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Abstract. A cardinal related to compositions of Sierpinski-Zygmund
functions will be considered. A combinatorial characterization of the
cardinal is given and is used to answer some questions of K. Ciesiel-
ski and T. Natkaniec. It is shown that the bounding number of the
continuum may be strictly smaller than continuum.

1. Introduction

Recall that f € R® is called a Sierpinski-Zygmund function provided that
the restriction f|x is not continuous for any set X C R of cardinality ¢. We
will denote the family of Sierpinski-Zygmund functions by SZ. We will be in-
terested in resolving some problems in [3] about a cardinal, Co,:(SZ), related
to compositions of Sierpinski-Zygmund functions. We give a combinatorial
characterization of Cyy¢(SZ) and show that it has a close relationship to the
higher cardinal generalization of the bounding number b of w. Of particular
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interest to us will be the value of the generalized bounding number when a
cardinal is singular.

2. Preliminaries

In what follows we will use the following terminology and notation. Any
notation not specifically defined can be found in [2]. Functions will be
identified with their graphs. The set of all functions from a set X into a set
Y will be denoted by Y. Given sets X,Y,W and f € WY and g € Y we
denote their composition by f o g.

The symbol | X| will denote the cardinality of the set X. The successor of
a cardinal x will be denoted by x*. We denote by [X]<*, [X]®, and [X]=F
the sets of all subsets of X of cardinality less than s, equal to k, and less
than or equal to k, respectively.

The cardinality of the real numbers R will be denoted by ¢. Given a
cardinal number k we let cf(k) denote the cofinality of k. We say a cardinal
Kk is regular provided that cf(k) = k, otherwise we say k is singular. For
functions f,g € YX let [f = g] denote the set {z € X: f(z) = g(z)}. We
define [f < g] and [f < ¢] in a similar way when < and < are defined for Y.

We also will consider the following cardinals related to a cardinal .

d = min{|F|: F C w% & (Vg € %)(3f € F)(|[f = )| = )}

b, = min{|F|: F C k" & (Vg € %)(3f € F)(|[f > ¢g]| = K}
Note that b, < d, [5, Proposition 1.3(2)]. When x = w the numbers b,, and
d,, are equal to the bounding and eventually different numbers, respectively,
both of which have been heavily studied, e.g. [1]. Notice that by is a regular
cardinal [5, Proposition 1.3(1)] and that k < b, when & is regular.

For a cardinal k we let S, = ([x]<*)". Let X and Y be sets and define
R(X,Y)={f e YX:|f 1(y)| < |X| for every y € Y}.

We will consider the following combinatorial cardinals which turn out to
all be equal although it is not obvious that they are:

(AL) AL is the smallest cardinality of an F' C S, such that for any g € k"
there is an f € F such that [[J{f(£): g(&) € f(&)}| = &,

(A2) A2 is the smallest cardinality of an F' C R(k, k), such that there is
a g € k" such that for any h € k" there is an f € F such that
lho f = gll =,

(A3) A3 is the smallest cardinality of an F' C R(k, k), such that there is a
G € [k"]" such that for any h € k" there isa g € G and an f € F' such
that we have |[ho f =g¢]| =&

(A1) A1 is the smallest cardinality of an F' C k" such that for every g € k"
there is an f € F such that f[[g < f]] is unbounded in k.
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3. Results

In [3, Theorem 4.9] it is shown that f € R(R,R) if and only if there is
an h € RE such that ho f € SZ.
The following cardinal is defined in [3]

Cout(SZ) = min{|F|: F C R(R,R) & (Vh € R®)(3f € F)(ho f ¢ SZ)}}.
The following two propositions are established in [3, Theorems 4.11 and
4.14]:

Proposition 1. If ¢ is a reqular cardinal, then ¢ < Cyu(SZ) < 2°. Gener-
ally, cf(¢) < Cout(SZ) < ¢°f0),

Proposition 2. If ¢ = kT for some k, then Cyut(SZ) = d,.

The two propositions above suggest the following two problems about the
cardinal C,,;(SZ) which are posed in [3].

Problem 1. Is the assumption that ¢ is reqular important in Proposition 17

Problem 2. Can Proposition 2 be proved for any value of ¢? What if ¢ is
reqular?

We first give a combinatorial characterization of C,,:(SZ) which is a corol-
lary of the two following general theorems.
Theorem 3. If Kk > w is a cardinal, then
cof(rk) S XL = AL = A2 = A0

Theorem 4. If  is singular, then cf(x) < A < cf (k)T for 1<i<4 Ifk
s reqular, then k < b, = Al, for 1 < i < 4. In either case \., is reqular for
1<i<4.

Recall the following result of W. Sierpiriski and A. Zygmund [6]:

Proposition 5. f € R is in SZ if and only if |[f = h]| < ¢ for every
continuous function h defined on a Gs set of cardinality c.

By Proposition 5, if we let J be the collection of functions f € R® such
that f|x is continuous for some Gg-set X C R of cardinality ¢ and zero
elsewhere, then |J| = ¢ and:

(¥) f € RR € SZ if and only if |f N j| < ¢ for every j € J.

We can prove the following corollary of Theorems 3 which gives a partial
answer to Problem 2.
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Corollary 6. Ai = Cout(SZ) for all 1 <i < 4.

Proof. Let FF C R(R,R) witness the definition of C,u(SZ), ie., |F| =
Cout(SZ) and

(Vh € R®)(3f € F)(ho f ¢ SZ).
By (%) we know that F has the following property,

(Vh e R®)(3f € F)(3j € J)(|[ho f = j]| = 0.

It follows that A3 < C,pyut(SZ). Letting k = ¢ = |R| Theorem 3 implies that
M < Cout(SZ) for all 1 <i < 4.

We will be done if we show that Cpu(SZ) < AL. Let N denote the
irrational numbers. Suppose F C ([R]<)® and suppose |F| < Coyu(SZ).
Let k: N'— R3 be a continuous bijection (see Exercise 7.15 of [4]).

For each f € F define the function f; on a subset of R? by letting

f1(<$,y, Z>) =Yy

for all (x,y,2) such that = € f(y) and z € f(y). Notice that |f;'(y)] < ¢
for every y € R. We may extend fi to a R(R3,R) type function f; defined
on R3. Let F* = {ff ok: f € F}. Clearly, |F*| < Cout(SZ).

Let m; be the projection of R? onto the first coordinate and 73 be the
projection of R? onto the third coordinate. Since 7 o k: NV — R is con-
tinuous and F* C R(N,R) has cardinality less than Co,,.(SZ), there is an
h: R — R such that |[ho (ff o k) = m 0 k]| < ¢ for every f € F. Since k is
a bijection, we have |[ho fi = m]| < c.

Fix an f € F. We will be done if we show that | | J{f(z): h(z) € f(z)}| <
c. Let y € J{f(x): h(z) € f(x)}. There is a x € R such that y € f(z) and
h(z) € f(z). Now,

(ho f1)((h(x),x,y)) = h(z) = m((h(z), 2,9)).

So, y € ms[[(h o ff) = m]]. Since |[(ho ff) = m]| < ¢, we have that
|U{f(z): h(z) € f(x)}| < ¢c. Thus, Cout(SZ) < AL O

Corollary 6 tells us that the continuous functions are as hard to avoid
as any collection of ¢-many functions from R into R, and that there is a
single function that is as hard to avoid as the continuous functions. From
Corollary 6 and Theorem 4 we get:

Corollary 7. If ¢ is reqular, then Cou(SZ) = be > ¢. If ¢ is singular, then
cf(¢) < Cout(SZ) < cf(c)T. In particular, Cout(SZ) is a reqular cardinal.

Corollary 7 gives an affirmative answer to Problem 1. Since d. > ¢ [3],
Corollary 7, gives a negative answer to Problem 2 in the singular case.
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Question 1. Is it consistent that ¢ is regular and b, < d. (see the second
part Problem 2)?

Theorem 8. It is consistent that cf(c) = Cpu(SZ) < c¢.

Question 2. Is it consistent that ¢ is singular and Coyut(SZ) = cf(c)™ ?
To prove Theorem 8 we will use the following theorem.

Theorem 9. b () < k if and only if M = cf (k).

Theorem 10. b, < b, for any cardinal k > w. In particular, if k is a
singular strong limit cardinal, then b, < k.

An immediate corollary of Theorems 8, 9 and 10 is:
Corollary 11. It is consistent that be < c.

In light of Theorem 9 we could rephrase Question 2 to be: Is it consistent
that ¢ is singular and ¢ < beg()?

4. Proofs of Theorems 3 and 4
We first begin with some lemmas.

Lemma 12. \! < )2,

Proof. Let F C " and suppose |F| < AL. We will find an h € x" such
that f[{¢: h(€) < f(€)}] is bounded in « for every f € F'.

For each f € F define f; € S so that fi1(§) = {B8: B < f(&) + 1}. Let
Fy = {f1: f € F}. Since |Fy| < |F| < AL there is an h € k" such that

UtA©: ne) € 1@} < s (1)

for every f1 € Fy. Since fi(£) is an initial segment of x for every £ € &, (1)
implies that (J{f1(£): h(§) € fi1(§)} is bounded in s by some ay, € & for
every f1 € F].

Fix f € F. We claim that f[{¢: k() < f(£)}] is bounded above by ay, €
k. Let B € f[{¢: h(€) < f(§)}]. Then, there is a 7 such that h(vy) < f(v)
and f(7) = 5. So, 6 = £(1) € f1(1) CULA(): h(€) € Hi(€)} C ap,. Thus,
fI{€: h(€) < £(£)}] is bounded above by ay, € k. Thus, AL < AL O

Lemma 13. A3 < )2 <)L



248 F. JORDAN

Proof. It is obvious that A3 < A2,

It should be noted that the proof of the inequality A2 < Al is very similar
to the proof that Cuy(SZ) < Al in Corollary 6. The differences between
the two proofs stem from the fact that there is no topological structure to
worry about in the proof that A2 < AL

Let F € [S,]<*. We will find an h € x* such that

Utr©: me e 1} < s

for every f € F. Let k: k — &3 be a bijection.
For each f € F define the function fi on a subset of x3 by letting

f1(<x,y, Z>) =Yy

for all (x,y,z) such that € f(y) and z € f(y). Notice that |f; ' (y)| < &
for every y € k. We may extend f; to a R(k3, k) type function f; defined
on k3.

Let m; be the projection of k2 onto the first coordinate and 73 be the
projection of k3 onto the third coordinate. Since {ff ok: f € F} C R(k, k)
has cardinality less than A2, there is an h: k — & such that |[ho (ff o k) =
mok]| < k for every f € F. Since k is a bijection, we have |[ho f{ = m]| < k.

Fix an f € F. We will be done if we show that || J{f(£): h(§) € f(§)}] <
k. Let v € U{f(&): h(§) € f(&)}. There is a & € k such that v € f(£) and

h(§) € f(§). Now,
(ho fD(R(E), 7)) = h(&) = m((h(£),&,7))-
So, v € m3[[h o fi = m]]. Now [U{f(£): h(£) € F(§)}] < r since [[ho ff =

m)| < k.
Thus, A2 < AL O

Lemma 14. A\l < b,.

Proof. Take an F C x* with |F| < Ai. For each f € F pick f* € k" so
that

fH(€) = max{f(¢), &} (2)

There is a g € k" such that for every f € F we have f*[g < f*] is bounded
in k. Since, by (2), f* maps unbounded sets to unbounded sets, we must
have that [g < f*] is bounded in k. Clearly, [g < f] C [¢g < f*]. Thus,
llg < f]| < k. Therefore, A2 < b,.. O

Lemma 15. If x is regular, then k < b, = A& fori € {1,2,3,4}.
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Proof. Lemmas 12, 13 and 14 yield that:
AL <A <AL <AL < by (3)

It remains to show that b, < \}. Let F € [R(x,k)]<%. Fix G € [r"]".
We will construct an h € k" such that |[ho f = g]| < k for every g € G and
f € F. Let {go: a € K} be an enumeration of G.

For each f € F'let f*(a) € k be such that J,, f7H&) C f*(a) for each
« € k. Since |F| < by, there is an m € k" such that for every f € F we have
m < £ < %

Define h € k" inductively so that for every a € k we select h(«) from the
set

p\Qgp(@):z e JI U FH©: FeF & (@) <m(a)p &f<a

E<a

Note that such choices can be made since, for every f such that f*(a) <
m(a) we have

U 7' < r(a) < m(a).

é{<a
80, U{Ugca F7HO): F € F & [7(0) < m(a) } S mla) < &

We show that h is as desired. Fix f € F' and g3 € G. For £ € [ho f = gg]
we have
BF(E)) = g5(6) € galf ().

By definition of h we must have either f(£) < 8 or f*(f(€)) > m(f(£)). It
follows that | f[[hof = gs]]| < k. By regularity and the fact that f € R(, ),
we have |[h o f = gg]| < k. Thus, b, < A2. O

Lemma 16. Let F € [R(k,k)|<*. There is a bijection k € k" such that
for every f € F and o € K

U /1 k(€)] < &

E<a

Proof. For every f € F define f* € x* by f*(a) = |f~!(a)|. Let F* =
{f*: f € F}. Since |F*| < |F| < A%, there is a g € k" such that

fllg = 7l (4)
is bounded above by some p; € k for every f € F. Notice that we may
assume ¢ has unbounded range, since if we define m € k" by m(§) =
max{g(§), &}, then we will have f*[[m < f*]] C f*[lg < f*]] for every
fekr.
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Define an injection k* € k" so that max{a, g(a))} < k*(«) for every a € k.
Since |k*[k]| = k, there is an increasing onto function h: k*[k] — k. Let
k= (k*)"toh !

We claim k is as desired. Fix an f € F. Let v € k. Consider o < #.
Since h is increasing and g has unbounded range, there is a 3, € x such
that h=!(a) < h=1(y) < g(3,). By definition of k*, we have

9(By) = h™' () = K" (k") "' (h™1(a))) = k*(k(a)) > max{k(a), g(k(a))}.

So, for all o <y we have g(k(«)) < g(85).

Let T be the set of all & < 7 such that f*(k(a)) < g(k(a)) and S
(y+\T. If a € S, then, by (4), f*(k(a)) < ps. So, we have |f~(k(a))|
pyforae S. If a €T, then

[f7 k()] = [ (k(a)) < g(k(a)) < g(B,).
Thus, [Ua< f71(k(«))| is bounded above in k by max{py, g(3y),7}. O

VANl

Lemma 17. If cf(k) < &, then AL < cf(k)T.

Proof. Let {I'y: o € cf(k)} be a sequence of cardinals cofinal in x. For
every p € cf(k)™\ cf(k) let k,: p — cf(k) be a bijection. For each a € cf(k)
and p € cf(k)T \ cf(k) let fo, € K" be defined by

Ly if B¢ p;

Jaup(B) = {max{ra,rkp(ﬁ)} if B € p.

Let F = {fa,: a €cf(r) & p € cf(k)T\ cf(x)}. Clearly, |F| = cf(x)".
Let h € k" be arbitrary. We will find a f, , € F such that f, ,[[h < fa,p]]
is unbounded in x. First notice that

cf(r)t = | {Becf(r)": h(B) <Ta}.

accf(k)

Thus, there is an « € cf(k) such that |[{3 € cf(rk)": h(8) < Ta}| = cf(k)™.
Pick W C {8 € cf(k)": h(8) < Tn} such that |W| = cf(k). There is
a p € cf(k)t such that W C p. Now for each w € W we have h(w) <
Lo < fap(w) = max{lq, [y ()} Since [W| = cf(k), {Tx,w): w € W} is
unbounded in k. Thus, fu [k < fa,p]] is unbounded in &. O

Lemma 18. \i < )3,
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Proof. Notice the inequality follows from Lemma 15 in the case when « is
regular. So, for the remainder of the proof we will assume that « is singular.
Let F € [R(k,)]<*. By Lemma 17 we have |F| < cf(k)T < k. Fix
G € [k"]". We construct an h € k" such that |[ho f = g]| < k for every
g€ Gand f € F. Let {go: @ € Kk} be an enumeration of G.
By Lemma 16 there is a bijection k € k" such that for each f € F and
for every o € k we have

U r k)| < . (5)
§<a
For each f € F'let f*(a) = |Ue<, F7H(k(€))] for each a € k. Since |F| < A4
there is an m € " such that for every f € F the set f*[{&: f*(€) > m(£)}]
is bounded in k.

Define h € k" inductively so that for every o € k we select h(k(a)) from
the set

s\ gz el JqU ke FEF & f(a) <m(a)y &B<a

£<a

Note that such choices can be made since,

U £ k()] = £(a) < m(a)

E<a

for every f € F such that f*(a) < m(a). So,

US U FH#&(©): feF & f*(e) <mla) 3| <max{|F|,m(a)} < x.

¢<a

We show that h is as desired. Fix f € F'and gg € G. For § € [ho f = gﬁ]
pick a¢ so that k(ag) = f(£§). We now have

hk(ag)) = h(f(€)) = g5(€) € glf " (k(ag))].

By definition of h we must have ag < B or f*(ag) > m(ag). Let T =
{ag: [*(ag) = m(ag)}.

By our choice of m, the set f*[T] is bounded in k by some cardinal 6.
Since £ = Uyern Ue<a f7H(k(€)) and & is singular, there is a 7 € & such that
Q) = Ue<c f7Y(k(€))| > 0 for all ¢ > m. Thus, T is bounded by 7.

We now have that M = {a¢: § € [ho f = gg]} is bounded in & by
max{3,sup(T)}. Since M is bounded, we have, by (5), |f~*(k[M])| < .
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Let £ € [ho f = gg]. Then there is an ag € M such that f(§) = k(o).

So,

£€ fTHfE) = F (klag)) C 1 (K[M]).
Thus, [ho f = gg] € f~1(k[M]). Since |f~1(k[M])]| < K, we must have
[[ho f=gg]| < k. Thus, AL < A3. O

Proof of Theorem 3. It is obvious that cf(x) < M
Lemmas 12, 18, and 13 yield that \i = AL for all 1 <i < 4. O

Proof of Theorem 4. When « is singular Lemma 17 and Theorem 3 yield
that cf(k) < M. < cf(k)t for 1 <i < 4.

Suppose now that s is regular. By Lemma 15, x < b, = M. for all
1< <4 O

5. Proofs of Theorems 10 and 9

It will be useful to define some other cardinal numbers which will be
shown to be equal to the bounding number. Put

b(k,cf(k)) = min{|F|: F C cf(x)"
& (Vg € cf(r)")(3f € F)(Ilg < fll = K)},
6% (k, cf(k)) = min{|F|: F C cf(k)"
& (Vg € cf(k)®)(3f € F)([g < f] is unbounded in k)}.

Lemma 19. b, = b(k, cf(r)) = b%(k, cf(k)).

Proof. The lemma is obvious if k is regular so we assume that x is singu-
lar. Let P = {)\y: a € cf(k)} be an increasing cofinal sequence of regular
cardinals in x such that \g > cf(k).

We first claim that b, < b(k,cf(k)). Let F' C cf (k)" witness the definition
of b(k,cf(k)). For each f € F define f* € s" by f*(8) = Ayp). Let
F*={f*: f € F} and note that |F*| < b(k,cf(k)). Pick g € k" and define
gt € cf (k)" by ¢1(8) = min{a € cf(k): g(B8) < Aa}. There is, by definition
of b(k,cf(k)), an f € F such that |[¢} < f]| = k. If B € [¢g" < f], then
9(B) < Agrip) < Apgy = f7(B)- So, [[g < f*]| = k. Thus, b, < b(k, cf(k)).

We now claim that b(k, cf(x)) < 6% (k,cf(x)). Let H: k — P be defined
by, H(3) = min{\y: 8 < Ao}. Let S = {(8,() € K x k: ( < H(B)},
note that |S| = k. For each 3 € k let Sz = {({,{) € S: & = B}. Let
F C cf(r)"® witness the definition of 6%(k,cf(x)). For each f € F let
[*: S — cf(k) be defined so that f*[Sg] = {f(B)} for every 5 € k. Let
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F* = {f*: f € F}, note |F*| < |F|. Pick g € cf(x)°. For every 3 € &
we have that |Sg| is regular and strictly larger than cf(k), so there is an
(s € cf(k) such that |Ss N g71(¢s)| = |Sg|. Define g' € cf(k)" so that
g (B) = (g for every B € k. There is, by definition of 6% (k, cf(k)), an
f € F such that [¢g' < f] is unbounded in x. We will be done if we show
that |[g < f*]] = k. Let B € [¢* < f]. For z € SN g 1(¢s) we have
g(x) = (g = ¢"(B) < f(B) = f*(x). So, SsNg~(¢s) C [g < f7] for
B € [g* < f]. Since [¢* < f] is unbounded and |Sz N g~ ((g)| = |Sg| > B we
have |[g < f*]| = k. Thus, b(x, cf(r)) < 6%4(k, cf(k)).

We show that 6°¥(, cf(x)) < b,. Let F' C x* witness the definition of b.
For each f € F let f* € P" be defined by f*(¢§) = min{a € cf(k): f(§) <
Ao} Let F* = {f*: f € F}. Clearly, |F*| < |F|. It is easy to check
that |F*| satisfies the condition in the definition of 6%(k,cf(x)). Thus,
6% (K, cf(k)) < by O

Proof of Theorem 10. Let P be as in the proof of Lemma 19. By
Lemma 19, it is enough to show that b*(k, cf(k)) < bet()- Let F C cf(k)”
witness the definition of beg(,). For each f € F define f* € cf(k)" so that
f*lp = f|p and arbitrarily elsewhere. Let F* = {f*: f € F'}, note |F*| <
|F'|. Let g € cf(k)®. We may find an f € F such that |[g|p < f|p]| = cf(k).
It follows that [g < f*] is unbounded in s. Thus, b"(k,cf(k)) < beg()
Therefore, by < beg(x)-

If k is a strong singular limit cardinal, then b, < beg(,) < 2f(F) < . O

Proof of Theorem 9. By Theorem 4, both conditions in the equivalence
we are trying to prove are false when x is regular. So, we may assume that
k is singular. We also may assume that x # b (,) since by is regular for
any infinite cardinal A.

Let {\o: a € cf(k)} be an increasing cofinal sequence of regular cardinals
in K.

Suppose k& < begr). Let F' C x% and |F| = cf(x). Let {fe: & € cf(k)}
be an enumeration of F. We will find a h € " such that f[[h < f]] is
bounded in & for every f € F. For each a € & let go € cf(r)(%) be defined
so that Ay () > fe(a). Since r < beg(y), there is a j € cf(k)°f(%) such that

Il < ga]| < cf(k) for every a € k. For each a € k let 3, € cf(k) be such
that

Ba > sup{ga(§): ga(&) > j(€)} (6)

Define h € k" so that h(a) = Ag, .
We show that f[[h < f]] is bounded in « for every f € F. Fix £ € cf(k).
Suppose h(a) < fe(a). We now have \g, < fe(a) < Ag ¢ It follows
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that o < ga(£). Thus, by (6), ga(§) < j(§)- So, fela) < Ag.e) < Aje)-
Thus, fe[[h < fe]] is bounded in & by X;(¢). Therefore, A} > cf(x) and by
Theorem 4 we get A\t = cf(k)™.

Now suppose beg(,) < k. Let I'" C cf (k)F(%) be such that |T*| = Bt (r)
and for every f € cf(k)*(®) there is a 4* € T* such that |[f < +*]| = cf(s).
Let {7{: £ € be(i)} be a well ordering of I'*. Inductively, define I' = {7, €
cf (k) : ¢ € bef() } S0 that for every € € beg(,y we have [[ve < ;]| < cf(k)
and |[7e < 7al| < cf(k) for every o < £. Notice that I" has the property that

(VM e [T "cfw) (v fe cf(/i)Cf(”)) (Im € M)

(Ilf < m]| = cf(x)).

For each o € cf(k) let fo: ' — K be defined by fo(v) = A
F={fa:aecf(r)}

Since |I'| = beg(x) < &, we may identify I" with a subset of k. We claim
that for every A € [[']%f() there is an f € F such that f[A] is unbounded
in k. By way of contradiction assume that there is an A € [[]%f() such
that fu[A] is bounded in x for every o € cf(k). Then for every a € cf(k)
there exists a 3, € cf(k) such that A\, = fa(7) < Ag, for every v € A.
In particular, we have that v(a) < (4 for every v € A and every a € cf(k),
contradicting (7). So, the claim is proved.

For every f € F define f* € k" so that f*(8) = f(8) if p € T and
¥(B) =0if g ¢ I'. Let F* = {f*: f € F}. Since |F*| = cf(k), we will
be done if we show that for every g € k" there is an f* € F* such that
f*lg < f*] is unbounded in k. Let g € k. Since |I'| = bgg(,) is regular
and cf(k) < |T'| there is an A € [T]%( such that g[A] is bounded in k. By
the claim from the previous paragraph, there is an f € F such that f[A]
is unbounded in k. It follows that f[[g|r < f]] is unbounded in k. Thus,
f*[g < f*] is unbounded in . Therefore, \* < cf(k).

The inequality cf (k) < A% follows from Theorem 3. Thus, cf(k) = L.

K

(7)

7(04)' Let

O]

6. Proof of Theorem 8

By Theorem 9 and Corollary 6, it is enough to find a model of ZFC such
that beg) < c.

The argument we present is very standard, but we include it for those
who are not very familiar with forcing.

A summary of the argument is that we add w,, Cohen reals to a model
of ZFC+GCH. In the resulting universe ¢ = w,,, and the functions of the
ground model witness that b, = ws (this works because the forcing is ccc).
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We now give the detail version of the argument. Let M be a countable
transitive model of ZFC+GCH. Let P € M be the poset of partial functions
with finite domains from w% into 2 ordered by reverse inclusion. Let G

be an M generic filter in P. We claim that (bep) < o)MIGl Since P
satisfies the countable chain condition, by [2, Theorem 9.2.11], we have
wi = w{M[G]. Since we have GCH in M, we have (|w}"| = ws)M. So there
is a bijection h: w}' — wg in M. Since being a bijection is an absolute
property we have that h: M N (w}') — wy is a bijection in M[G]. Thus,
(IM 0wyt = wo)MICl We claim that M Nt witnesses the definition
of b, in M[G]. Let g € (w¥)MIC. Since wi\/l[G} = wM € M, by [2,
Corollary 9.2.9], there is a function h in M such that h: w; — [w1]=% and
g(x) € h(z) for every x € wy. Define in M the function h*: w; — w; by
h*(x) = sup(h(z)) + 1. Now h* € M Nwi* and g < h*. So the claim is
established. Thus, (b, = wy)MIC] . Since GCH holds in M, it can be shown
that |(we,)¥| = ww, in M. So by [2, Corollary 9.4.9] we have (¢ = w,, )MC].
Thus, (cf(c) = wy)MIC]. So, (ber(e) < c)MIG1, O
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