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Abstract. Using arguments which apply equally well to the study of
Brownian motion and Feynman path integrals, the relationship between
two expressions which arise in derivative asset pricing theory is exam-
ined. Detailed explanations are given for some of the key points in the
theory of Henstock integrals in function spaces.

1. Introduction

Suppose the price or value of a financial security is given by x(t) at times t
between t0 and T . It is assumed in the Black-Scholes theory of option pricing
that the random variable x(t) has a lognormal distribution; see [1, 6, 11].
This means that the joint probability, that the price x(tj) = xj will lie in
Ij = [uj , vj [ for times t1, . . . , tn, is related to

v1∫
u1

· · ·
vn∫
un

n∏
j=1


exp

[
−(ln yj − ln yj−1)2

2(tj − tj−1)

]
yj (2π(tj − tj−1))1/2 dyj

 .
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Analogous expressions arise in the study of Brownian motion [9], and in
Feynman path integrals in quantum mechanics [10], and they can be handled
by the methods of this article. We examine the connection between this
expression and the related expression

n∏
j=1


exp

[
−(lnxj − lnxj−1)2

2(tj − tj−1)

]
xj (2π(tj − tj−1))1/2 |Ij |

 ,

where |Ij | := vj − uj , j = 1, . . . , n. Either of these expressions can be
regarded as some function p of sets I where

I = {x : x(tj) ∈ Ij , 1 ≤ j ≤ n}.
In finance, and in the other subjects mentioned above, we are often con-
cerned with determining the expectation Ep(f), relative to probabilities p,
of certain functions f of the random variables {x(t) : t0 < t ≤ T}.

This in effect requires us to be able to integrate f with respect to p in the
sample space for the random process x, namely the space of functions x(t),
t0 ≤ t ≤ T . (The parameter x(t0) may be considered to be variable in the
Black-Scholes theory, but is not considered to be random.) This sets the
scene for the Henstock integral in this infinite-dimensional function space.

2. Generalised Riemann integration

We start by reviewing the Henstock integral in one dimension and in n
dimensions. Let I be a real interval of the form

]−∞, v], [u, v[, or [u,∞[,

and let |I| denote 0, v−u, or 0 respectively. Let δ(x) be a positive function
defined for x ∈ R = R ∪ {−∞,∞}. The function δ is called a gauge. We
say that I is attached to x (or associated with x) if

x = −∞, x = u or v, x =∞
respectively. If I is attached to x we say that (x, I) is δ-fine if

v < − 1
δ(x)

, v − u < δ(x), u >
1

δ(x)
respectively. An elementary set E is an interval or a finite union of intervals.
R is an elementary set. A finite collection of attached point interval pairs

E = {(x, I)} = {(x(1), I(1)), . . . , (x(m), I(m))}
is a division of E if the I(j) are disjoint and have union E. The division E is
δ-fine, or is a δ-division, if each (x, I) of the division is δ-fine. In that case
we write the division as Eδ.
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Suppose h is a real- or complex-valued function of attached point-interval
pairs (x, I), with h(x, I) := 0 at points x for which h may be undefined such
as x = ±∞. For example, h(x, I) could be a point function f(x) multiplied
by the interval length |I| = v − u, or by some other function of I. We say
that h is (generalised Riemann) integrable in E, with integral α, if for every
ε > 0 there exists a gauge δ such that∣∣∣(Eδ)∑h(x, I)− α

∣∣∣ < ε

for every δ-division Eδ of E. Write α =
∫
E h(x, I).

Financial asset prices take only positive values, so we address the question
of integration in such spaces. If R+ denotes the subset of positive numbers in
R, to perform integration in R+ we only have to amend the above definitions
as follows. Intervals I =]0, v[ have |I| := 0; such an I can only be attached
to x = 0; and then (0, I) is δ-fine if v < δ(0). Also integrand values at x = 0
(as well as at x =∞) are always taken to be zero in the space R+.

For integration in Rn (or Rn+), intervals I are

I = I1 × · · · × In
where each Ij is a one-dimensional interval. I is attached to x = (x1, . . . , xn)
in Rn (or Rn+) if each Ij is attached to xj in R (or R+). If a gauge δ is defined
in the n-dimensional space, δ : Rn 7→ R+ (or Rn+ 7→ R+), an associated pair
(x, I) is δ-fine provided each (xj , Ij) is δ-fine in one-dimensional space. For
bounded intervals I with Ij = [uj , vj [, j = 1, . . . , n, this means that each
vj − uj < δ(x). Provided we give the appropriate n-dimensional meaning
to each of the parameters, the above definition of the integral serves also
to define the integral in n-dimensional space of a function h of attached
interval-point pairs.

3. The Henstock integral in function space

If x is a member of a family C of functions defined on a space B and
taking values in a space Y , then

C ⊆ Y B.

For instance, B could be ]t0, T ], Y could be R+, and C could be the family
of positive-valued continuous functions on ]t0, T ]. If f is a functional of
x ∈ C, we may, as discussed in the Introduction above, be interested in the
expectation

Ep(f) =
∫
C

f(x)dp

where the latter integration has been given some meaning and definition.
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In Henstock integration we tackle this problem by defining the integral in
the Cartesian product space

RB+ =
∏
t∈B

R+ = {x : x(t) ∈ R+ for t ∈ B = [t0, T ]},

so
Ep(f) =

∫
RB+

1C(x)f(x)dp

whenever the latter integral exists. (1C is the characteristic function or
indicator function for C.) If x is not restricted to positive values but can
take any real (or complex) values, replace R+ by R (or by the space C of
complex numbers) above.

We will define gauge and integral in RB. (As in the finite-dimensional
cases, it is easy to adapt the definitions to RB+. In the Black-Scholes appli-
cation we take B to be ]t0, T ]. But in the definitions which follow, B can be
taken to be any labelling set. B may have an infinite number of elements,
but if it happens to be finite, the definitions reduce naturally to the those
relevant to the Henstock integral in finite-dimensional spaces.)

The integral will be defined by Riemann sums
∑
f(x)p(I) where the

sets I are intervals or cylindrical intervals in RB. If N is a finite subset
{t1, . . . , tn} of B, a cylindrical interval I or I[N ] is

n∏
j=1

Ij × RB\N

where each Ij is a one-dimensional interval. We write
∏n
j=1 Ij as I(N) and

(x1, . . . , xn) as x(N). So

I = I[N ] = {x : x(N) ∈ I(N)}.
We say that x, N and I[N ] are attached (or associated) if Ij is attached to
xj for 1 ≤ j ≤ n. The Riemann sums for the function space integrals will
be
∑
f(x)p(I), or more generally,∑

h(x,N, I)

where the x, N , I are attached. h may depend explicitly on the dimension
labels tj in N . Also, h(x,N, I) will be zero by definition if xj is ±∞ for
any tj ∈ N (or, in the case of the integral in RB+, if xj is 0 or ∞). The
integral will exist if the Riemann sums converge, in some sense, to a single
value. So we need some “shrinking rule” or gauge for the associated I, N ,
x, which appear in the terms of the Riemann sums. The ideas involved can
be illustrated by means of diagrams.

Examples of cylindrical intervals, and the points with which they may
be associated in Riemann sums, are shown in Figure 1. For instance, I is
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shown to be restricted in two dimensions (t1 and t2), so the finite set N of
I = I[N ] may be {t1, t2}, and the diagram shows I to be unrestricted in
another dimension. Figure 1 tells us nothing about the character of I in the
uncountably infinitely many dimensions which are not portrayed.

t1

t2

���������

��

J

����������

��
��
�

����������

��
��
�

����������

��
��
�

����������

��
��
�

x
I ��

�

Figure 1.

The cylindrical set I may be taken to be attached to, or associated with,
the illustrated point x; with x lying somewhere in an edge of I in the
Cartesian representation; so (x1, x2) = (x(t1), x(t2)) is a vertex of the two-
dimensional cell, illustrated in Figure 1, into which I projects in dimensions
t1 and t2.

The cylindrical interval J of Figure 1 is restricted but unbounded in
dimension t2. In a Riemann sum, such a set can only be attached to a point
y which has y(t2) =∞, and the function value of such a term in a Riemann
sum is zero by definition. To form a Riemann sum, we must be able to
cover exhaustively the domain of integration with cylindrical intervals such
as those appearing in Figure 1. Much of this paper is concerned with proving
that such covers can be constructed in certain ways.
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If a function is integrable we expect the Riemann sums to converge, in
some sense, to some unique value. We expect the convergence to involve
successive (in some sense) Riemann sums whose terms have successively
smaller (in some sense) cylindrical sets I.

t1

t2
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��
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x
I

��
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��
I ′

x

Figure 2.

Figure 2 shows how this may be achieved. The set I in Figure 2 is
intended to be the same set I of Figure 1, and contains the proper subset I ′

marked with thick lines in Figure 2. The set I ′ includes, among its restricted
dimensions, t1 and t2 which were already restricted in I. The edges of I ′

in each of these dimensions are shorter than the corresponding edges of I.
Furthermore, I ′ is also restricted in a dimension in which I is unrestricted.
So a proper subset of a cylindrical set can be obtained by:

• reducing the lengths of the restricted edges (just as we do in finite-
dimensional integration, using a gauge function δ(·)), and
• increasing the set of restricted dimensions.

We utilise both of these kinds of “shrinkage” in order to define an integration
process in infinite-dimensional spaces.
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Firstly, at any point x to which a cylindrical interval is to be attached
in a Riemann sum, we specify maximal positive numbers δ(x) such that
the restricted edges of any attached cylindrical set must be shorter than
δ(x). (In fact, as we see below, we need to go a little bit further, and
specify maximal lengths in different dimensions t, so that this element of
the gauge may be different, not only for different points x, but also for all
of the different restricted dimension sets N into which any such x may be
projected.)

Secondly, at each point x, we choose a finite, minimal set L(x) of dimen-
sions t, so that any cylindrical interval I = I[N ], which is attached to x in
a Riemann sum, must be such that its finite set N of restricted dimensions
contains the minimal set L(x). Just as the lengths of the restricted edges of
a cylindrical interval may be arbitrarily small, with upper bound δ(x(N)),
the set of restricted dimensions N may be arbitrarily large, “bounded be-
low” by the minimal subset L(x).

The next step is to make these ideas more precise.

4. Definition of gauges

There are several ways in which we can have some rule (or gauge) for
determining whether or not we have convergence of the Riemann sum ap-
proximations to the integral in RB, and we now examine some of these
different types of gauges.

Let A be a countable subset of B. Let LA denote the family of all finite
subsets of A, and let N denote the family of all finite subsets of B. Let LA
be a mapping from RB to LA, and let L be a mapping from RB to N,

LA : RB 7→ LA, L : RB 7→ N,

so that each LA(x) is a finite subset of A, and each L(x) is a finite subset of
B. Thus LA(x) and L(x) denote two different ways in which each x ∈ RB is
allocated its own finite set of dimensions determining the minimal dimension
sets of intervals I which may be attached to x in Riemann sums. Consider
the following positive-valued functions, each defined on a different kind of
domain:

δ : RB 7→ R+, δt : R{t} 7→ R+, δN : RN 7→ R+,

so δ(x) > 0 for x ∈ RB, δt(x(t)) > 0 for x(t) ∈ R{t} and t ∈ B, δN (x(N)) > 0
for x(N) ∈ RN and N ∈ N.

Let γ1, . . . , γ5, respectively, denote the following:

(A,LA, δ), (A,LA, {δt}t∈B), (A,LA, {δN}N∈N), (L, {δt}t∈B), (L, {δN}N∈N).
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For i = 1, . . . , 5, we say that the attached point-interval pair (x, I[N ]) is
γi-fine if:

i = 1: N ⊇ LA(x) and (x(t), I(t)) is δ-fine in R{t} for t ∈ N,

i = 2: N ⊇ LA(x) and (x(t), I(t)) is δt-fine in R{t} for t ∈ N,

i = 3: N ⊇ LA(x) and (x(N), I(N)) is δN -fine in RN ,
i = 4: N ⊇ L(x) and (x(t), I(t)) is δt-fine in R{t} for t ∈ N,

i = 5: N ⊇ L(x) and (x(N), I(N)) is δN -fine in RN .
Any finite collection of attached point-interval pairs is γi-fine if each member
is γi-fine.

In the case of gauges of the type γ1, we can vary each of the parameters
A, LA and δ as follows. The set A will be taken successively “larger”; for
each x, LA(x) will be successively “larger”; for each x, δ(x) will be succes-
sively smaller. By this means we will determine whether or not Riemann
sum approximations converge to an integral. Likewise for the approaches
indicated in i = 2 to 5.

A division of RB is a finite collection E = {(x, I[N ])} of attached point-
interval pairs such that the I[N ] are disjoint and have union RB. If E is
γi-fine (so each (x, I[N ]) is γi-fine) we write it as Eγi .

We shall see below (Proposition 1 and Proposition 2) that gauges of the
type γ1 and γ2 each enables us to define an integration method in RB,
because γi-fine divisions of RB exist for i = 1, 2. Gauges γ2 are “better”
than γ1, in the sense that functions that are integrable in the sense of γ2-
gauges are also integrable in the sense of γ1-gauges. It is not known whether
gauges of type γ3, γ4 or γ5 enable us to define an integration in RB. If δt
is given for t ∈ B, we can define δN so that δN (x(N)) < δt(x(t)) for t ∈ N ;
and this would enable us to compare any integration based on γ3 or γ5 with
γ2 or γ4, respectively.

The key point in showing that γi determines an integration is to prove
that a γi-fine division of RB exists. Gauges of type γ2 are described in
[2, 3, 4] and γ4 in [5]. Gauges γ1 are described, with proof, in [8]; the
proof is repeated below (Proposition 1). A proof for γ2 is also given below
(Proposition 2). No correct proofs for gauges of the types γ3, γ4 or γ5 have
yet been given.

5. Aspects of gauge

To illustrate the issues involved in gauges for Riemann-type integration
in RB, we now examine various features of gauges of type γ3.
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The sets LA(x) are finite, but as we look at successive choices of gauge
γ3 we can make these sets successively larger. This ensures an increasing
number of dimensions t in the sets N of restricted dimensions of the γ3-fine
cylinder sets I[N ]. In other words, these cylinder sets have an increasing
number of bounded or finite edges, corresponding to the successive choices
of gauge γ3. Notice also that while the N of any I[N ] attached to x must
contain the subset LA(x) of A, the set N itself need not be a subset of A.

The other factor in γ3 is the finite-dimensional gauges δN . As we consider
successive gauges γ3, we can choose the δN so that the restricted edges of
γ3-fine I[N ] are successively shorter, corresponding to the successive gauges.

Thus we can choose successive gauges γ3 so that γ3-fine cylinder sets I[N ]
have, successively a greater number of restricted edges, and/or, successively
shorter restricted edges. In other words, the cylinder sets I are forced to be
successively smaller in some sense. But this is exactly the role and purpose
of the more familiar Henstock gauges in one dimension.

So where does the countable dimension set A come into all this? One of
the reasons for having A in the definition will emerge whenever we go on to
prove that γ1-fine and γ2-fine divisions exist. We do not know how to prove
this without including A in the definition.

To recap, a particular gauge γ3 is determined by a particular countable
set A, a particular mapping LA, and a family {δN}N∈N of particular gauges
δN in RN .

The gauges γ3 give a “shrinking rule” for the cylinder sets I[N ] which are
attached to points x, at which an integrand f(x) is evaluated, in Riemann
sums

∑
f(x)p(I[N ]), p being some integrator function, or volume, defined

on the cylinder sets.
The reader is invited to speculate on the kinds of integration that may

emerge from alternative definitions of gauge. One basic test is whether the
kind of gauge used enables reasonably well-behaved cylinder functions to
be integrated. (A cylinder function is a functional defined for x in RB, but
whose values depend only on the values assumed by x at a fixed finite subset
of dimensions in B. See [7], Proposition 38, page 56.)

6. Existence of γ-divisions

We prove first that γ1-fine divisions exist. This proof was given in [8]. Let
E be any elementary set (an interval or a finite union of intervals). Let a
gauge γ1 be given by (A,LA, δ). The following result is proved in the space
RB, but is easily adapted for RB+.

Proposition 1. There exists a γ1-division of E.
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Proof. We show that there exists a γ1-fine division of RB. The proof can
easily be amended with E in place of RB. Suppose such a division does not
exist. We will deduce a contradiction from this assumption. Let {rj}∞j=1
be an enumeration of A. Let q be a positive integer. For any t, let I(t)
denote any of the real intervals ]−∞,−q[, [s2−q, (s+1)2−q[, [q,∞[, where
s is any integer satisfying −q2q ≤ s ≤ q2q − 1. As s takes all its permitted
values, the resulting collection Iq of mutually disjoint I(t) form a cover for
R =]−∞,∞[. Let the positive integer m be given, and let Am = {r1, r2, . . . ,
rm} ⊂ A. For given q, m, consider the family of I(r1)×I(r2)×· · ·×I(rm), the
family being formed by taking every possible choice of I(t) ∈ Iq (t ∈ Am) in
the product, and, for any such choice, let Iqm denote the cylindrical interval

I(r1)× I(r2)× · · · × I(rm)×
∏
{R : t ∈ B \Am}.

The resulting family of mutually disjoint cylindrical intervals Iqm, with q,
m fixed, covers RB. Since, by assumption, there does not exist a γ1-division
of RB, then, for each q, m, there exists Iqm for which there is no γ1-fine
division. (Because if there is a γ1-division for every Iqm, their union (finite)
is a γ1-division for RB). We now show that, on the assumption that no
γ1-division of RB exists, we can find a descending sequence

I11 ⊃ · · · ⊃ Iqq ⊃ Iq+1,q+1 ⊃ · · · (1)

for each of which there is no γ1-division. They are found, by induction,
as follows. The original assumption starts off the inductive chain. Now
suppose that Iqq has no γ1-division. Choose Iq+1,q ⊂ Iqq for which there is
no γ1-division. There must be such a set, because if there were not, then the
γ1-fine divisions of each of the finite number of Iq+1,q would combine to give
a γ1-division of Iqq. Then, by the same reasoning, choose Iq+1,q+1 ⊂ Iq+1,q

for which there is no γ1-division. Thus the inductive chain is established,
and we have the sequence (1) above, for which there are no γ1-fine divisions.
Using the Cartesian product topology in RB, and denoting by J̄ the closure
of J in that topology, the finite intersection property implies there exists x in⋂∞
q=1 Ī

qq. Let k = max{j : rj ∈ LA(x)}. Choose q′ > k so that 2−q
′
< δ(x).

Let q = max{k, q′}. Let N = {r1, r2, . . . , rq}. For t ∈ N let J(t) denote
either of the intervals

[x(t)− 2−q, x(t)[, [x(t), x(t) + 2−q[.

Let J(N) denote any of the 2q q-dimensional intervals
∏
t∈N J(t). So J [N ]

denotes any of the 2q corresponding cylindrical intervals. Each of (x, J [N ])
is γ1-fine, as is each of (x, J [N ] ∩ Iqq). The latter collection is a γ1-fine
division of Iqq, contradicting the original assumption. This completes the
proof.
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Note that, by including intervals of the form ]−∞,−q[, [q,∞[, the collec-
tion I =

⋃∞
q=1 Iq generates γ1-fine cylinder sets I[N ] which have associated

points x for which x(N) has one or more infinite components. Such an x
may emerge at

⋂∞
q=1 Ī

qq above, and that case requires a slightly different
version of the final steps of the proof.

It might seem that the above proof would also be valid for gauges of type
γ3. Replacing γ1 by γ3 throughout, and continuing from stage

⋂∞
q=1 Ī

qq

above, we might argue as follows. Let k = max{j : rj ∈ LA(x)}. Let
N = {r1, . . . rk}. Suppose x(N) does not have any infinite component.
Choose q′ > k so that 2−q

′
< δN (x(N)). For t ∈ N let J(t) denote either

of the intervals [x(t)− 2−q
′
, x(t)[, [x(t), x(t) + 2−q

′
[. Let J(N) denote any

of the 2k k-dimensional intervals
∏
t∈N J(t). So J [N ] denotes any of the 2k

corresponding cylindrical intervals. Each of (x, J [N ]) is γ-fine, as is each
of (x, J [N ] ∩ Iq′q′). At first sight, the latter collection might seem to be a
γ3-fine division of Iq

′q′ , giving a contradiction as before. But the interval
J [N ] ∩ Iq′q′ is restricted, not just in the dimensions N = {r1, . . . , rk}, but
in M = {r1, . . . , rk, . . . , rq′}, and (x, J [N ] ∩ Iq′q′) may fail to be γ3-fine, so
this approach fails for γ3.

In the following, recall that a gauge γ2 is given by (A,LA, {δt}t∈B) with
A = {rj}∞j=1 ⊂ B.

Proposition 2. There exists a γ2-division of RB.

Proof. Assume that RB is not γ2-divisible. Let Ak = {r1, r2, . . . , rk}.
Choose a δr1-fine division {(x(r1), I(r1))} of R{r1}. Consider each of the
finite number of I[{r1}] = I(r1) × RB\{r1}. By hypothesis, at least one
of these must be non-γ2-divisible; select one such and call it I1[A1]. De-
note the corresponding x(r1) by x1(r1). Proceeding inductively, we sup-
pose xj(rj) and Ij [Aj ] have been determined. Consider a δrj+1-division
{(x(rj+1), I(rj+1))} of R{rj+1}. By hypothesis, there must be at least one
I(rj+1) with I[Aj+1] = Ij(Aj)× I(rj+1)× RB\Aj+1 non-γ2-divisible. Select
one and write I[Aj+1] = Ij+1[Aj+1]. Denote the corresponding x(rj+1) by
xj+1(rj+1). By induction, for j = 1, 2, 3, . . . we have (xj(rj), Ij(rj)) δrj -fine

and Ij [Aj ] non-γ2-divisible. Choose x ∈ RB so that x(rj) = xj(rj) for each
rj ∈ A, with x(t) arbitrary for t ∈ B \ A. For this x choose k so that
LA(x) ⊆ Ak. Since (xj(rj), Ij(rj)) is δrj -fine for 1 ≤ j ≤ k, (x, Ik[Ak]) is a
γ2-fine division of Ik[Ak], giving a contradiction. The result follows. The ar-
gument can easily be adapted to prove the γ2-divisibility of any elementary
set E in RB.
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7. Problems of proving γ-divisibility

An earlier argument along the lines of Proposition 1 was given in [7]. An
error in this was pointed out by Dr. Christian Ott in a letter dated 17/8/92.
The error relates to the step where we obtain Iq+1,q+1 from Iqq in (1) above.
In [7], Proposition 1 (page 20, line 17) says, “We can take J (q+1,m) ⊆ J (qm)

and J (q,m+1) ⊆ J (qm)”. This is false. (These J (qm)’s are, in the notation of
Proposition 1, Iqm’s for which there are no γ1-divisions.) It may be useful
to discuss this point in detail.

r1

r2

����r3
1 2

1

2

��
�� ��

��

��
�� ��

��

I22

Figure 3.

To illustrate the point, let us take q = 2 and m = 2. We use somewhat
more metaphorical descriptions in an attempt to assist visualisation. Imag-
ine that the dimensions r1 and r2 are the two dimensions of the surface or
page on which these words are written, and that r3 is a dimension perpen-
dicular to the page. There are infinitely many other dimensions involved,
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but these are less easy to visualise directly. The flat two-dimensional surface
is now covered by a grid, of which that part of the surface bounded by the
straight lines joining the four points (±2,±2) consists of squares, or (r1, r2)-
cells, of side 1/4. Outside of this area, the surface is divided into 64 regions
which are unbounded in one dimension, r1 or r2; and 4 regions which are
unbounded in two dimensions, r1 and r2. This grid is the 2-dimensional pro-
jection of a honeycomb structure for the whole (infinite-dimensional) space;
we can easily visualise three dimensions of this honeycomb, with each cell of
the honeycomb consisting of an infinitely long (from −∞ to ∞ in all of the
dimensions other than r1 and r2) shaft passing through each little 1/4×1/4
section of the flat two-dimensional grid that we have just considered. Simi-
larly for those sections of the grid which are partly unbounded.

In Figure 3, the set outlined in heavy lines, call it I22, is such a shaft.
These shafts are cylindrical intervals. As part of the induction in the

proof above, we assumed that at least one of these shafts had no γ1-fine
division. We selected one such. Suppose it is I22.

We now attempt the inductive step. When we increase q from 2 to 3, we
refine the grid on the flat surface in dimensions r1 and r2, so that each of
the bounded cells is divided into 4 square cells of side 1/8; and the region
covered by the bounded cells now covers the square with vertices (±3,±3).

The honeycomb structure in the infinite-dimensional space, consisting of
cylinder sets or shafts, changes correspondingly, so that each of the shafts
based on bounded cells in the surface divides into four smaller shafts, each
one again stretching from −∞ to ∞ in dimension r3. In Figure 4, I32 is
such a shaft. (The shafts with some unbounded edges in the (r1, r2)-surface
divide up differently.)

By assumption, at least one of these sub-shafts within I22 must fail to
have a γ1-fine division; select one and suppose it is I32.

What happens if we increase m from 2 to 3 while leaving q = 2? In this
case, each of the shafts based on (1/4× 1/4) cells of the flat grid is divided
up into 16 pieces (which, in dimensions r1, r2 and r3 look like cubes with
edges of length 1/4) plus two further pieces, one of which (in dimension r3) is
unbounded above, the other unbounded below. Of course in every dimension
other than r1, r2 and r3, these pieces are infinitely long, from −∞ to +∞.
In other words, we now have a different honeycomb structure in the space,
so that in dimensions r1, r2 and r3 the cube bounded by the eight points
(±2,±2,±2) is divided up into 512 cubes each with edge of length 1/4. One
of these cubes is shown as I23 in Figure 4. This development still gives a
“shaft” or cylindrical honeycomb structure in the infinite-dimensional space.
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Figure 4.

Returning to I22, with m = 3 this has been divided into 16 pieces, at
least one of which, in consequence of our original assumption, does not have
a γ1-fine division; select one such and suppose it is I23.

Now I32 and I23 have a non-empty intersection. So far, so good in the
argument of [7]. But the problem here is that there is no guarantee, within
the argument given, that this intersection does not have a γ1-fine division;
it may indeed be γ1-divisible, and this collapses the inductive argument of
[7].

We can ensure that the absence of γ1-divisibility is inherited down the
inductive chain. But the reasoning in [7] leads into another difficulty. For if
we take each of the (r1, r2, r3)-cells of the non-γ1-divisible I23, each having
edges 1/4×1/4×1/4, and subdivide by bisection, going from q = 2 to q = 3,
then at least one of the sets arising from this bisection must, by assumption,
be non-γ1-divisible. Select one of these and call it I ′.
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Now consider the non-γ1-divisible I32, which is a shaft or cylinder set,
typically bounded in a 1/8× 1/8 (r1, r2)-cell. Going from m = 2 to m = 3,
this cylinder is subdivided in dimension r3, and one of these subsets must
be non-γ1-divisible; call it I ′′.

We have now found I ′ and I ′′, both non-γ1-divisible, and both having
q = 3 and m = 3; so we seem to have moved through the inductive chain.
But a little reflection will show that I ′ and I ′′ may fail to intersect, causing
the argument of [7] to collapse yet again. It is left to the reader to confirm
that the the proof given in Proposition 1 above overcomes these difficulties.

8. Henstock integral and variation in RB+
The integrands in the applications described in the Introduction have

domain RB+ instead of RB, and the results we have obtained apply equally
in this domain.

In this section, we may take the gauge γ to be γ1 or γ2. Suppose h is
a function of attached x, N , I. Sometimes h(x,N, I[N ]) is undefined for
certain x ∈ RB+ (or RB), such as those x for which x(t) = 0 or ∞ for t ∈ N .
In such cases we may h(x,N, I) to be zero, and these terms are omitted
from the Riemann sum. If E is an elementary set, the variation of h in E is

inf
γ

{
sup
Eγ

{
(Eγ)

∑
|h(x, I,N)|

}}
.

If X is any subset of RB+, the variation of h in RB+ relative to X is

inf
γ

{
sup
Eγ

{
(Eγ)

∑
|h(x, I,N)|1X(x)

}}
where 1X(x) is the characteristic function or indicator function of X, and
the Eγ now denote γ-divisions of RB+. We say that h has bounded variation in
E if its variation in E is finite. We say that h is VBG∗ (or h has generalised
bounded variation in RB+ if RB+ is the union of disjoint sets Xj with h having
bounded variation in Xj , j = 1, 2, 3, . . . .

We say that h is integrable in the elementary set E, with integral α
denoted by

∫
E h(x,N, I), if, given ε > 0, there exists γ so that∣∣∣(Eγ)

∑
h(x,N, I)− α

∣∣∣ < ε

for every γ-fine division Eγ of E.
For given γ let Sγ denote {(Eγ)

∑
h(x,N, I) : all Eγ} , and let Sγ denote

the closure of the set. If h is integrable with
∫
E h = α, then {α} =

⋂
γ Sγ .

This can be used as an alternative, equivalent definition of the integral.
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Two functions h1(x,N, I) and h2(x,N, I) are variationally equivalent if
h1−h2 has variation zero in RB+ ([7], page 32). It is easy to show that h1 is
variationally equivalent to h2 if, given ε > 0, there exists γ so that, for all
Eγ ,

(Eγ)
∑
|h1(x,N, I)− h2(x,N, I)| < ε.

If h1 is integrable, and if h2 is variationally equivalent to h1, then h2 is
integrable and

∫
h1 =

∫
h2. (See [7], Proposition 18, page 32 for proof.)

9. Applications

We now consider the integrability of a particular integrand h which arises
in the theory of Black-Scholes valuation of stock options [11]. In finance,
the positive quantities r(t) and σ denote, respectively, the risk-free interest
rate and the volatility [11]. Let rj := r(tj), and Aj := (2πσ2(tj − tj−1))1/2.
Let

gj(xj , xj−1) :=
1

Ajxj
exp

[
− 1

2σ2

{
lnxj − lnxj−1

tj − tj−1

−(rj −
1
2
σ)
}2

(tj − tj−1)

]
. (2)

Let

q(I(N)) :=
n∏
j=1

gj(xj , xj−1)|Ij |, (3)

where |Ij | = vj − uj if Ij is [uj , vj [, and let

Q(I(N)) :=
∫

I(N)

n∏
j=1

gj(yj , yj−1)dy(N). (4)

If x, N , I, are associated, let

g(x,N, I) := q(I(N)), G(x,N, I) := Q(I(N)). (5)

In the following proof, only gauges γ2 are used, and to highlight this we use
the symbol 2∫ instead of

∫
in the statement of the result.

Proposition 3. G(x,N, I) is integrable in RB+, and 2∫
RB+ G(x,N, I) = 1.

Proof. Essentially this follows from∫
R+

π−1/2y−1 exp[−(ln y)2]dy = 1. (6)
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Consider any division E of RB+, and the Riemann sum

(E)
∑

G(x,N, I),= (E)
∑

Q(I(N)). (7)

Let M =
⋃
{N : (x, I[N ]) ∈ E}. Enumerate M as {t1, . . . , tm}. Each term

Q(I(N)) of the Riemann sum can be rewritten as Q(I(M)) by inserting
additional yj ’s in expression gj of (4) and adding an integration from zero
to plus infinity on the extra yj ’s. Then the Riemann sum (7) becomes

(E)
∑

Q(I(M)) (8)

with M a fixed set of dimensions, so we are now dealing, in effect, with some
Riemann sum estimate of an integral in m dimensions. Suppose we take the
sum (E)

∑
G(x,N, I[N ]) to have no terms for which x(t) is zero or ∞ for

t ∈ N . Let E :=
⋃
{I : (x, I[N ]) ∈ E}, and let F := RB+ \ E. The sets E, F

are not generally intervals, but are elementary sets which are restricted only
in the finite set of dimensionsM . Let E(M), F (M) denote the projections of
E, F into the finite-dimensional space RM+ . Then, using the finite additivity
in RM+ of the integrals Q(I(M)) and a finite-dimensional version of Fubini’s
theorem, we have (E)

∑
G(x,N, I[N ]) =

∫
E(M)Q(I(M))dy(M) and

(E)
∑

G(x,N, I) +
∫

F (M)

Q(I(M))dy(M) =
∫

RM
+

Q(I(M))dy(M) = 1,

so if we can choose a gauge γ2 so that the supplementary term has value
less than ε, that is, ∫

F (M)

Q(I(M))dy(M) < ε, (9)

then we have the required result. We can certainly find Uj , Vj , j = 1, . . . ,m,
so that J(M) = [U1, V1[× · · · × [Um, Vm[ and J [M ] are, respectively, an
interval of RM+ and the corresponding cylindrical interval, with J(M) ⊂
E(M) ⊂ RM+ . In fact J(M) is a compact rectangular interval of RM+ , and
E(M) consists of J(M) combined with a finite number of other rectangular
intervals, some without upper or without lower bounds in some dimensions
of RM+ . We then have∫

J(M)

Q(I(M))dy(M) ≤ (E)
∑

G(x,N, I) <
∫
RM

Q(I(M))dy(M) = 1.
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For j = 1, . . . , n we can take Uj and Vj to be, respectively, very small and
very large positive numbers satisfying

Uj = max{δt(x(t)) : (x, I[N ]) ∈ E , x(t) = 0 for some t ∈ N},

Vj = max{(δt(x(t)))−1 : (x, I[N ]) ∈ E , x(t) =∞ for some t ∈ N},

If it could be shown that
∫
RM Q(I(M))dy(M)−

∫
J(M)Q(I(M))dy(M) < ε,

we would have the result we require. However, following a comment by V.A.
Skvortsov, while we can certainly choose δt(x(t)) to be arbitrarily small for
the critical points x(t) for which x(t) equals 0 or ∞ with t ∈ N , this is not
sufficient to give us the latter inequality, since the coordinates yj of y(M)
are scaled, not by tj but by the differences tj − tj−1.

However, we may proceed as follows. It is shown in [7] that, with M0 a
given finite set of dimensions t, the Wiener measure w has variation 0 in
the set DM0 of x in R[0,1] which are not continuous at some t ∈M0. When
the so-called “continuous modification” of w is constructed, by an argument
described in [9, 10], and, using the same symbol for the modified w, we find
that w has variation zero in the set of x which are discontinuous at any
t ∈ [0, 1].

A similar argument shows that (a “continuously modified”) G has varia-
tion zero in the set D+ of x ∈ RB+ which are discontinuous at some t ∈ B.
So if X is any subset of D+, a gauge γ can be chosen so that

(Eγ)
∑

G(x,N, I[N ])1X(x) < ε. (10)

Take X to be those x ∈ RB+ for which x(t) equals 0 or ∞ for some t, so X
is a subset of D+. Then (10) gives (9), and we have the result.

The complication in the above proof arises when terms h(x,N, I) in the
Riemann sum having x(t) = 0 or ∞ for t ∈ N are omitted. But it is only
necessary to omit such terms when the corresponding integrand value is
undefined. This is not the case for the integrand G(x,N, I[N ]), since, by
(4), this is Q(I(N)), which is defined in these cases, by means of a finite
dimensional integral.

Therefore the above proof shows that G is integrable whether we use
gauges γ1 or γ2, and we have

Proposition 4. G(x,N, I[N ]) is integrable in RB+ and 1∫ G(x,N, I[N ]) = 1.
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10. A problem

If we could show that g(x,N, I) is variationally equivalent to G(x,N, I),
we could then deduce that g(x,N, I) is integrable in RB+, with integral 1.

To prove the variational equivalence, we might reason as follows. Given
x ∈ RB+, for each finite N choose a gauge γ so that∣∣∣∣∣∣

n∏
j=1

gj(xj , xj−1)−
n∏
j=1

gj(yj , yj−1)

∣∣∣∣∣∣ < ε

2

n∏
j=1

gj(xj , xj−1); (11)

and
n∏
j=1

gj(yj , yj−1) >
1
2

n∏
j=1

gj(xj , xj−1). (12)

We would then get

|g(x,N, I)−G(x,N, I)| = |q(I(N))−Q(I(N))|

=

∣∣∣∣∣∣
∫
I(N)

 n∏
j=1

gj(xj , xj−1)−
n∏
j=1

gj(yj , yj−1)

 dy(N)

∣∣∣∣∣∣
≤
∫

I(N)

∣∣∣∣∣∣
n∏
j=1

gj(xj , xj−1)−
n∏
j=1

gj(yj , yj−1)

∣∣∣∣∣∣ dy(N)

≤ ε/2
∫

I(N)

n∏
j=1

gj(xj , xj−1)dy(N)

≤ ε
∫

I(N)

gj(yj , yj−1)dy(N) = εG(x,N, I).

Finally we would choose γ so that for all Eγ ,

(Eγ)
∑
|g(x,N, I)−G(x,N, I)| ≤ ε(Eγ)

∑
G(x,N, I) < 2ε.

This would give variational equivalence of G and g. However, step (11)
seems to require a gauge of the form γ3, and there is no proof that γ3-fine
divisions of RB+ exist.

The argument above was given originally by Henstock in [3]. What are
the significance and interest of proving the variational equivalence of G and
g, and what are the main ideas involved?
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If we were to collapse B down to a single dimension (so B consists of a
single element, and consider a related Gaussian integral

F (I) =
∫
I

f(y)dy where f(y) = exp
[
−(ln y)2] and I = [u, v[,

we see that the indefinite integral F (I) is a primitive function for f(y). This
idea can be developed into a connection between f(y)|I| and F (I), which
are variationally equivalent by the Saks-Henstock Lemma [7] (page 28). In
RB+ the functions g(x,N, I) and G(x,N, I) have an analogous relationship.
This would be a useful analytic connection to have at our disposal in the
study of Black-Scholes and similar integrands.

And what about the approach to a proof described above? We can see by
the continuity of the integrals involved, that f(y)|I|, F (I) in one dimension,
and g(x,N, I), G(x,N, I) in infinite dimensions, can (respectively) be made
arbitrarily close in value by taking the I small enough. So it might come
as no great surprise if, when either expression (of each pair) is integrated
that the result might be the same as integrating the alternate expression.
Besides this intuition, what else might be needed?

If we were to consider the variational equivalence of f(y)|I| and F (I) in
a compact interval [a, b], we could choose a gauge to ensure that∣∣∣∣f(y)− F (I)

|I|

∣∣∣∣ < ε

b− a
, |f(y)|I| − F (I)| < ε

|I|
b− a

.

Then Riemann sums
∑
|f(y)|I| − F (I)| would be less than ε. To prove

variational equivalence of these functions in [0,∞[, we would need a gauge
on [0,∞[ so that

|f (y)|I| − F (I)| < εh(y, I) (13)

where h(y, I) > 0 is integrable (or at least has generalised bounded varia-
tion) in [0,∞[. For instance, h(y, I) = exp[−y2]|I| would be all right.

When we examine Riemann sums∑
|g(x,N, I)−G(x,N, I)|, or

∑
|q(I(M)−Q(I(M))|,

the number of terms in the sum will generally be extremely large, and
obtaining an arbitrarily small result is a much more delicate task. Suppose,
for instance, that we have a gauge in RB+ so that, for each t ∈ M , the
range of x(t) is divided into ten subintervals, and suppose that the gauge
causes the insertion of nine partition points tj in B =]t0, T ]. Such a gauge
is relatively coarse. Even so, the Riemann sum will have up to ten billion
terms. And, even if we manage to make the errors or differences∣∣∣∣∣gj(xj , xj−1)|Ij | −

∫ vj

uj

gj(yj , yj−1)dyj

∣∣∣∣∣



THE INFINITE DIMENSIONAL HENSTOCK INTEGRAL 21

very small, unless we manage things very carefully the Riemann sum may re-
sult in the accumulated errors being arbitrarily large rather than arbitrarily
small.

The trick lies in finding a suitable function corresponding to h(y, I) of
(13). We have such functions at hand. We used g(x,N, I) itself for this
part of the argument, and then, because of (12), we were able to substitute
G(x,N, I) which we know to be integrable from Proposition 3. These steps
would require us to be able to choose gauges δN for each N , suggesting that
γ3 or γ5 might be the appropriate kinds of gauge to obtain a proof.
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