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Abstract. The aim of this paper is to provide an explicit formula for
solutions of the following system of delay difference equations

Fn+1 = AnFn +BnFγn + fn, n ∈ N,

where γn = kαn, αn = [n/k] (the symbol [x] stands for entire part of the
real number x and k is a fixed positive integer). (An), (Bn), n ∈ N, are
sequences of square matrices of order m, (fn) is a sequence of vectors
from Rm. From this formula conditions for the stability and asymptotic
stability of solutions are derived.

1. Introduction

Difference equations and systems of difference equations have a wide use
in many branches of science such as mathematics, physics, chemistry, engi-
neering, computer science, biology, economy, social science and others.

Linear difference equations and systems of such equations are the simplest
ones which are used to describe dynamical processes being an object of
interest.

2000 Mathematics Subject Classification. 39A10, 39A11, 39A70.
Key words and phrases. Difference equations, asymptotic theory.

ISSN 1425-6908 c© Heldermann Verlag.



24 M. KWAPISZ and M.  LACHACZ

The standard linear system of difference equations has the form

Fn+1 = AnFn + fn, n ∈ N = {0, 1, . . . }, (1)

where (An) is a given sequence of square matrices of order m, (fn) is a
sequence of given vectors from Rm, (Fn) is unknown sequence of vectors
from Rm.

The theory of the systems of the form (1) is very well developed and
described in a number of textbooks (see for more recent: [1], [2], [5], [6]).

However, sometimes when modeling some dynamical processes one has
to take into account delay effects. This take place even in such simple case
as that when we are modeling the problem of capital deposits (see [3], [7]).
In this case we arrive to the scalar difference delay equation of the form

Fn+1 = anFn + bnFγn + gn, n ∈ N, (2)

where γn = kαn, αn = [n/k] , k is a given positive integer and the symbol
[x] stands for the entire part of the real number x. An explicit formula for
solutions of equation (2) is given in [8].

Observe that explicit formula is very useful when one wants to investigate
the qualitative behavior of solutions of the equation under consideration.

When modeling more complicated economical problems which are de-
scribed by systems of difference equations (see for instance [4], [9], [10] and
others) we may have to take some delay effects which will lead us to linear
systems of delay difference equations of the form

Fn+1 = AnFn +BnFγn + fn, n ∈ N, (3)

where (An), (Bn) is a sequence of square matrices of order m, (fn) is a
sequence of vectors from Rm and γn has meaning as above.

The aim of the present paper is to give an explicit formula for solutions
of equation (3) and to show how it can be used for the investigation of the
behavior of the solutions of this equation when n→∞.

2. Main theorem

In the paper [8] it is shown that any solution of equation (2) is expressed
by the formula

Fn =

F0

αn−1∏
l=0

pl +
αn−1∑
s=0

qs

αn−1∏
j=s+1

pj

×


n−1∏
s=kαn

as +
n−1∑
s=kαn

bs

n−1∏
j=s+1

aj


+

n−1∑
s=kαn

gs

n−1∏
j=s+1

aj , n ∈ N, (4)
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where

pl =
k−1∏
s=0

akl+s +
k−1∑
s=0

bkl+s

k−1∏
j=s+1

akl+j , ql =
k−1∑
s=0

fkl+s

k−1∏
j=s+1

akl+j , l ∈ N.

Here as usually it is assumed that
p−1∑
s=p

ds = 0 and
p−1∏
s=p

ds = 1

for any ds and p ∈ N.
The result of the paper is a generalization of formula (4) for the systems

of the form (3).
We define:

n−1∏
s=0

As =
{
An−1 ·An−2 · · ·A1 ·A0, n ∈ Nr {0},
I, n = 0, (5)

where I denotes identity matrix.
Assume as in the scalar case

p−1∑
s=p

Ds = 0 and
p−1∏
s=p

Ds = I (6)

for any Ds and p ∈ N.
In order to find an explicit formula for solutions of equation (3) first we

consider the case when Bn ≡ 0, i.e. Bn is zero matrix for all n ∈ N. In this
case equation (3) can be written as equation (1).

For this case we have the following result (see for instance [2]).

Theorem 1. Any solution of equation (1) is expressed by the formula

Fn =

(
n−1∏
s=0

As

)
F0 +

n−1∑
s=0

 n−1∏
j=s+1

Aj

 fs, n ∈ N. (7)

In order to formulate a theorem giving the formula for all solutions of system
(3) we write n = kαn + βn where βn is the remainder in division of n by k.
For simplicity we will write n = kl + r with l = αn and r = βn.

Put

Pl =
k−1∏
s=0

Akl+s +
k−1∑
s=0

 k−1∏
j=s+1

Akl+j

Bkl+s, l ∈ N, (8)

Ql =
k−1∑
s=0

 k−1∏
j=s+1

Akl+j

 fkl+s, l ∈ N. (9)
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Now we can formulate the following theorem

Theorem 2. Any solution of equation (3) is given by the formula

Fn =

 n−1∏
s=kαn

As +
n−1∑
s=kαn

 n−1∏
j=s+1

Aj

Bs

×{(αn−1∏
s=0

Ps

)
F0

+
αn−1∑
s=0

 αn−1∏
j=s+1

Pj

Qs

}
+

n−1∑
s=kαn

 n−1∏
j=s+1

Aj

 fs, n ∈ N. (10)

Proof. The proof is quite similar to that for the scalar case. For a fixed
nonnegative integer n = kl + r put

Φr = Fkl+r, r = {0, 1, . . . , k} ,

where (Fn), n ∈ N, is a solution of equation (3). Now for r = {0, 1, . . . , k − 1},
from equation (3) we get

Φr+1 = Akl+rΦr +Bkl+rΦ0 + fkl+r.

Using formula (7) with corresponding changes we find

Φr =

(
r−1∏
s=0

Akl+s

)
Φ0 +

r−1∑
s=0

 r−1∏
j=s+1

Akl+j

Bkl+sΦ0

+
r−1∑
s=0

 r−1∏
j=s+1

Akl+j

 fkl+s

for r = {0, 1, . . . , k}. This means that

Fkl+r =

r−1∏
s=0

Akl+s +
r−1∑
s=0

 r−1∏
j=s+1

Akl+j

Bkl+s

Fkl
+

r−1∑
s=0

 r−1∏
j=s+1

Akl+j

 fkl+s (11)

for r = {0, 1, . . . , k} .
Take Rl = Fkl. Then from the last formula for r = k we get

Rl+1 = PlRl +Ql, l ∈ N.
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This is an equation of form (1) so according to Theorem 1 we have

Rl =

(
l−1∏
s=0

Ps

)
R0 +

l−1∑
s=0

 l−1∏
j=s+1

Pj

Qs, l ∈ N .

Because Rl = Fkl then from formula (11) we get

Fkl+r =

r−1∏
s=0

Akl+s +
r−1∑
s=0

 r−1∏
j=s+1

Akl+j

Bkl+s

×{(l−1∏
s=0

Ps

)
F0

+
l−1∑
s=0

 l−1∏
j=s+1

Pj

Qs

}
+

r−1∑
s=0

 r−1∏
j=s+1

Akl+j

 fkl+s

for l ∈ N and r = {0, 1, . . . , k} .
If we use this formula for l = 0, 1, . . . , r = {0, 1, . . . , k − 1} and n = kl+r

then we have l = αn, r = βn and we can write

Fn =

βn−1∏
s=0

Akan+s +
βn−1∑
s=0

 βn−1∏
j=s+1

Akan+j

Bkan+s

×{(an−1∏
s=0

Ps

)
F0

+
an−1∑
s=0

 an−1∏
j=s+1

Pj

Qs

}
+
βn−1∑
s=0

 βn−1∏
j=s+1

Akan+j

 fkan+s, n ∈ N.

Finally after corresponding shifts of indices in the product and summation
symbols we arrive at the formula of the Theorem. The proof is complete.

3. Asymptotic behavior of solutions

Observe that the solution (10) can be written in the form

Fn = ΦnF0 + Ψn, n ∈ N, (12)

where

Φn =

 n−1∏
s=kαn

As +
n−1∑
s=kαn

 n−1∏
j=s+1

Aj

Bs

 ·(αn−1∏
s=0

Ps

)
, n ∈ N, (13)
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and

Ψn =

 n−1∏
s=kαn

As +
n−1∑
s=kαn

 n−1∏
j=s+1

Aj

Bs

 ·
αn−1∑

s=0

 αn−1∏
j=s+1

Pj

Qs


+

n−1∑
s=kαn

 n−1∏
j=s+1

Aj

 fs, n ∈ N. (14)

The matrix Φn we will call the fundamental matrix of homogeneous system

Fn+1 = AnFn +BnFγn , n ∈ N. (15)

It is easy to see that Ψn is a particular solution of nonhomogeneous system
(3). Having formula (12) we can answer easily questions about the behavior
of solutions of system (3). We see that all solutions of system (3) are
bounded if there are constants M0 > 0 and M1 > 0 such that

‖Φn‖ ≤M0, n ∈ N, (16)

and

‖Ψn‖ ≤M1, n ∈ N. (17)

Also one can see easily that the trivial solution of system (15) is stable if
condition (16) holds.

From the linearity of system (3) it follows that the stability of any so-
lution of this system is equivalent to the stability of the trivial solution of
homogeneous system (15), so we can state that any solution of system (3)
is stable if and only if the condition (16) holds.

To get the asymptotic stability of any solution of system (3) it is enough
to assume that there exist two positive numbers M2 and η, η < 1, such that

‖Φn‖ ≤M2η
n, n ∈ N. (18)

Let us now evaluate the norm of Φn. Assume that

‖An‖ ≤M and ‖Bn‖ ≤ b, n ∈ N, (19)

than from the formulas (8) and (13) we have

‖Pl‖ ≤
k−1∏
s=0

‖Akl+s‖+
k−1∑
s=0

 k−1∏
j=s+1

‖Akl+j‖

 ‖Bkl+s‖ , l ∈ N,

and

‖Φn‖ ≤

 n−1∏
s=kαn

‖As‖+
n−1∑
s=kαn

 n−1∏
j=s+1

‖Aj‖

 ‖Bs‖
 αn−1∏

l=0

‖Pl‖ , n ∈ N.
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Hence

‖Pl‖ ≤Mk + b
1−Mk

1−M
, l ∈ N,

and

‖Φn‖ ≤
(
Mβn + b

1−Mβn

1−M

)(
Mk + b

1−Mk

1−M

)αn
, n ∈ N.

Now assume that M < 1 then

Mβn + b
1−Mβn

1−M
≤ 1 + b

1−Mk

1−M
, n ∈ N,

and

‖Φn‖ ≤
(

1 + b
1−Mk

1−M

)(
Mk + b

1−Mk

1−M

)αn
, n ∈ N.

Because αn = (n− βn)/k then

‖Φn‖ ≤
(

1 + b
1−Mk

1−M

)[(
Mk + b

1−Mk

1−M

)1/k
]n−βn

, n ∈ N,

and

‖Φn‖ ≤M2

[(
Mk + b

1−Mk

1−M

)1/k
]n
, n ∈ N, (20)

where

M2 =
(

1 + b
1−Mk

1−M

)
max

0≤i≤k−1

(
Mk + b

1−Mk

1−M

)−i/k
. (21)

Now we are in the position to state the following

Theorem 3. If the conditions (19) are satisfied and M + b < 1 then all
solutions of the system (3) are asymptotically stable.

Proof. It is obvious that the inequality M + b < 1 is equivalent to the
following one

Mk + b
1−Mk

1−M
< 1.

From relation (20) it follows that inequality (18) holds for

η =
(
Mk + b

1−Mk

1−M

)1/k

.
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Remark 4. Notice that for M ≥ 0, b > 0 satisfying condition M + b < 1
the inequality (

Mk + b
1−Mk

1−M

)1/k

> M + b (22)

for k > 1 holds. This means that for such k the convergence of ‖Φn‖ to zero
is in general slower than for the case k = 1 when there is no delay effect.

Proof. Indeed, first observe that inequality (22) is equivalent to the follow-
ing one

Mk + b
1−Mk

1−M
> (M + b)k .

The last inequality can be proved by mathematical induction rule as follows.
It is easy to see that the inequality holds for k = 2.
Now, if we assume that inequality (22) holds for a fixed k then one can
check easily that

(M + b)k+1 < (M + b)
(
Mk + b

1−Mk

1−M

)
< Mk+1 + b

1−Mk+1

1−M
what means that inequality holds for k+ 1 and the conclusion is implied by
the induction rule.

4. Linear autonomous systems

Now let us consider the case of linear autonomous system

Fn+1 = AFn +BFγn + fn, n ∈ N. (23)

In this case using the explicit formula for solutions of such systems we are
able to establish necessary and sufficient conditions for asymptotic stability
of solutions of autonomous systems.

It is obvious that we can consider only the homogeneous system corre-
sponding to system (23)

Fn+1 = AFn +BFγn , n ∈ N. (24)

Let us list the special cases of equation (24):
a) B = 0, then

Φn = An, n ∈ N,
and the trivial solution of the corresponding system is asymptotically
stable if and only if

ρ (A) < 1

(here ρ (A) denotes the spectral radius of the matrix A).
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b) A = 0, then

Φn =
{
Bαn , βn = 0, n ∈ N,
Bαn+1, βn ∈ {1, 2, . . . , k − 1} , n ∈ N,

and the trivial solution of the corresponding system is asymptotically
stable if and only if

ρ (B) < 1.

c) A = I, then

Φn = (I + βnB) (I + kB)αn , n ∈ N,
and the trivial solution of the corresponding system is asymptotically
stable if and only if

ρ (I + kB) < 1.

d) B = I, then

Φn =
[
Aβn + (A− I)−1

(
Aβn − I

)] [
Ak + (A− I)−1

(
Ak − I

)]αn
and the trivial solution of the corresponding system is asymptotically
stable if and only if

ρ
(
Ak + (A− I)−1

(
Ak − I

))
< 1.

e) the general case, then

Φn =
[
Aβn + (A− I)−1

(
Aβn − I

)
B
] [
Ak + (A− I)−1

(
Ak − I

)
B
]αn

and the trivial solution of the corresponding system is asymptotically
stable if and only if

ρ
(
Ak + (A− I)−1

(
Ak − I

)
B
)
< 1.

To prove this assertion it is enough to observe that the first term in the
formula for Φn is bounded because βn is bounded. On the other hand it is
known that for any ε > 0 there is a norm ‖·‖ε in Rm such that∥∥∥Ak + (A− I)−1

(
Ak − I

)∥∥∥
ε
< ρ

(
Ak + (A− I)−1

(
Ak − I

))
+ ε.

Taking ε small enough we have

ρ
(
Ak + (A− I)−1

(
Ak − I

))
+ ε < 1.

Now we have

‖Φn‖ε ≤ Q
(
ρ
(
Ak + (A− I)−1

(
Ak − I

))
+ ε
)αn

for some Q > 0. The rest of the proof is standard reasoning, the same
concerns the proof of necessity of the condition mentioned above.
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