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Abstract. In this paper we investigate the existence and controllability
of mild solutions to the first order semilinear evolution inclusions in
Banach spaces with nonlocal conditions. We shall rely of a fixed point
theorem for condensing maps due to Martelli.

1. Introduction

The purpose of this paper is to study the existence and controllability
of solutions for nonlinear initial value problems for semilinear evolution
inclusions together with nonlocal conditions.

In Section 3, we study the existence of a solution for a nonlinear initial
value problem (IVP for short) for a semilinear evolution inclusion, together
with a nonlocal condition, of the form:

y′ −A(t, y)y ∈ F (t, y), t ∈ J := [0, b], (1)

2000 Mathematics Subject Classification. 34A99, 34A60, 34G20, 35R10, 47H20, 93B05.
Key words and phrases. Nonlocal condition, convex multivalued map, mild solution,

evolution inclusion, controllability, nonlocal condition, fixed point.

ISSN 1425-6908 c© Heldermann Verlag.



34 M. BENCHOHRA and S. K. NTOUYAS

y(0) + f(y) = y0, (2)

where F : J × E −→ 2E is a bounded, closed, convex valued multivalued
map, f : C(C(J,E), E), y0 ∈ E, A(t, y) is a continuous operator on E for
each (t, y) ∈ J × E, and E is a real Banach space with the norm ‖ · ‖.

Such problems together with classical initial conditions have been studied
repeatedly in the literature. In [14] Marino, using a fixed point theorem due
to Martelli [15], studied the same type of problem together with classical
local initial conditions and together with nonlinear boundary conditions.
Also, Anguraj and Balachandran [1] studied problem (1)–(2) together with
classical initial conditions in Rn, using the Bohnenblust-Karlin extension of
Kakutani’s theorem on fixed points for set valued mappings.

The work on evolution nonlocal initial value problems was initiated by
Byszewski. In [7] and [6], applying a method of C0-semigroups and the
Banach fixed point theorem, he proved the existence and uniqueness of
mild, strong and classical solutions of the first order evolution nonlocal
initial value problem. For the importance of nonlocal conditions in different
fields, the interested reader is refereed to [7] and the references cited therein.

Initial value problems together with nonlocal conditions have been stud-
ied by some authors. For example, we refer to the papers of Balachandran
and Chandrasekaran [4], Balachandran and Ilamaran [3], Byszewski [7], [6]
and Ntouyas and Tsamatos [16].

This paper is a generalization of the previous papers to IVP for nonlinear
differential inclusions with nonlocal conditions. The existence of solutions
for (1)–(2) will be achieved using a fixed point theorem for condensing maps
proved by Martelli [15].

In Section 4, we shall establish sufficient conditions for the controllability
of a semilinear evolution system in Banach spaces together with a nonlocal
initial condition. More precisely, we consider nonlocal semilinear problem
of the form:

y′ −A(t, y)y ∈ F (t, y) + (Bu)(t), t ∈ J = [0, b], (3)

y(0) + f(y) = y0, (4)

where A,F and y0 are as in problem (1)–(2), the control function u(·) is
given in L2(J, U), a Banach space of admissible control functions with U as
a Banach space, and B is a bounded linear operator from U to E.

Controllability results of nonlinear integrodifferential systems in Banach
spaces, by using the Schauder fixed point theorem, were studied by Bal-
achandran, Balasubramaniam and Dauer in [2]. Han and Park [11], ap-
plying a Banach fixed point theorem, proved boundary controllability of
differential equations together with nonlocal conditions.



SEMILINEAR EVOLUTION INCLUSIONS 35

In this paper, we study the controllability of systems (3)–(4), relied, as in
the first part, on a fixed point theorem for condensing maps due to Martelli
[15].

2. Preliminaries and basic assumptions

In this section, we introduce notations, definitions, and preliminary facts
from multivalued analysis which are used throughout the paper.
C(J,E) is the Banach space of continuous functions from J into E normed

by
‖y‖∞ = max{|y(t)| : t ∈ J}.

B(E) denotes the Banach space of bounded linear operators from E into
E with norm

‖N‖ := sup{|Ny| : |y| = 1}.
A measurable function y : J −→ E is Bochner integrable if and only if |y|

is Lebesgue integrable. (For properties of the Bochner integral see Yosida
[17]).
L1(J,E) denotes the linear space of equivalence classes of measurable

functions y : J −→ E such that
∫ b

0 |y(s)| ds <∞.
Let (X, | · |) be a Banach space. A multivalued map G : X −→ 2X has

convex (closed) valued if G(x) is convex (closed) for all x ∈ X. G is bounded
on bounded sets if G(V ) =

⋃
x∈V G(x) is bounded in X for any bounded

set V of X (i.e. supx∈V {sup{|y| : y ∈ G(x)}} <∞).
G is called upper semicontinuous (u.s.c.) on X if, for each x∗ ∈ X, the

set G(x∗) is a nonempty, closed subset of X, and if, for each open set V of
X containing G(x∗), there exists an open neighbourhood A of x∗ such that
G(A) ⊆ V .
G is said to be completely semicontinuous if G(V ) is relatively compact

for every bounded subset V ⊆ X.
If the multivalued map G is completely continuous with nonempty com-

pact values, then G is u.s.c. if and only if G has a closed graph (i.e.
xn −→ x∗, yn −→ y∗, yn ∈ G(xn) imply y∗ ∈ G(x∗)).
G has a fixed point if there is x ∈ X such that x ∈ G(x).
In the following BCC(X) denotes the set of all nonempty bounded, closed

and convex subsets of X.
A multivalued map G : J −→ BCC(E) is said to be measurable if, for

each x ∈ E, the function t 7−→ Y (t) = d(x,G(t)) = inf{‖x− z‖ : z ∈ G(t)}
is measurable. Other equivalent definitions of measurability for multivalued
maps can be found in [12]. For the proofs of the above results and for more
details on multivalued maps we refer the interested reader to the books of
Deimling [9], and Hu and Papageorgiou [12].
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An upper semi-continuous map G : X −→ 2X is said to be condensing if
for any bounded V ⊆ X, with α(V ) 6= 0, we have α(G(V )) < α(V ), where
α denotes the Kuratowski measure of noncompacteness. For properties of
the Kuratowski measure, we refer to Darbo [8] and Banas and Goebel [5].

We remark that a completely continuous multivalued map is the easiest
example of a condensing map.

Let us list the basic hypotheses:

(H1) A : J × E → B(E) is a continuous function such that

∀r > 0 ∃r1 = r1(r) > 0 such that

|v| ≤ r1 ⇒ ‖A(t, v)‖ ≤ r, ∀t ∈ J, ∀v ∈ E.

Remark 2.1. From (H1) we are able to claim the existence, for any fixed
u ∈ C(J,E), of a unique function Uu : J × J → B(E), defined and continu-
ous on J × J , such that

Uu(t, s) = I +
∫ t

s
Au(w)Uu(w, s)dw (5)

(evolution operator of A), where I stands for the identity operator on E
and Au(t) := A(t, u(t)).

From (5), one has

Uu(t, t) = I, Uu(t, s)Uu(s, r) = Uu(t, r), (t, s, r) ∈ J × J × J.
Moreover,

(∂Uu(t, s)/∂t) = Au(t)Uu(t, s) for almost all t ∈ J,∀s ∈ J.

(H2) F : J × E −→ BCC(E); (t, y) 7−→ F (t, y) is measurable with respect
to t for each y ∈ E, u.s.c. with respect to y for each t ∈ J , and for
each fixed y ∈ C(J,E) the set

SF,y =
{
g ∈ L1(J,E) : g(t) ∈ F (t, y(t)) for a.e. t ∈ J

}
is nonempty.

(H3) There exists a constant L > 0 such that |f(y)| ≤ L for each y ∈
C(J,E);

(H4) For each bounded Q ⊂ C(J,E), and for each y ∈ Q and t ∈ J the set{
Uy(t, 0)y0 − Uy(t, 0)f(y) +

∫ t

0
Uy(t, s)g(s)ds : g ∈ SF,y

}
is relatively compact in E.
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Remark 2.2.
1) If dimE < ∞ then, for each y ∈ C(J,E), SF,y 6= ∅ (see Lasota and

Opial [13]).
2) If dimE = ∞ then SF,y is nonempty if and only if the function Y :

J −→ R, defined by

Y (t) := inf{|v| : v ∈ F (t, y)},

belongs to L1(J,R) (see Hu and Papageorgiou [12]).
3) If we assume that Uy(t, s), (t, s) ∈ J ×J is completely continuous then

(H4) is satisfied.
4) From (H1), it follows that u ∈ C(J,E) implies Au ∈ C(J,B(E)) and

‖un − u∗‖∞ → 0 implies that

‖Aun −Au∗‖∞ := max{‖Aun(t)−Au∗(t)‖ : t ∈ J} → 0,

as n→∞.

A fuction y ∈ C(J,E) is called a mild solution of (1)–(2) if there exists a
function v ∈ L1(J,E) such that v(t) ∈ F (t, y(t)) a.e. on J, and

y(t) = Uy(t, 0)y0 − Uy(t, 0)f(y) +
∫ t

0
Uy(t, s)v(s)ds.

The following lemmas are crucial in the proof of our main theorem:

Lemma 2.1 ([13]). Let I be a compact real interval and X be a Banach
space. Let F be a multivalued map satisfying (H2) and let Γ be a linear
continuous mapping from L1(I,X) to C(I,X). Then the operator

Γ ◦ SF : C(I,X) −→ BCC(C(I,X)), y 7−→ (Γ ◦ SF )(y) := Γ(SF,y)

is a closed graph operator in C(I,X)× C(I,X).

Lemma 2.2 ([10]). Suppose that ϕ1, ϕ2 ∈ C(J,R), ϕ3 ∈ L1(J,R), ϕ3(t) ≥
0 a.e. on J and ϕ1(t) ≤ ϕ2(t) +

∫ t
0 ϕ3(s)ϕ1(s)ds. Then

ϕ1(t) ≤ ϕ2(t) +
∫ t

0
ϕ3(s)ϕ2(s)exp

(∫ t

s
ϕ3(τ)dτ

)
ds.

Lemma 2.3 ([15]). Let X be a Banach space and let N : X −→ BCC(X)
be an u.s.c. and condensing map. If the set

Ω := {y ∈ X : λy ∈ N(y) for some λ > 1}

is bounded then N has a fixed point.
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3. Existence results

Now, we are able to state and prove our main theorem, concerning the
existence results for the nonlocal IVP (1)–(2).

Theorem 3.1. Let f : C(J,E) −→ E be a continuous function. Assume
that hypotheses (H1)–(H4) are satisfied. Moreover, assume that:

(H5) ‖F (t, y)‖ := sup{|v| : v ∈ F (t, y)} ≤ p(t)ψ(|y|) for almost all t ∈ J
and for all y ∈ E, where p ∈ L1(J,R+) and ψ : R+ −→ (0,∞) is
continuous, increasing and such that

M

∫ b

0
p(s)ds <

∫ ∞
c

du

ψ(u)
;

where c := M |y0|+ML and M := sup{‖Uy(t, s)‖; (t, s) ∈ J × J}.

Then problem (1)–(2) has at least one mild solution on J.

Proof. We transform problem (1)–(2) into a fixed point problem. Consider
the multivalued map N : C(J,E) −→ 2C(J,E), defined by

N(y) :=
{
h ∈ C(J,E) : h(t) =Uy(t, 0)y0 − Uy(t, 0)f(y)

+
∫ t

0
Uy(t, s)g(s)ds : g ∈ SF,y

}
,

where

SF,y =
{
g ∈ L1(J,E) : g(t) ∈ F (t, y(t)) for a.e. t ∈ J

}
.

Remark 3.1. It is clear that the fixed points of N are mild solutions to
(1)–(2).

We shall show that N is completely continuous with bounded, closed,
convex values and it is upper semicontinuous. The proof will be given in
several steps.

Step 1. N(y) is convex for each y ∈ C(J,E).

Indeed, if h1, h2 belong to N(y) then there exist g1, g2 ∈ SF,y such that
for each t ∈ J , we have

hi(t) = Uy(t, 0)y0 − Uy(t, 0)f(y) +
∫ t

0
Uy(t, s)gi(s)ds, (i = 1, 2).
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Let 0 ≤ k ≤ 1. Then, for each t ∈ J , we have

(kh1 + (1− k)h2)(t) =Uy(t, 0)y0 − Uy(t, 0)f(y)

+
∫ t

0
Uy(t, s)[kg1(s) + (1− k)g2(s)]ds.

Since SF,y is convex (because F has convex values) then

kh1 + (1− k)h2 ∈ N(y).

Step 2. N maps bounded sets into bounded sets.

Indeed, it is enough to show that there exists a positive constant ` such
that, for each h ∈ N(y), y ∈ Br = {y ∈ C(J,E) : ‖y‖∞ ≤ r}, one has
‖h‖∞ ≤ `.

If h ∈ N(y) then there exists g ∈ SF,y such that, for each t ∈ J , we have

h(t) = Uy(t, 0)y0 − Uy(t, 0)f(y) +
∫ t

0
Uy(t, s)g(s)ds.

By (H3) and (H5), we have, for each t ∈ J , that

|h(t)| ≤‖Uy(t, 0)‖|y0|+ ‖Uy(t, 0)‖|f(y)|+
∫ t

0
‖Uy(t, s)g(s)‖ ds

≤M |y0|+ML+M sup
y∈[0,r]

ψ(y)
(∫ t

0
p(s)ds

)
.

Then, for each h ∈ N(Br), we have

‖h‖∞ ≤M |y0|+ML+M sup
t∈J

(∫ t

0
p(s)ds

)
max
y∈Br

sup
y∈[0,r]

ψ(y) := `.

Step 3. N sends bounded sets into equicontinuous sets of C(J,E).

Let t1, t2 ∈ J, t1 < t2 and Br be a bounded set in C(J,E).
For each y ∈ Br and h ∈ N(y), there exists g ∈ SF,y such that

h(t) = Uy(t, 0)y0 − Uy(t, 0)f(y) +
∫ t

0
Uy(t, s)g(s)ds.

Thus

|h(t2)− h(t1)| ≤‖(Uy(t2, 0)− Uy(t1, 0))y0‖+ ‖(Uy(t2, 0)− Uy(t1, 0))‖L

+
∥∥∥∫ t1

0
[Uy(t2, s)− Uy(t1, s)]g(s)ds

∥∥∥
+
∥∥∥∥∫ t2

t1

Uy(t2, s)g(s)ds
∥∥∥∥
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≤‖(Uy(t2, 0)− Uy(t1, 0))y0‖+ ‖(Uy(t2, 0)− Uy(t1, 0))‖L

+
∥∥∥ ∫ t1

0
[Uy(t2, s)− Uy(t1, s)]g(s)ds

∥∥∥+M

∫ t2

t1

‖g(s)‖ds

≤‖(Uy(t2, 0)− Uy(t1, 0))y0‖+ ‖(Uy(t2, 0)− Uy(t1, 0))‖L

+
(∫ b

0
p(s)ds

)
sup
y∈[0,r]

ψ(y)‖Uy(t2, s)− Uy(t1, s)‖

+M sup
y∈[0,r]

ψ(y)
(∫ t2

t1

p(s)ds
)
.

As t2 −→ t1 then the right-hand side of the above inequality tends to zero.

Step 4. Uu(t, s) is continuous with respect to u, i.e.

‖un − u∗‖∞ −→ 0⇒ ‖Uun − Uu∗‖∞ −→ 0, as n −→∞.

Indeed, let ‖un − u∗‖∞ −→ 0. Then there exits r > 0 such that ‖un‖∞,
‖u∗‖∞ ≤ r. Moreover, if s ≤ t (analogously if t < s) we have

‖Uun − Uu∗‖∞ ≤
∫ t

s
‖Uun(w, s)‖ · ‖Aun(w)−Au∗(w)‖dw

+
∫ t

s
‖Au∗‖ · ‖Uun(w, s)− Uu∗(w, s)‖dw

≤M
∫ t

s
‖Aun(w)−Au∗(w)‖dw

+
∫ t

s
‖Au∗‖ · ‖Uun(w, s)− Uu∗(w, s)‖dw.

Applying Lemma 2.2, we obtain

‖Uun − Uu∗‖∞ ≤M
∫ t

s
‖Aun(w)−Au∗(w)‖dw

+M

∫ t

s
‖Au∗(w)‖

[∫ t

s
‖Aun(τ)−A∗(τ)‖dτ

]
× exp

(∫ t

w
‖Au∗(z)‖dz

)
dw

≤bM‖Aun −Au∗‖∞
+ b2M‖Au∗‖∞‖Aun −Au∗‖∞ exp(b‖Au∗‖∞)

≤‖Aun −Au∗‖∞Mb(1 + br1 exp(br1)).

The conclusion follows from Remark 2.2.
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As a consequence of Steps 2–4 and hypothesis (H4), together with the
Ascoli-Arzelá theorem, we can conclude that N is completely continuous
and, therefore, a condensing map.

Step 5. N has a closed graph.

Let yn −→ y∗, hn ∈ N(yn) and hn −→ h∗. We shall prove that h∗ ∈
N(y∗).
hn ∈ N(yn) means that there exists gn ∈ SF,yn such that

hn(t) = Uyn(t, 0)y0 − Uyn(t, 0)f(yn) +
∫ t

0
Uyn(t, s)gn(s)ds.

We have to prove that there exists g∗ ∈ SF,y∗ such that

h∗(t) = Uy∗(t, 0)y0 − Uy∗(t, 0)f(y∗) +
∫ t

0
Uy∗(t, s)g∗(s)ds.

Consider the linear continuous operator

Γ : L1(J,E) −→ C(J,E)

g 7−→ Γ(g)(t) =
∫ t

0
Uy(t, s)g(s)ds.

Clearly, we have that

‖(hn−Uyn(t, 0)y0+Uyn(t, 0)f(yn))−(h∗−Uy∗(t, 0)y0+Uy∗(t, 0)f(y∗))‖∞ → 0,

as n→∞.
From Lemma 2.1 , it follows that Γ ◦ SF is a closed graph operator.
Moreover, we have that

hn(t)− Uyn(t, 0)y0 + Uyn(t, 0)f(yn) ∈ Γ(SF,yn).

Since yn −→ y∗, it follows, from Lemma 2.1, that

h∗(t)− Uy∗(t, 0)y0 + Uy∗(t, 0)f(y∗) =
∫ t

0
Uy∗(t, s)g∗(s)ds

for some g∗ ∈ SF,y∗ .

Step 6. The set

Ω := {y ∈ C(J,E) : λy ∈ N(y), for some λ > 1}

is bounded.

Let y ∈ Ω. Then λy ∈ N(y) for some λ > 1. Thus, there exists g ∈ SF,y
such that

y(t) = λ−1Uy(t, 0)y0 − λ−1Uy(t, 0)f(y) + λ−1
∫ t

0
Uy(t, s)g(s)ds, t ∈ J.
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Consequently, by (H3) and (H5), we have, for each t ∈ J , that

|y(t)| ≤M |y0|+ML+M

∫ t

0
p(s)ψ(|y(s)|)ds.

Let us take the right-hand side of the above inequality as v(t). Then we
obtain

v(0) = M |y0|+ML and |y(t)| ≤ v(t), t ∈ J,
and

v′(t) = Mp(t)ψ(|y(t)|), t ∈ J.
Applying the nondecreasing character of ψ we get

v′(t) ≤Mp(t)ψ(v(t)), t ∈ J.

The above inequality implies, for each t ∈ J , that∫ v(t)

v(0)

du

ψ(u)
≤M

∫ b

0
p(s)ds <

∫ ∞
v(0)

du

ψ(u)
.

Therefore, there exists a constant d such that v(t) ≤ d, t ∈ J , and hence
‖y‖∞ ≤ d, where d depends only on the functions p and ψ. This shows that
Ω is bounded.

Set X := C(J,E). As a consequence of Lemma 2.3, we deduce that N
has a fixed point, which is a mild solution of (1)–(2). 2

4. Controllability results

Definition 4.1. A fuction y ∈ C(J,E) is called a mild solution of (3)–(4)
if there exists a function v ∈ L1(J,E) such that v(t) ∈ F (t, y(t)) a.e. on J,
and

y(t) = Uy(t, 0)y0 −Uy(t, 0)f(y) +
∫ t

0
Uy(t, s)[(Bu)(s) + v(s)] ds. (6)

Definition 4.2. The nonlocal problem (3)–(4) is said to be nonlocally con-
trollable on the interval J , if for every y0, y1 ∈ E, there exists a control
u ∈ L2(J, U), such that the mild solution t → y(t) of (3)(4) satisfies
y(b) + f(y) = y1.

Theorem 4.1. Let f : C(J,E) −→ E be a continuous function. Assume
that hypotheses (H1)–(H4) are satisfied. Moreover, we assume that:
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(H6) The linear operator W : L2(J, U)→ E, defined by

Wu =
∫ b

0
Uy(b, 0)Bu(s) ds,

has an invertible operator W−1, which takes values in L2(J, U)/kerW ,
and there exist positive constants M1 and M2 such that ‖B‖ ≤M1 and
‖W−1‖ ≤M2.

(H7) ‖F (t, y)‖ ≤ p(t)ψ(|y|) for almost all t ∈ J and all y ∈ E, where
p ∈ L1(J,R+) and ψ : R+ −→ (0,∞) is continuous and increasing
with

M

∫ b

0
p(s)ds <

∫ ∞
c

du

ψ(u)
;

where c = M(|y0|+L+M0b), M = sup{‖Uy(t, s)‖; (t, s) ∈ J ×J} and

M0 = M1M2

[
|y1|+ L+M |y0|+ML+M

∫ b

0
p(s)ψ(|y(s)|) ds

]
.

Then problem (3)–(4) is nonlocally controllable on J .

Proof. Applying hypothesis (H6), for an arbitrary function y(·), define the
control

uy(t) = W−1
[
y1 − f(y)− Uy(b, 0)y0 + Uy(b, 0)f(y)−

∫ b

0
Uy(b, s)g(s) ds

]
(t),

where

g ∈ SF,y =
{
g ∈ L1(J,E) : g(t) ∈ F (t, y(t)) for a.e. t ∈ J

}
.

Now, we shall show that, when using this control, the operator
N : C(J,E) −→ 2C(J,E), defined by

N(y)(t) :=
{
h ∈ C(J,E) : h(t) = Uy(t, 0)y0 − Uy(t, 0)f(y)

+
∫ t

0
Uy(t, s)[(Buy)(s) + g(s)] ds, t ∈ J

}
,

has a fixed point. This fixed point is then a solution of problem (3)-(4).
Clearly y1 − f(y) ∈ N(y)(b).

We shall show that N is completely continuous with bounded, closed,
convex values and it is upper semicontinuous. The proof will be given in
several steps, in a way parallel to that of Theorem 3.1.

Step 1. N(y) is convex for each y ∈ C(J,E).

This is trivial, since SF,y is convex (because F has convex values) and,
therefore, it is omitted.
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Step 2. N is bounded on bounded sets of C(J,E).

Let Br := {y ∈ C(J,E) : ‖y‖∞ ≤ r}. Then, if h ∈ N(y) then there exists
g ∈ SF,y such that

h(t) = Uy(t, 0)y0 − Uy(t, 0)f(y) +
∫ t

0
Uy(t, s)[Buy(s) + g(s)] ds.

By (H3), (H6) and (H7) we have, for each t ∈ J , that

|h(t)| ≤‖Uy(t, 0)‖|y0|+ ‖Uy(t, 0)‖|f(y)|

+
∫ t

0
‖Uy(t, s)[Buy(s) + g(s)]‖ ds

≤M |y0|+ML+MM0b+M sup
y∈[0,r]

ψ(y)
(∫ t

0
p(s)ds

)
or

‖N(y)‖∞ ≤M |y0|+ML+MM0b

+M sup
t∈J

(∫ t

0
p(s)ds

)
max
y∈Br

sup
y∈[0,r]

ψ(y).

Step 3. N sends bounded sets into equicontinuous sets of C(J,E).

Let t1, t2 ∈ J, t1 < t2 and Br be a bounded set in C(J,E). Then

|h(t2)− h(t1)| ≤‖(Uy(t2, 0)− Uy(t1, 0))y0‖+ ‖(Uy(t2, 0)− Uy(t1, 0))‖L

+
∥∥∥∫ t1

0
[Uy(t2, η)− Uy(t1, η)]BW−1

[
y1 − f(y)

− Uy(b, 0)y0 + Uy(b, 0)f(y)−
∫ b

0
Uy(b, s)g(s)ds

]
(η)dη

∥∥∥
+
∥∥∥∫ t1

0
[Uy(t2, s)− Uy(t1, s)]g(s)ds

∥∥∥
+
∥∥∥∫ t2

t1

Uy(t2, η)BW−1
[
y1 − f(y)− Uy(b, 0)y0

+ Uy(b, 0)f(y)−
∫ b

0
Uy(b, s)g(s)ds

]
(η)dη

∥∥∥
+
∥∥∥∫ t2

t1

Uy(t2, s)g(s)ds
∥∥∥
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≤‖(Uy(t2, 0)− Uy(t1, 0))y0‖+ ‖(Uy(t2, 0)− Uy(t1, 0))‖L

+
∫ t1

0
‖Uy(t2, η)− Uy(t1, η)‖M1M2

[
|y1|+ L+M |y0|+ML

+M

∫ b

0
p(s)ψ(|y(s)|) ds

]
dη

+
∫ t1

0
‖Uy(t2, η)− Uy(t1, η)‖p(s)ψ(|y(s)|) ds

+
∫ t2

t1

‖Uy(t2, η)‖M1M2

[
|y1|+ L+M |y0|+ML

+M

∫ b

0
p(s)ψ(|y(s)|) ds

]
dη

+
∫ t2

t1

‖Uy(t2, s)‖p(s)ψ(|y(s)|) ds.

Therefore, N(Br) is relatively compact.

Step 4. Uu(t, s) is continuous with respect to u, i.e.

‖un − u∗‖∞ −→ 0⇒ ‖Uun − Uu∗‖∞ −→ 0, as n −→∞.

This was proved is Step 4 of Section 3.

Step 5. N has a closed graph.

Let yn −→ y∗, hn ∈ N(yn), and hn −→ h∗. We shall prove that
h∗ ∈ N(y∗).
hn ∈ N(yn) means that there exists gn ∈ SF,yn such that

hn(t) = Uyn(t, 0)y0 − Uyn(t, 0)f(yn) +
∫ t

0
Uyn(t, s)[(Buyn)(s) + gn(s)]ds,

where

uyn(t) = W−1
[
y1 − f(y)− Uyn(b, 0)y0 + Uyn(b, 0)f(yn)

−
∫ b

0
Uyn(b, s)gn(s) ds

]
(t).

We have to prove that there exists g∗ ∈ SF,y∗ such that

h∗(t) = Uy∗(t, 0)y0 − Uy∗(t, 0)f(y∗) +
∫ t

0
Uy∗(t, s)[(Buy∗)(s) + g∗(s)]ds.
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where

uy∗(t) = W−1
[
y1 − f(y∗)− Uy∗(b, 0)y0 + Uy∗(b, 0)f(y∗)

−
∫ b

0
Uy∗(b, s)g∗(s) ds

]
(t).

Set
uy(t) = W−1

[
y1 − f(y)− Uy(b, 0)y0 + Uy(b, 0)f(y)

]
.

Since f, W−1 are continuous and Uyn(t, s)→ Uy∗(t, s), (t, s) ∈ J × J , then
uyn(t) −→ uy∗(t) for t ∈ J .
Clearly we have that

‖
(
hn − Uyn(t, 0)y0 + Uyn(t, 0)f(yn))−

∫ t

0
Uyn(b, s)(Buyn)(s)ds

)
−
(
h∗ − Uy∗(t, 0)y0 + Uy∗(t, 0)f(y∗))−

∫ t

0
Uy∗(b, s)(Buy∗)(s)ds

)
‖∞ → 0,

as n→∞.
Consider the operator

Γ : L1(J,E) −→ C(J,E),

g 7−→ Γ(g)(t) =
∫ t

0
Uy(t, s)

[
BW−1

(∫ b

0
Uy(b, τ)g(τ)dτ

)
(s) + g(s)

]
ds.

Clearly, L is linear and continuous. Indeed, one has

‖Γg‖∞ ≤M(bMM1M2 + 1)‖g‖L1 .

From Lemma 2.2, it follows that Γ ◦ SF is a closed graph operator.
Moreover, we have that

hn(t)− Uyn(t, 0)y0 + Uyn(t, 0)f(yn)−
∫ t

0
Uyn(b, 0)(Buyn)(s)ds ∈ Γ(SF,yn).

Since yn −→ y∗, it follows, from Lemma 2.2, that

h∗(t)− Uy∗(t, 0)y0 + Uy∗(t, 0)f(y∗)−
∫ t

0
Uy∗(t, s)(Buy∗)(s)ds

=
∫ t

0
Uy∗(t, s)

[
W−1

(∫ b

0
Uy∗(b, τ)g∗(τ)dτ

)
(s) + g∗(s)

]
ds

for some g∗ ∈ SF,y∗ .

Step 6. The set

Ω := {y ∈ C(J,E) : λy = N(y), for some λ > 1}

is bounded.
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Let y ∈ Ω. Then λy ∈ N(y) for some λ > 1. Thus, there exists g ∈ SF,y
such that

y(t) =λ−1Uy(t, 0)y0 − λ−1Uy(t, 0)f(y)

+ λ−1
∫ t

0
Uy(t, η)BW−1

[
y1 − f(y)− Uy(b, 0)y0 + Uy(b, 0)f(y)

−
∫ b

0
Uy(b, s)f(s, y(s)) ds

]
(η)dη

+ λ−1
∫ t

0
Uy(t, s)g(s) ds, t ∈ J.

Consequently, by (H3), (H6) and (H7), for each t ∈ J , we have that

|y(t)| ≤M |y0|+ML+MM0b+M

∫ t

0
p(s)ψ(|y(s)|)ds.

Let us take the right-hand side of the above inequality as v(t). Then we
obtain

v(0) = M |y0|+ML+MM0b, |y(t)| ≤ v(t), t ∈ J,

and
v′(t) = Mp(t)ψ(|y(t)|), t ∈ J.

Using the nondecreasing character of ψ we get

v′(t) ≤Mp(t)ψ(v(t)), t ∈ J.

This implies, for each t ∈ J , that∫ v(t)

v(0)

du

ψ(u)
≤M

∫ b

0
p(s)ds <

∫ ∞
v(0)

du

ψ(u)
.

The above inequality implies that there exists a constant d′ such that v(t) ≤
d′, t ∈ J , and hence |y|∞ ≤ d′, where d′ depends only on the functions p
and ψ. This shows that Ω is bounded.

Set X := C(J,E). As a consequence of Lemma 2.2, we deduce that N
has a fixed point, which is a mild solution of (3)–(4). Thus, system (3)–(4)
is nonlocally controllable on J.
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[5] Banaś, J., Goebel, K., Measures of Noncompactness in Banach Spaces, Marcel-
Dekker, New York, 1980.

[6] Byszewski, L., Theorems about the existence and uniqueness of solutions of a semi-
linear evolution nonlocal Cauchy problem, J. Math. Anal. Appl. 162 (1991), 494–505.

[7] Byszewski, L., Existence and uniqueness of mild and classical solutions of semilin-
ear functional differential evolution nonlocal Cauchy problem, Sel. Problems Math.,
Cracow University of Technology, Anniversary Issue 6 (1995), 25–33.

[8] Darbo, G., Punti uniti in trasformazioni a codominio non-compacto Rend. Sem.
Mat. Univ. Padova 24 (1955), 353–367.

[9] Deimling, K., Multivalued Differential Equations, Walter de Gruyter, Berlin-New
York, 1992.

[10] Hale, J. K., Ordinary Differential Equations, Interscience, New York, 1969.
[11] Han, H. K., Park, J. Y., Boundary controllability of differential equations with non-

local condition, em J. Math. Anal. Appl. 230 (1999), 241–250.
[12] Hu, S., Papageorgiou, N., Handbook of Multivalued Analysis, Volume I: Theory,

Kluwer, Dordrecht, Boston, London, 1997.
[13] Lasota, A., Opial, Z., An application of the Kakutani-Ky-Fan theorem in the theory

of ordinary differential equations, Bull. Polish Acad. Sci. Ser. Sci. Math. Astronom.
Phys. 13 (1965), 781–786.

[14] Marino, G., Nonlinear boundary value problems for multivalued differential equations
in Banach spaces, Nonlinear Anal. 14(1990), 545–558

[15] Martelli, M., A Rothe’s type theorem for non-compact acyclic-valued map, Boll. Un.
Mat. Ital. 11 (1975), 70–76.

[16] Ntouyas, S. K., Tsamatos, P. Ch., Global existence for semilinear evolution equations
with nonlocal conditions, J. Math. Anal. Appl. 210 (1997), 679–687.

[17] Yosida, K., Functional Analysis, 6th ed., Springer-Verlag, Berlin, 1980.

M. Benchohra S.K. Ntouyas

Department of Mathematics Department of Mathematics

University of Sidi Bel Abbes University of Ioannina

BP 89, 22000 Sidi Bel Abbes 451 10 Ioannina

Algeria Greece

e-mail: benchohra@yahoo.com e-mail: sntouyas@cc.uoi.gr


