n. Suppose now that n ≥ 2. We use the basic constructions to define
a sequence hn,m with E = E∗n and S = {ak, bk : k = n, n+ 1, . . . },
in such a way that hn,m ≡ 0 outside of the containment interval,
[an−1, bn−1].
To this end, let ` : [an−1, bn−1] → [0, 1] be increasing and linear,
mapping [an−1, bn−1] onto [0, 1] and set Ẽn = `(E∗n) and S̃ = `(S).
Once more, we use the basic constructions to define a sequence,
{h̃n,m}, which converges pointwise on [0, 1] to a function, f̃n with
f̃n(x) = 1/2 for x ∈ Ẽn and f̃n is constant (either 0 or 1) on each
interval contiguous to Ẽn. Moreover, if i = n, n + 1, . . . ,m, then
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h̃n,m|[ai,bi] is constant and that constant coincides with f̃n([ai, bi]).
For m ≥ n, define

hn,m(x) =


1
2n
h̃n,m ◦ `(x) if an−1 ≤ x ≤ bn−1

0 otherwise

and let fn denote the pointwise limit of {hn,m}.
It is easy to see that {hn,m} and fn satisfy conditions 1, 2 and 4
of Lemma 3.
To see that they also satisfy 3, let x0 be a node of hn0,m0 where 1 ≤
n0 ≤ m0. We must verify that for 1 ≤ i ≤ m0, that hi,m0(x0) =
fi(x0).

Case 1. 1 ≤ i < n0
As x0 is a node of hn0,m0 , x0 ∈ [an0−1, bn0−1] and as i < n0,
either

[an0−1, bn0−1] ⊂ [ai−1, bi−1]
or

[ai−1, bi−1] ⊂ [0, 1]\[an0−1, bn0−1].

In either case, hi,m0 |[an0−1,bn0−1] ≡ 0 (or ≡ 1) ≡ fi|[an0−1,bn0−1]
since n0 − 1 < m0. Since x0 ∈ [an0−1, bn0−1] it follows from
the basic constructions that hi,m0(x0) = fi(x0).

Case 2. i = n0
In this case fn0(x0) = hn0,m0(x0) since every vertex of hn0,m0

lies on the graph of fn0 .
Case 3. n0 + 1 ≤ i ≤ m0

The nodes of hn0,m0 lie outside
⋃m0
j=n0

[aj , bj ], so in particular,
x0 6∈ [ai−1, bi−1]. This implies that hi,m0(x0) = 0 = fi(x0)
since x0 lies outside the support of hi,m0 .

This completes the proof of Theorem 3.

We conclude by restating the question we considered earlier in the Intro-
duction.

Question 1. Suppose that for every ε > 0, E =
⋃∞
n=1 Fn where each Fn is

compact and (1−ε)-symmetrically porous. Is E σ−1-symmetrically porous?

If the answer to Question 1 is positive, then Theorem 3 provides a com-
plete converse to Theorem A; if however, the answer is negative, more must
be done to characterize the set NQ(f).
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